Academic literature on the topic 'Affine surfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Affine surfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Affine surfaces"

1

Švec, Alois. "Surfaces in general affine space." Czechoslovak Mathematical Journal 39, no. 2 (1989): 280–87. http://dx.doi.org/10.21136/cmj.1989.102302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Švec, Alois. "Affine differential geometry of surfaces." Czechoslovak Mathematical Journal 40, no. 1 (1990): 125–54. http://dx.doi.org/10.21136/cmj.1990.102365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alcázar, Juan G. "On the Affine Image of a Rational Surface of Revolution." Mathematics 8, no. 11 (2020): 2061. http://dx.doi.org/10.3390/math8112061.

Full text
Abstract:
We study the properties of the image of a rational surface of revolution under a nonsingular affine mapping. We prove that this image has a notable property, namely that all the affine normal lines, a concept that appears in the context of affine differential geometry, created by Blaschke in the first decades of the 20th century, intersect a fixed line. Given a rational surface with this property, which can be algorithmically checked, we provide an algorithmic method to find a surface of revolution, if it exists, whose image under an affine mapping is the given surface; the algorithm also find
APA, Harvard, Vancouver, ISO, and other styles
4

Jelonek, Włodzimierz. "Characterization of affine ruled surfaces." Glasgow Mathematical Journal 39, no. 1 (1997): 17–20. http://dx.doi.org/10.1017/s0017089500031852.

Full text
Abstract:
The aim of this paper is to give certain conditions characterizing ruled affine surfaces in terms of the Blaschke structure (∇, h, S) induced on a surface (M, f) in ℝ3. The investigation of affine ruled surfaces was started by W. Blaschke in the beginning of our century (see [1]). The description of affine ruled surfaces can be also found in the book [11], [3] and [7]. Ruled extremal surfaces are described in [9]. We show in the present paper that a shape operator S is a Codazzi tensor with respect to the Levi-Civita connection ∇ of affine metric h if and only if (M, f) is an affine sphere or
APA, Harvard, Vancouver, ISO, and other styles
5

Niebergall, Ross, and Patrick J. Ryan. "Affine Dupin Surfaces." Transactions of the American Mathematical Society 348, no. 3 (1996): 1093–115. http://dx.doi.org/10.1090/s0002-9947-96-01458-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Magid, M., and L. Vrancken. "Affine Translation Surfaces." Results in Mathematics 35, no. 1-2 (1999): 134–44. http://dx.doi.org/10.1007/bf03322028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Verstraelen, Leopold, and Luc Vrancken. "Affine variation formulas and affine minimal surfaces." Michigan Mathematical Journal 36, no. 1 (1989): 77–93. http://dx.doi.org/10.1307/mmj/1029003883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Dan, and Yu Fu. "On affine translation surfaces in affine space." Journal of Mathematical Analysis and Applications 440, no. 2 (2016): 437–50. http://dx.doi.org/10.1016/j.jmaa.2016.03.066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dillen, Franki, and Luc Vrancken. "Affine Surfaces which are Both Affine Harmonic and Affine Maximal." Results in Mathematics 27, no. 1-2 (1995): 35–40. http://dx.doi.org/10.1007/bf03322267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

NOMIZU, KATSUMI, та LUC VRANCKEN. "A NEW EQUIAFFINE THEORY FOR SURFACES IN ℝ4". International Journal of Mathematics 04, № 01 (1993): 127–65. http://dx.doi.org/10.1142/s0129167x9300008x.

Full text
Abstract:
In this paper, we investigate the geometry of nondegenerate affine surfaces in ℝ4. The main idea is to introduce an equiaffine structure on the surface by constructing a canonical transversal plane field with the aid of the affine metric. As an application, we then investigate surfaces with vanishing cubic forms. If the affine metric is positive-definite, such a surface can be locally described as a complex curve in [Formula: see text]. On the other hand, if the affine metric is indefinite, such a surface can be seen as the product of two planar curves.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Affine surfaces"

1

HUAMANI, EDISON FAUSTO CUBA. "AFFINE MINIMAL SURFACES WITH SINGULARITIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=32452@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>PROGRAMA DE EXCELENCIA ACADEMICA<br>Neste trabalho, estudamos superfícies com curvatura média afim zero. Elas são chamadas de superfícies mínimas afins e para superfícies convexas, também são chamadas de superfícies máximas afins. Provamos que uma superfície mínima euclidiana também é uma superfície mínima afim se, e somente se, as linhas de curvatura da superfície mínima euclidiana conjugada são planas. Para uma superfície máxima afim, descrevemos como recuperá-la do campo de
APA, Harvard, Vancouver, ISO, and other styles
2

Mitankin, Vladimir. "Integral points on affine surfaces." Thesis, University of Bristol, 2017. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thapa, Magar Surya. "Skeleta of affine curves and surfaces." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20395.

Full text
Abstract:
Doctor of Philosophy<br>Mathematics<br>Ilia Zharkov<br>A smooth affine hypersurface of complex dimension n is homotopy equivalent to a real n-dimensional cell complex. We describe a recipe of constructing such cell complex for the hypersurfaces of dimension 1 and 2, i.e. for curves and surfaces. We call such cell complex a skeleton of the hypersurface. In tropical geometry, to each hypersurface, there is an associated hypersurface, called tropical hypersurface given by degenerating a family of complex amoebas. The tropical hypersurface has a structure of a polyhedral complex and it is a base
APA, Harvard, Vancouver, ISO, and other styles
4

Lehébel, Patrick. "Surfaces et hypersurfaces de revolution affine." Nantes, 1995. http://www.theses.fr/1995NANT2025.

Full text
Abstract:
Cette these est essentiellement un prolongement des travaux d'isaac c. Lee (these en 1993 sous la direction de k. Komizu) concernant les surfaces de revolution affine, c-a-d les surfaces invariantes par un sous-groupe a un parametre de sa (3) dont chaque element respecte la meme droite de points fixes. Apres avoir generalise la definition de lee aux dimensions superieures, nous classifions les hypersurfaces de revolution affine de dimension 3 dans r#4 en 16 modeles a equivalence affine pres et etudions les invariants affines de ces modeles. Une telle longue etude nous permet: 1) de montrer que
APA, Harvard, Vancouver, ISO, and other styles
5

Daigle, Daniel. "Birational endomorphisms of the affine plane." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=75337.

Full text
Abstract:
Birational morphisms f: X $ to$ Y of nonsingular surfaces are studied first. Properties of the surfaces X and Y are shown to be related to certain numerical data extracted from the configuration of "missing curves" of f, that is, the curves in Y whose generic point is not in f (X). These results are then applied to the problem of decomposing birational endomorphisms of the plane into a succession of irreducible ones.<br>A graph-theoretic machinery is developed to keep track of the desingularization of the divisors at infinity of the plane. That machinery is then used to investigate the problem
APA, Harvard, Vancouver, ISO, and other styles
6

Ștefan, Gheorghiu. "Standard and nonstandard roughness - consequences for the physics of self-affine surfaces /." free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9988664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ghazouani, Selim. "Structures affines complexes sur les surfaces de Riemann." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE022/document.

Full text
Abstract:
Cette thèse s'intéresse à des aspects divers des structures affines complexes branchées sur les surfaces de Riemann.Dans une première partie, nous étudions un invariant algébrique de ces structures appelé holonomie, qui est une représentation du groupe fondamental de la surface sous-jacente dans le groupe affine. Nous démontrons un théorème caractérisant les représentations se réalisant comme l'holonomie d'une structure affine.Nous nous intéressons ensuite à la géométrie de certains espaces de modules de telles structures qui viennent naturellement avec une structure hyperbolique complexe. Nou
APA, Harvard, Vancouver, ISO, and other styles
8

Sánchez, Luis Florial Espinoza. "Surfaces in 4-space from the affine differential geometry viewpoint." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-23032015-142340/.

Full text
Abstract:
In this thesis, we study locally strictly convex surfaces from the affine differential viewpoint and generalize some tools for locally strictly submanifolds of codimension 2. We introduce a family of affine metrics on a locally strictly convex surface M in affine 4-space. Then, we define the symmetric and antisymmetric equiaffine planes associated with each metric. We show that if M is immersed in a locally atrictly convex hyperquadric, then the symmetric and the antisymmetric planes coincide and contain the affine normal to the hyperquadric. In particular, any surface immersed in a locally
APA, Harvard, Vancouver, ISO, and other styles
9

Köser, Kevin [Verfasser]. "Geometric Estimation with Local Affine Frames and Free-form Surfaces / Kevin Köser." Aachen : Shaker, 2009. http://d-nb.info/1156518490/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sakai, Hidetaka. "Rational surfaces associated with affine root systems and geometry of the Painlevé equations." 京都大学 (Kyoto University), 1999. http://hdl.handle.net/2433/181435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Affine surfaces"

1

Su, Pu-chʻing. Computational geometry--curve and surface modeling. Academic Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, An-Min, Udo Simon, Guosong Zhao, and Zejun Hu. Global Affine Differential Geometry of Hypersurfaces. De Gruyter, Inc., 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bu-Qing, Su, and Liu Ding-Yuan. Computational Geometry: Curve and Surface Modeling. Academic Pr, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bu-Qing, Su, and Liu Ding-Yuan. Computational Geometry: Curve and Surface Modeling. Academic Pr, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Affine surfaces"

1

Krivoshapko, S. N., and V. N. Ivanov. "Affine Minimal Surfaces." In Encyclopedia of Analytical Surfaces. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11773-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Martínez, A., and F. Milán. "Convex affine surfaces with constant affine mean curvature." In Global Differential Geometry and Global Analysis. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0083637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rovenski, Vladimir. "Affine and Projective Transformations." In Modeling of Curves and Surfaces with MATLAB®. Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-71278-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miyanishi, M. "Frobenius sandwiches of affine algebraic surfaces." In CRM Proceedings and Lecture Notes. American Mathematical Society, 2011. http://dx.doi.org/10.1090/crmp/054/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Li, An-Min. "Affine maximal surfaces and harmonic functions." In Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0087530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Reede, Fabian, and Ulrich Stuhler. "Division Algebras and Unit Groups on Surfaces." In Affine Flag Manifolds and Principal Bundles. Springer Basel, 2010. http://dx.doi.org/10.1007/978-3-0346-0288-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Demers, Éric, François Guibault, and Christophe Tribes. "Symbolic Computation of Equi-affine Evolute for Plane B-Spline Curves." In Curves and Surfaces. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22804-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bolton, J., and L. M. Woodward. "The affine Toda equations and minimal surfaces." In Harmonic Maps and Integrable Systems. Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14092-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaup, Ludger, and Karl-Heinz Fieseler. "Hyperbolic ℂ*-Actions on Affine Algebraic Surfaces." In Complex Analysis. Vieweg+Teubner Verlag, 1991. http://dx.doi.org/10.1007/978-3-322-86856-5_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dubouloz, Adrien, and Charlie Petitjean. "Rational Real Algebraic Models of Compact Differential Surfaces with Circle Actions." In Polynomial Rings and Affine Algebraic Geometry. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42136-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Affine surfaces"

1

Simon, Udo, Konrad Voss, Luc Vrancken, and Martin Wiehe. "Surfaces with prescribed Weingarten operator." In PDEs, Submanifolds and Affine Differential Geometry. Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Musso, Emilio, and Lorenzo Nicolodi. "Darboux transforms of Dupin surfaces." In PDEs, Submanifolds and Affine Differential Geometry. Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martínez, Antonio, and Francisco Milán. "Some results on projectively flat affine surfaces." In PDEs, Submanifolds and Affine Differential Geometry. Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc69-0-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Walter, Rolf. "Homogeneous surfaces in the equiaffine space R4." In PDEs, Submanifolds and Affine Differential Geometry. Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Belkhelfa, Mohamed, Franki Dillen, and Jun-ichi Inoguchi. "Surfaces with parallel second fundamental form in Bianchi-Cartan-Vranceanu spaces." In PDEs, Submanifolds and Affine Differential Geometry. Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Dong, and Hua Li. "3D Affine Moment Invariants for Surfaces." In 2008 Chinese Conference on Pattern Recognition. IEEE, 2008. http://dx.doi.org/10.1109/ccpr.2008.26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Meisel, L. V. "Self-affine analysis on curved reference surfaces: Self-affine fractal characterization of a TNT surface." In Shock compression of condensed matter. AIP, 2000. http://dx.doi.org/10.1063/1.1303576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feldmar and Ayache. "Locally affine registration of free-form surfaces." In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. IEEE Comput. Soc. Press, 1994. http://dx.doi.org/10.1109/cvpr.1994.323872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Arzhantsev, Ivan, and Mikhail Zaidenberg. "Acyclic curves and group actions on affine toric surfaces." In Proceedings of the Conference. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814436700_0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

GARZA, FRANCISCO J., MOISÉS HINOJOSA, and LEONARDO CHÁVEZ. "SELF-AFFINE PROPERTIES ON FRACTURE SURFACES OF IONIC EXCHANGED GLASS." In Conference on Fractals 2002. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777720_0036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!