Journal articles on the topic 'Aerospace material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Aerospace material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
RAHIM, Erween, Takayuki OGAWA, Akihiko MIURA, Hiroyuki SASAHARA, Rei Koyasu, and Yasuhiro Yao. "3252 Ultrasonic Torsional Vibration Drilling of Aerospace Structure Material." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2011.6 (2011): _3252–1_—_3252–4_. http://dx.doi.org/10.1299/jsmelem.2011.6._3252-1_.
Full textJames, T. "Material ambitions [aerospace manufacturing]." Engineering & Technology 3, no. 11 (2008): 66–69. http://dx.doi.org/10.1049/et:20081109.
Full textFlorin, PAVEL. "The World’s Aerospace Material Handbook." INCAS BULLETIN 2, no. 3 (2010): 129–30. http://dx.doi.org/10.13111/2066-8201.2010.2.3.14.
Full textTejas Ajay, Baindur, Patil Mayur Vitthal, and G. Rajyalakshmi. "WEDM machining on Aerospace Materials for improving Material Properties." Materials Today: Proceedings 4, no. 8 (2017): 9107–16. http://dx.doi.org/10.1016/j.matpr.2017.07.266.
Full textLee, Ho Sung, and Kookil No. "Materials and Manufacturing Technology for Aerospace Application." Key Engineering Materials 707 (September 2016): 148–53. http://dx.doi.org/10.4028/www.scientific.net/kem.707.148.
Full textNIINO, Masayuki, and Yoshitsugu ISHIBASHI. "Development of new material for aerospace uses, "functionally gradient materials"." Journal of the Japan Welding Society 59, no. 6 (1990): 453–58. http://dx.doi.org/10.2207/qjjws1943.59.453.
Full textRABEEH, B., W. SOBOYEJO, and S. ROKHLIN. "AEROSPACE MATERIAL DAMAGE CHARACTERIZATION AND LIFE PREDICTIONS." International Conference on Aerospace Sciences and Aviation Technology 7, ASAT CONFERENCE (1997): 1–19. http://dx.doi.org/10.21608/asat.1997.25404.
Full textRagauskas, Paulius, and Rimantas Belevičius. "IDENTIFICATION OF MATERIAL PROPERTIES OF COMPOSITE MATERIALS." Aviation 13, no. 4 (2009): 109–15. http://dx.doi.org/10.3846/1648-7788.2009.13.109-115.
Full textSun, De Ying. "Research the Utilization Rate of Aluminum Alloy Material." Applied Mechanics and Materials 595 (July 2014): 79–82. http://dx.doi.org/10.4028/www.scientific.net/amm.595.79.
Full textSanoj, P., and Balasubramanian Kandasubramanian. "Hybrid Carbon-Carbon Ablative Composites for Thermal Protection in Aerospace." Journal of Composites 2014 (March 6, 2014): 1–15. http://dx.doi.org/10.1155/2014/825607.
Full textBudiman, Arie Yudha, and Amrifan Saladin Mohruni. "A REVIEW ON THIN WALLED CRYOGENIC MACHINING ON INCONEL OR AEROSPACE MATERIALS." Journal of Mechanical Science and Engineering 7, no. 1 (2020): 001–5. http://dx.doi.org/10.36706/jmse.v7i1.34.
Full textSilva, José M., Tessaleno C. Devezas, A. Silva, L. Gil, C. Nunes, and N. Franco. "Exploring the Use of Cork Based Composites for Aerospace Applications." Materials Science Forum 636-637 (January 2010): 260–65. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.260.
Full textSilva, J. M., C. Z. Nunes, N. Franco, and P. V. Gamboa. "Damage tolerant cork based composites for aerospace applications." Aeronautical Journal 115, no. 1171 (2011): 567–75. http://dx.doi.org/10.1017/s0001924000006205.
Full textWang, Yi Wen, Ming Na Ding, Wen Juan Zheng, Zhen Chen, and Jing Shu Hu. "Design of Typical Aerospace Materials Database System." Materials Science Forum 800-801 (July 2014): 644–48. http://dx.doi.org/10.4028/www.scientific.net/msf.800-801.644.
Full textSellitto, Andrea, Aniello Riccio, A. Russo, Antonio Garofano, and Mauro Zarrelli. "Nanofillers’ Effects on Fracture Energy in Composite Aerospace Structures." Key Engineering Materials 827 (December 2019): 43–48. http://dx.doi.org/10.4028/www.scientific.net/kem.827.43.
Full textHan, X., and G. R. Liu. "Computational Inverse Technique for Material Characterization of Functionally Graded Materials." AIAA Journal 41, no. 2 (2003): 288–95. http://dx.doi.org/10.2514/2.1942.
Full textDas, D. K., and Jit Sarkar. "Graphene–magnesium nanocomposite: An advanced material for aerospace application." Modern Physics Letters B 32, no. 06 (2018): 1850075. http://dx.doi.org/10.1142/s0217984918500756.
Full textCorcoran, A., L. Sexton, B. Seaman, P. Ryan, and G. Byrne. "The laser drilling of multi-layer aerospace material systems." Journal of Materials Processing Technology 123, no. 1 (2002): 100–106. http://dx.doi.org/10.1016/s0924-0136(01)01123-2.
Full textMin, Liyi, Qiwen Liu, and Lisheng Liu. "Crack Growth Simulation of Functionally Graded Materials Based on Improved Bond-Based Peridynamic Model." Materials 14, no. 11 (2021): 3032. http://dx.doi.org/10.3390/ma14113032.
Full textKatz-Demyanetz, Alexander, Vladimir V. Popov, Aleksey Kovalevsky, Daniel Safranchik, and Andrey Koptyug. "Powder-bed additive manufacturing for aerospace application: Techniques, metallic and metal/ceramic composite materials and trends." Manufacturing Review 6 (2019): 5. http://dx.doi.org/10.1051/mfreview/2019003.
Full textLiang, Jian Xun, and Yun Tao Cai. "Application of Advanced Carbon Fiber Composite Material in Sport Equipments." Applied Mechanics and Materials 217-219 (November 2012): 63–66. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.63.
Full textWu, Chun, Wen Xin Ma, Ya Ping Chen, Ying Li, Yan Chen, and Jing Li. "Nano Materials and its Application in Space." Applied Mechanics and Materials 482 (December 2013): 34–37. http://dx.doi.org/10.4028/www.scientific.net/amm.482.34.
Full textLv, Jia Hui, Wei Ze Wang, Shan Tung Tu, and Shao Wu Liu. "Failure Cases Analysis in Aerospace Field." Materials Science Forum 993 (May 2020): 1277–85. http://dx.doi.org/10.4028/www.scientific.net/msf.993.1277.
Full textUmanath, K., S. T. Selvamani, K. Palanikumar, and T. Raphael. "Effect of Hardness on the Wear Behavior of Hybrid Metal Matrix Composites." Advanced Materials Research 984-985 (July 2014): 536–40. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.536.
Full textLee, Jae Hoon, Bum Soo Yoon, Ji-Won Park, Gunho Song, and Kwang Joon Yoon. "Flexural Deflection Prediction of Piezo-Composite Unimorph Actuator Using Material Orthotropy and Nonlinearity of Piezoelectric Material Layer." Coatings 10, no. 5 (2020): 437. http://dx.doi.org/10.3390/coatings10050437.
Full textDassios, Konstantinos G., Evangelos Z. Kordatos, Dimitrios G. Aggelis, and Theodore E. Matikas. "Nondestructive Damage Evaluation in Ceramic Matrix Composites for Aerospace Applications." Scientific World Journal 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/715945.
Full textGoyal, Ashish, Anand Pandey, and Pooja Sharma. "Machinability of Inconel 625 Aerospace Material Using Cryogenically Treated WEDM." Solid State Phenomena 266 (October 2017): 38–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.266.38.
Full textLi Jing, 李静, 郑轶 Zheng Yi, 罗晋 Luo Jin, 陈松林 Chen Songlin, 关振威 Guan Zhenwei, and 梁璐 Liang Lu. "Laser ablation effect of composite coating applied to aerospace material." High Power Laser and Particle Beams 26, no. 2 (2014): 29003. http://dx.doi.org/10.3788/hplpb20142602.29003.
Full textITOH, Koji. "Development of new material for aerospace uses "heat resistant composites"." Journal of the Japan Welding Society 59, no. 6 (1990): 446–52. http://dx.doi.org/10.2207/qjjws1943.59.446.
Full textAlderliesten, R. C. "Designing for damage tolerance in aerospace: A hybrid material technology." Materials & Design 66 (February 2015): 421–28. http://dx.doi.org/10.1016/j.matdes.2014.06.068.
Full textLiu, Ping, Roger M. Groves, and Rinze Benedictus. "Signal processing in optical coherence tomography for aerospace material characterization." Optical Engineering 52, no. 3 (2013): 033201. http://dx.doi.org/10.1117/1.oe.52.3.033201.
Full textHolmes, Mark. "Synthetic diamond composite tooling material provides step change in aerospace." Reinforced Plastics 59, no. 6 (2015): 291–93. http://dx.doi.org/10.1016/j.repl.2014.12.069.
Full textZhang, Yanzhong, and Xiaohua Huang. "Simulation and Research of Aerospace Material Milling Based On ABAQUS." Journal of Physics: Conference Series 1653 (October 2020): 012070. http://dx.doi.org/10.1088/1742-6596/1653/1/012070.
Full textThomson, J., R. Zavadil, M. Sahoo, A. Dadouche, W. Dmochowski, and M. Conlon. "Development of a Lead-Free Bearing Material for Aerospace Applications." International Journal of Metalcasting 4, no. 1 (2010): 19–30. http://dx.doi.org/10.1007/bf03355483.
Full textBhasha, Sanjeev Gautam, Parul Malik, and Purnima Jain. "Ceramic Composites for Aerospace Applications." Diffusion Foundations 23 (August 2019): 31–39. http://dx.doi.org/10.4028/www.scientific.net/df.23.31.
Full textWang, Le Xin, Zhi Min Zhao, and Xu Fang Jia. "Experimental Study of Light-Repair on Composite Material Deflection." Advanced Materials Research 233-235 (May 2011): 2072–76. http://dx.doi.org/10.4028/www.scientific.net/amr.233-235.2072.
Full textRoux, Maxime, Nicolas Eguémann, Clemens Dransfeld, Frédéric Thiébaud, and Dominique Perreux. "Thermoplastic carbon fibre-reinforced polymer recycling with electrodynamical fragmentation." Journal of Thermoplastic Composite Materials 30, no. 3 (2016): 381–403. http://dx.doi.org/10.1177/0892705715599431.
Full textChen, Yan Yan. "The Application of Carbon Fiber Materials in Sports Equipment." Applied Mechanics and Materials 687-691 (November 2014): 4240–43. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.4240.
Full textRihakova, L., and H. Chmelickova. "Laser Micromachining of Glass, Silicon, and Ceramics." Advances in Materials Science and Engineering 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/584952.
Full textGasson, Peter C. "Aerospace Materials and Material Technologies Vol 2: Aerospace Material TechnologiesEdited by N. E. Prasad and R. J. H. Wanhill Springer, 2017. xxviii; 557pp. Illustrated. £149.99. ISBN 978-981-10-2142-8." Aeronautical Journal 122, no. 1258 (2018): 2039–43. http://dx.doi.org/10.1017/aer.2018.132.
Full textMorgeneyer, T. F., Marco J. Starink, and I. Sinclair. "Experimental Analysis of Toughness in 6156 Al-Alloy Sheet for Aerospace Applications." Materials Science Forum 519-521 (July 2006): 1023–28. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.1023.
Full textM., Arun, Muthukumaran M., and Balasubramanian S. "Tribological characterization of friction stir welded dissimilar aluminum alloy AA6061–AA5083 reinforced with CeO2 and La2O3 nanoparticles." Industrial Lubrication and Tribology 73, no. 5 (2021): 783–88. http://dx.doi.org/10.1108/ilt-01-2021-0009.
Full textLi, Jeremy Zheng. "Computational Simulation and Prototype Testing of Nanocoating on Products in Aerospace Industry." Advanced Materials Research 750-752 (August 2013): 2088–91. http://dx.doi.org/10.4028/www.scientific.net/amr.750-752.2088.
Full textKinawy, Moustafa, Richard Butler, and Giles W. Hunt. "Bending strength of delaminated aerospace composites." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1965 (2012): 1780–97. http://dx.doi.org/10.1098/rsta.2011.0337.
Full textBrandt, Milan, Shou Jin Sun, Martin Leary, S. Feih, J. Elambasseril, and Qian Chu Liu. "High-Value SLM Aerospace Components: From Design to Manufacture." Advanced Materials Research 633 (January 2013): 135–47. http://dx.doi.org/10.4028/www.scientific.net/amr.633.135.
Full textZhao, Ning, Peng Yuan Qiu, and Lei Lei Cao. "Development and Application of Functionally Graded Material." Advanced Materials Research 562-564 (August 2012): 371–75. http://dx.doi.org/10.4028/www.scientific.net/amr.562-564.371.
Full textGomez-Gallegos, Ares, Paranjayee Mandal, Diego Gonzalez, Nicola Zuelli, and Paul Blackwell. "Studies on Titanium Alloys for Aerospace Application." Defect and Diffusion Forum 385 (July 2018): 419–23. http://dx.doi.org/10.4028/www.scientific.net/ddf.385.419.
Full textUzgur, Sinem Cevik, Yagiz Uzunonat, S. Fehmi Diltemiz, Melih Cemal Kushan, and Rabia Gunay. "State-of-Art Technology ALLVAC 718 Plus Superalloy for Gas Turbine Engine Parts." Advanced Materials Research 213 (February 2011): 131–35. http://dx.doi.org/10.4028/www.scientific.net/amr.213.131.
Full textSaboori, Mehdi, Javad Gholipour, Henri Champliaud, Augustin Gakwaya, Jean Savoie, and Priti Wanjara. "Effect of Material Model on Finite Element Modeling of Aerospace Alloys." Key Engineering Materials 554-557 (June 2013): 151–56. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.151.
Full textPoojari, Yajnesh M., Koustubh S. Annigeri, Nilesh Bandekar, et al. "An alternative coating material for gas turbine blade for aerospace applications." Journal of Physics: Conference Series 1706 (December 2020): 012183. http://dx.doi.org/10.1088/1742-6596/1706/1/012183.
Full text