Academic literature on the topic 'Aerospace material'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerospace material.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aerospace material"

1

RAHIM, Erween, Takayuki OGAWA, Akihiko MIURA, Hiroyuki SASAHARA, Rei Koyasu, and Yasuhiro Yao. "3252 Ultrasonic Torsional Vibration Drilling of Aerospace Structure Material." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2011.6 (2011): _3252–1_—_3252–4_. http://dx.doi.org/10.1299/jsmelem.2011.6._3252-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

James, T. "Material ambitions [aerospace manufacturing]." Engineering & Technology 3, no. 11 (2008): 66–69. http://dx.doi.org/10.1049/et:20081109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Florin, PAVEL. "The World’s Aerospace Material Handbook." INCAS BULLETIN 2, no. 3 (2010): 129–30. http://dx.doi.org/10.13111/2066-8201.2010.2.3.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tejas Ajay, Baindur, Patil Mayur Vitthal, and G. Rajyalakshmi. "WEDM machining on Aerospace Materials for improving Material Properties." Materials Today: Proceedings 4, no. 8 (2017): 9107–16. http://dx.doi.org/10.1016/j.matpr.2017.07.266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Ho Sung, and Kookil No. "Materials and Manufacturing Technology for Aerospace Application." Key Engineering Materials 707 (September 2016): 148–53. http://dx.doi.org/10.4028/www.scientific.net/kem.707.148.

Full text
Abstract:
This paper gives an overview of current work in materials and manufacturing technology for aerospace application. Finding the best material to use for a particular application is not simple and it depends on many factors including mission requirements like performance and safety, design requirements, strength to density ratio, operating temperature, and material technology prospects like current state of affordable materials/processes technologies. Materials with high specific strength have long been popular with the aerospace industry, as aerospace vehicle made from such materials provide the
APA, Harvard, Vancouver, ISO, and other styles
6

NIINO, Masayuki, and Yoshitsugu ISHIBASHI. "Development of new material for aerospace uses, "functionally gradient materials"." Journal of the Japan Welding Society 59, no. 6 (1990): 453–58. http://dx.doi.org/10.2207/qjjws1943.59.453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

RABEEH, B., W. SOBOYEJO, and S. ROKHLIN. "AEROSPACE MATERIAL DAMAGE CHARACTERIZATION AND LIFE PREDICTIONS." International Conference on Aerospace Sciences and Aviation Technology 7, ASAT CONFERENCE (1997): 1–19. http://dx.doi.org/10.21608/asat.1997.25404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ragauskas, Paulius, and Rimantas Belevičius. "IDENTIFICATION OF MATERIAL PROPERTIES OF COMPOSITE MATERIALS." Aviation 13, no. 4 (2009): 109–15. http://dx.doi.org/10.3846/1648-7788.2009.13.109-115.

Full text
Abstract:
Present paper describes the facilities of composite material properties identification technique using specimen vibration tests, genetic algorithms, finite elements analysis and specimen shape optimization. In identification process the elastic constants in a numerical model is updated so that the output from the numerical code fits the results from vibration testing. Main problem analysed in this paper is that Poisson's ratio is the worst determined elastic characteristic due to its low influence on specimen eigenfrequencies. It is shown that it is possible to increase its influence by choosi
APA, Harvard, Vancouver, ISO, and other styles
9

Sun, De Ying. "Research the Utilization Rate of Aluminum Alloy Material." Applied Mechanics and Materials 595 (July 2014): 79–82. http://dx.doi.org/10.4028/www.scientific.net/amm.595.79.

Full text
Abstract:
There are many parts in aerospace fixing device, the 7075 - t351 brand aluminum alloy is a commonly used material of these parts [2].The material has high strength, good toughness, wear resistance and resistance to spalling corrosion resistance and other characteristics; After the machining deformation, comprehensive mechanical processing performance is good [1]. As a result, the materials are widely used in aerospace equipment. Smaller wall thickness, complex structure, multiple azimuth need processing, is the characteristics of these parts, make the individual parts machining material consum
APA, Harvard, Vancouver, ISO, and other styles
10

Sanoj, P., and Balasubramanian Kandasubramanian. "Hybrid Carbon-Carbon Ablative Composites for Thermal Protection in Aerospace." Journal of Composites 2014 (March 6, 2014): 1–15. http://dx.doi.org/10.1155/2014/825607.

Full text
Abstract:
Composite materials have been steadily substituting metals and alloys due to their better thermomechanical properties. The successful application of composite materials for high temperature zones in aerospace applications has resulted in extensive exploration of cost effective ablative materials. High temperature heat shielding to body, be it external or internal, has become essential in the space vehicles. The heat shielding primarily protects the substrate material from external kinetic heating and the internal insulation protects the subsystems and helps to keep coefficient of thermal expan
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aerospace material"

1

Jenett, Benjamin (Benjamin Eric). "Digital material aerospace structures." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101837.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2015.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 71-76).<br>This thesis explores the design, fabrication, and performance of digital materials in aerospace structures in three areas: (1) a morphing wing design that adjusts its form to respond to different behavioral requirements; (2) an automated assembly method for truss column structures; and (3) an analysis of the payload and structural performance requirements of space structure elements made f
APA, Harvard, Vancouver, ISO, and other styles
2

Jönsson, Gustav. "Material selection for an aerospace component." Thesis, KTH, Lättkonstruktioner, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-198494.

Full text
Abstract:
In the world of today there is a drive for lighter and more effective products for various reasons e.g. reduced environmental impact, higher payload, fuel efficiency etc. There is also an expanding development of new materials for a large number of different applications. This makes it more and more difficult for engineers to make good material selections. This has led to the development of a large amount of material selection methods that require more or less effort to select material. An effective way to do this is offered by utilisation of material selection software’s like Granta Design CE
APA, Harvard, Vancouver, ISO, and other styles
3

Anderson, Mélissa. "Tube hydroforming of aerospace alloys : material characterization methods." Mémoire, École de technologie supérieure, 2010. http://espace.etsmtl.ca/625/1/ANDERSON_M%C3%A9lissa.pdf.

Full text
Abstract:
L'objectif du projet est de développer des outils de modélisation de procédé pour la fabrication virtuelle de composants aéronautiques par hydroformage de tubes. L'industrie aérospatiale s'intéresse aux possibilités qu'offre la technologie d'hydroformage pour la fabrication de pièces aéronautiques. Dans ce contexte, les travaux menés portent sur la mise en place de méthodes appropriées pour caractériser certains alliages aéronautiques: les aciers inoxydables 321, 17-4 PH ainsi que le superalliage base-nickel Inconel 718. Le présent travail cherche à comprendre le comportement mécanique d
APA, Harvard, Vancouver, ISO, and other styles
4

Pan, Qing. "Multi-scale modelling and material characterisation of textile composites for aerospace applications." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33396/.

Full text
Abstract:
Textile composites offer an excellent alternative to metallic alloys in the aerospace engineering due to their high specific stiffness and strength, superb fatigue strength, excellent corrosion resistance and dimensional stability. In order to successfully apply these materials to engineering problems, a methodology to characterise and predict the constitutive response of these materials is essential. The lack of the modelling tools for modern textile composites that would facilitate systematic analysis and characterisation of these materials hinders the wide adoption of such material systems
APA, Harvard, Vancouver, ISO, and other styles
5

Munoz, Raul E. "Finite element modelling (including material grain refinement prediction) when turning advanced aerospace alloys." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5844/.

Full text
Abstract:
The overall aim of the project/research was to develop finite element modelling/process simulation capability to predict workpiece surface integrity following machining of advanced aerospace alloys. The modelling work employed the general-purpose commercial finite element (FE) software ABAQUS, due to its robust solver for handling complex, dynamic non-linear problems as well as the facility to define custom algorithms/subroutines. Both 2D and 3D fully coupled thermo-mechanical FE models were formulated to simulate the orthogonal turning of Ti-6Al-4V titanium alloy and Inconel 718 nickel based
APA, Harvard, Vancouver, ISO, and other styles
6

Purzer, Nicholas R. (Nicholas Richard) 1972. "Managing the supply, release, and machining of material within an aerospace component shop." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50444.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, 1998.<br>Includes bibliographical references (p. 69).<br>by Nicholas R. Purzer.<br>S.M.
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Tao. "The Effects of Ball Burnishing for Aerospace Blade Material 17-4 PH Steel." University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1384971374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perry, Mark Joseph. "Analysis of resin transfer molding: Material characterization, molding and simulation /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1382637062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Anokye-Siribor, Kwame. "An analytical model for pressbrake forming using in-process identification of aerospace material characteristics." Thesis, University of Ulster, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wilson, Andrew David. "Wear and fatigue studies of surface engineered ferrous and non-ferrous aerospace alloys." Thesis, University of Hull, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aerospace material"

1

Prasad, N. Eswara, and R. J. H. Wanhill, eds. Aerospace Materials and Material Technologies. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2134-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Prasad, N. Eswara, and R. J. H. Wanhill, eds. Aerospace Materials and Material Technologies. Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2143-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Engineers, Society of Automotive. Aerospace material specification: Sandwich constructions and core materials : general test methods. SAE International, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arita, Masashi. Effects of atomic oxygen irradiation on spacecraft materials - material degradation studies. American Institute of Aeronautics and Astronautics, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Institute, of Materials (London England) Aerospace Structural Materials Working Party. Materials technology foresight on aerospace structural materials. The Institute, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Generazio, Edward R. Ultrasonic and radiographic evaluation of advanced aerospace material: Ceramic composites. NASA, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Generazio, Edward R. Ultrasonic and radiographic evaluation of advanced aerospace material: Ceramic composites. NASA, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Visentine, James T. Material interactions with the low earth orbital environment: Accurate reaction rate measurements. AIAA, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ryzhikova, tamara. Marketing in the aerospace field. INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1003199.

Full text
Abstract:
The tutorial provides an overview of the main methodological approaches to the analysis of the market of rocket and space technology and services on the basis of its specific features, methods of evaluating competition and its justification, the reinterpretation of basic marketing tools and approaches in combination with innovative ideas and methods of achieving high economic results in the space market.&#x0D; The main aim is to provide future marketers with the necessary material, methods, technologies and tools with which to solve various problems related to the understanding of the structur
APA, Harvard, Vancouver, ISO, and other styles
10

Buhl, Horst. Advanced Aerospace Materials. Springer Berlin Heidelberg, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Aerospace material"

1

Saha, B., V. Nimbalkar, D. B. Anant Sagar, M. Sai Krishna Rao, and V. P. Deshmukh. "Bronzes for Aerospace Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shunmugapriya, K., Shirish S. Kale, G. Gouda, P. Jayapal, and K. Tamilmani. "Paints for Aerospace Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Anandan, S., Neha Hebalkar, B. V. Sarada, and Tata N. Rao. "Nanomanufacturing for Aerospace Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Eswara Prasad, N., and S. B. Bhaduri. "Monolithic Ceramics for Aerospace Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rambabu, P., N. Eswara Prasad, V. V. Kutumbarao, and R. J. H. Wanhill. "Aluminium Alloys for Aerospace Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Padmanabhan, K. A., S. Balasivanandha Prabu, and S. Madhavan. "Superplastic Forming of Aerospace Materials." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mohandas, T. "Welding Technologies in Aerospace Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rao, D. Srinivasa, L. Rama Krishna, and G. Sundararajan. "Detonation Sprayed Coatings for Aerospace Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhuvaneswari, C. M., Shirish S. Kale, G. Gouda, P. Jayapal, and K. Tamilmani. "Elastomers and Adhesives for Aerospace Applications." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2134-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wanhill, R. J. H. "Texture Effects in Important Aerospace Materials." In Aerospace Materials and Material Technologies. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aerospace material"

1

Tappan, Alexander, Gregory Long, Anita Renlund, and Stanley Kravitz. "Microenergetic Materials - Microscale Energetic Material Processing and Testing." In 41st Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wood, Gary L., Andrew G. Mott, and Edward J. Sharp. "Material requirements for optical limiting." In Aerospace Sensing, edited by M. J. Soileau. SPIE, 1992. http://dx.doi.org/10.1117/12.138049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ARITA, MASASHI, TOSHIHIKO AIKAWA, YUSHI SHICHI, and MASAO AKIYAMA. "Effects of atomic oxygen irradiation on spacecraft materials - Material degradation studies." In 28th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

French, Paul, Mo Naeem, Alexander Wolynski, and Martin Sharp. "Fibre laser material processing of aerospace composites." In ICALEO® 2010: 29th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2010. http://dx.doi.org/10.2351/1.5062047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

French, Paul, Mo Naeem, Alexander Wolynski, and Martin Sharp. "Fibre laser material processing of aerospace composites." In ICALEO® 2010: 29th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2010. http://dx.doi.org/10.2351/1.5061935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bradford, Emma, Jason Rabinovitch, and Mohamed Abid. "Regolith Particle Erosion of Material in Aerospace Environments." In 2019 IEEE Aerospace Conference. IEEE, 2019. http://dx.doi.org/10.1109/aero.2019.8741563.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Booth, Joel P. "Electromagnetic Redirection thru Material Manipulation." In 2007 IEEE Aerospace Conference. IEEE, 2007. http://dx.doi.org/10.1109/aero.2007.352855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"Society Related Material." In 2008 IEEE National Aerospace and Electronics Conference. IEEE, 2008. http://dx.doi.org/10.1109/naecon.2008.4806501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nasser, L., R. Tryon, and A. Dey. "Material simulation-based electronic device prognosis." In 2005 IEEE Aerospace Conference. IEEE, 2005. http://dx.doi.org/10.1109/aero.2005.1559662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gupta, Shiv C. "Choosing Bearing Support Liner Material." In Aerospace Technology Conference and Exposition. SAE International, 1990. http://dx.doi.org/10.4271/902014.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Aerospace material"

1

Soovere, J., and M. L. Drake. Aerospace Structures Technology Damping Design Guide. Volume 3. Damping Material Data. Defense Technical Information Center, 1985. http://dx.doi.org/10.21236/ada178315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Radhakrishnan, Balasubramaniam, Jean-Luc Fattebert, Sarma B. Gorti, et al. Integrated Predictive Tools for Customizing Microstructure and Material Properties of Additively Manufactured Aerospace Components. Office of Scientific and Technical Information (OSTI), 2017. http://dx.doi.org/10.2172/1414688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Briskman, Boris A. Research Program For Radiation Stability of the Aerospace Materials Development of ISO Standards for Space Environment Simulation at Material Tests. Defense Technical Information Center, 2000. http://dx.doi.org/10.21236/ada400180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grendahl, Scott, Daniel Snoha, and Benjamin Hardisky. Shot-Peening Sensitivity of Aerospace Materials. Defense Technical Information Center, 2007. http://dx.doi.org/10.21236/ada469082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fahrenholtz, William G., Gregory E. Hilmas, Erica Corral, and Laura Riegel. Workshop on Aerospace Materials for Extreme Environments. Defense Technical Information Center, 2009. http://dx.doi.org/10.21236/ada511310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nicholas, Nolan. Carbon Nanotube Spaceframes for Low-Density Aerospace Materials. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada566139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ashbaugh, N. E., R. A. Brockman, D. J. Buchanan, G. A. Hartman, and A. L. Hutson. Life Prediction Methodologies for Aerospace Materials Annual Report, 2002. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada421560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grendahl, Scott M., Wai K. Chin, and Clinton Isaac. Adhesive Bonding Performance of Aerospace Materials Prepared With Alternative Solvents. Defense Technical Information Center, 2001. http://dx.doi.org/10.21236/ada397160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Freeman, Arthur J., Oleg Y. Kontsevoi, Yuri N. Gornostyrev, and Nadezhda I. Medvedeva. Fundamental Electronic Structure Characteristics and Mechanical Behavior of Aerospace Materials. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada480633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shull, B. Nondestructive x-ray methods for characterization of advanced aerospace materials. Office of Scientific and Technical Information (OSTI), 1990. http://dx.doi.org/10.2172/6836377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!