Journal articles on the topic 'African trypanosomiasis. Proteins'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'African trypanosomiasis. Proteins.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bentley, Stephen John, and Aileen Boshoff. "Trypanosoma brucei J-Protein 2 Functionally Co-Operates with the Cytosolic Hsp70 and Hsp70.4 Proteins." International Journal of Molecular Sciences 20, no. 23 (November 21, 2019): 5843. http://dx.doi.org/10.3390/ijms20235843.
Full textBaral, Toya Nath. "Immunobiology of African Trypanosomes: Need of Alternative Interventions." Journal of Biomedicine and Biotechnology 2010 (2010): 1–24. http://dx.doi.org/10.1155/2010/389153.
Full textAyed, Zoulikha, Michel Dumas, Dismand Houinato, Marie-Odile Jauberteau, Bernard Bouteille, Isabelle Brindel, Felix Doua, and Nestor Van Meirvenne. "Detection and Characterization of Autoantibodies Directed against Neurofilament Proteins in Human African Trypanosomiasis." American Journal of Tropical Medicine and Hygiene 57, no. 1 (July 1, 1997): 1–6. http://dx.doi.org/10.4269/ajtmh.1997.57.1.tm0570010001.
Full textImboden, M., N. Müller, A. Hemphill, R. Mattioli, and T. Seebeck. "Repetitive proteins from the flagellar cytoskeleton of African trypanosomes are diagnostically useful antigens." Parasitology 110, no. 3 (April 1995): 249–58. http://dx.doi.org/10.1017/s0031182000080835.
Full textAbry, Muna F., Kelvin M. Kimenyi, Daniel K. Masiga, and Benard W. Kulohoma. "Comparative genomics identifies male accessory gland proteins in five Glossina species." Wellcome Open Research 2 (August 30, 2017): 73. http://dx.doi.org/10.12688/wellcomeopenres.12445.1.
Full textAbry, Muna F., Kelvin M. Kimenyi, Daniel K. Masiga, and Benard W. Kulohoma. "Comparative genomics identifies male accessory gland proteins in five Glossina species." Wellcome Open Research 2 (November 22, 2017): 73. http://dx.doi.org/10.12688/wellcomeopenres.12445.2.
Full textMichel-Todó, Lucas, Pascal Bigey, Pedro A. Reche, María-Jesus Pinazo, Joaquim Gascón, and Julio Alonso-Padilla. "Design of an Epitope-Based Vaccine Ensemble for Animal Trypanosomiasis by Computational Methods." Vaccines 8, no. 1 (March 16, 2020): 130. http://dx.doi.org/10.3390/vaccines8010130.
Full textAndreassend, Sarah K., Stephen J. Bentley, Gregory L. Blatch, Aileen Boshoff, and Robert A. Keyzers. "Screening for Small Molecule Modulators of Trypanosoma brucei Hsp70 Chaperone Activity Based upon Alcyonarian Coral-Derived Natural Products." Marine Drugs 18, no. 2 (January 27, 2020): 81. http://dx.doi.org/10.3390/md18020081.
Full textYang, Zhiyuan, Mingqiang Wang, Xi Zeng, Angel Tsz-Yau Wan, and Stephen Kwok-Wing Tsui. "In silico analysis of proteins and microRNAs related to human African trypanosomiasis in tsetse fly." Computational Biology and Chemistry 88 (October 2020): 107347. http://dx.doi.org/10.1016/j.compbiolchem.2020.107347.
Full textKoumandou, V. Lila, Cordula Boehm, Katy A. Horder, and Mark C. Field. "Evidence for Recycling of Invariant Surface Transmembrane Domain Proteins in African Trypanosomes." Eukaryotic Cell 12, no. 2 (December 21, 2012): 330–42. http://dx.doi.org/10.1128/ec.00273-12.
Full textPOINSIGNON, ANNE, ANDRE GARCIA, PASCAL GRÉBAUT, FRANCK REMOUE, FRANCOIS SIMONDON, DAVID COURTIN, and SYLVIE CORNELIE. "HUMAN/VECTOR RELATIONSHIPS DURING HUMAN AFRICAN TRYPANOSOMIASIS: INITIAL SCREENING OF IMMUNOGENIC SALIVARY PROTEINS OF GLOSSINA SPECIES." American Journal of Tropical Medicine and Hygiene 76, no. 2 (February 1, 2007): 327–33. http://dx.doi.org/10.4269/ajtmh.2007.76.327.
Full textTripodi, Karina E. J., Simón M. Menendez Bravo, and Julia A. Cricco. "Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways." Enzyme Research 2011 (April 10, 2011): 1–12. http://dx.doi.org/10.4061/2011/873230.
Full textMüller, N., A. Hemphill, M. Imboden, G. Duvallet, R. H. Dwinger, and T. Seebeck. "Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection." Parasitology 104, no. 1 (February 1992): 111–20. http://dx.doi.org/10.1017/s0031182000060856.
Full textBarker, Robert H., Hanlan Liu, Bradford Hirth, Cassandra A. Celatka, Richard Fitzpatrick, Yibin Xiang, Erin K. Willert, et al. "Novel S-Adenosylmethionine Decarboxylase Inhibitors for the Treatment of Human African Trypanosomiasis." Antimicrobial Agents and Chemotherapy 53, no. 5 (March 16, 2009): 2052–58. http://dx.doi.org/10.1128/aac.01674-08.
Full textTinti, Michele, Maria Lucia S. Güther, Thomas W. M. Crozier, Angus I. Lamond, and Michael A. J. Ferguson. "Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics." Wellcome Open Research 4 (October 9, 2019): 152. http://dx.doi.org/10.12688/wellcomeopenres.15421.1.
Full textLi, Bibo, and Yanxiang Zhao. "Regulation of Antigenic Variation by Trypanosoma brucei Telomere Proteins Depends on Their Unique DNA Binding Activities." Pathogens 10, no. 8 (July 30, 2021): 967. http://dx.doi.org/10.3390/pathogens10080967.
Full textPatham, Bhargavi, Josh Duffy, Ariel Lane, Richard C. Davis, Peter Wipf, Sheara W. Fewell, Jeffrey L. Brodsky, and Kojo Mensa-Wilmot. "Post-translational import of protein into the endoplasmic reticulum of a trypanosome: an in vitro system for discovery of anti-trypanosomal chemical entities." Biochemical Journal 419, no. 2 (March 27, 2009): 507–17. http://dx.doi.org/10.1042/bj20081787.
Full textALSFORD, SAM, JOHN M. KELLY, NICOLA BAKER, and DAVID HORN. "Genetic dissection of drug resistance in trypanosomes." Parasitology 140, no. 12 (April 3, 2013): 1478–91. http://dx.doi.org/10.1017/s003118201300022x.
Full textZoltner, Martin, Gustavo D. Campagnaro, Gergana Taleva, Alana Burrell, Michela Cerone, Ka-Fai Leung, Fiona Achcar, et al. "Suramin exposure alters cellular metabolism and mitochondrial energy production in African trypanosomes." Journal of Biological Chemistry 295, no. 24 (April 30, 2020): 8331–47. http://dx.doi.org/10.1074/jbc.ra120.012355.
Full textBurger, Adélle, Michael H. Ludewig, and Aileen Boshoff. "Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, fromTrypanosoma brucei." Journal of Parasitology Research 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/172582.
Full textWeems, Ebony, Ujjal K. Singha, VaNae Hamilton, Joseph T. Smith, Karin Waegemann, Dejana Mokranjac, and Minu Chaudhuri. "Functional Complementation Analyses Reveal that the Single PRAT Family Protein of Trypanosoma brucei Is a Divergent Homolog of Tim17 in Saccharomyces cerevisiae." Eukaryotic Cell 14, no. 3 (January 9, 2015): 286–96. http://dx.doi.org/10.1128/ec.00203-14.
Full textBruhn, David F., Mark P. Sammartino, and Michele M. Klingbeil. "Three Mitochondrial DNA Polymerases Are Essential for Kinetoplast DNA Replication and Survival of Bloodstream Form Trypanosoma brucei." Eukaryotic Cell 10, no. 6 (April 29, 2011): 734–43. http://dx.doi.org/10.1128/ec.05008-11.
Full textMoreno, Cláudia Jassica Gonçalves, Taffarel Torres, and Marcelo Sousa Silva. "Variable Surface Glycoprotein from Trypanosoma brucei Undergoes Cleavage by Matrix Metalloproteinases: An in silico Approach." Pathogens 8, no. 4 (October 8, 2019): 178. http://dx.doi.org/10.3390/pathogens8040178.
Full textGarzón, Edwin, Philippe Holzmuller, Rachel Bras-Gonçalves, Philippe Vincendeau, Gérard Cuny, Jean Loup Lemesre, and Anne Geiger. "The Trypanosoma brucei gambiense Secretome Impairs Lipopolysaccharide-Induced Maturation, Cytokine Production, and Allostimulatory Capacity of Dendritic Cells." Infection and Immunity 81, no. 9 (June 24, 2013): 3300–3308. http://dx.doi.org/10.1128/iai.00125-13.
Full textYang, Sihyung, Tanja Wenzler, Patrik N. Miller, Huali Wu, David W. Boykin, Reto Brun, and Michael Zhuo Wang. "Pharmacokinetic Comparison To Determine the Mechanisms Underlying the Differential Efficacies of Cationic Diamidines against First- and Second-Stage Human African Trypanosomiasis." Antimicrobial Agents and Chemotherapy 58, no. 7 (May 5, 2014): 4064–74. http://dx.doi.org/10.1128/aac.02605-14.
Full textShamshad, Hina, Abdul Hafiz, Ismail I. Althagafi, Maria Saeed, and Agha Zeeshan Mirza. "Characterization of the Trypanosoma brucei Pteridine Reductase Active- Site using Computational Docking and Virtual Screening Techniques." Current Computer-Aided Drug Design 16, no. 5 (November 9, 2020): 583–98. http://dx.doi.org/10.2174/1573409915666190827163327.
Full textSaha, Arpita, Amit Kumar Gaurav, Unnati M. Pandya, Marjia Afrin, Ranjodh Sandhu, Vishal Nanavaty, Brittny Schnur, and Bibo Li. "TbTRF suppresses the TERRA level and regulates the cell cycle-dependent TERRA foci number with a TERRA binding activity in its C-terminal Myb domain." Nucleic Acids Research 49, no. 10 (May 28, 2021): 5637–53. http://dx.doi.org/10.1093/nar/gkab401.
Full textZhang, Xueying, Fadi Li, Fang Qin, Wanhong Li, and Xiangpeng Yue. "Exploration of ovine milk whey proteome during postnatal development using an iTRAQ approach." PeerJ 8 (October 8, 2020): e10105. http://dx.doi.org/10.7717/peerj.10105.
Full textSingha, Ujjal K., Shvetank Sharma, and Minu Chaudhuri. "Downregulation of Mitochondrial Porin Inhibits Cell Growth and Alters Respiratory Phenotype in Trypanosoma brucei." Eukaryotic Cell 8, no. 9 (July 17, 2009): 1418–28. http://dx.doi.org/10.1128/ec.00132-09.
Full textLi, Bibo. "DNA Double-Strand Breaks and Telomeres Play Important Roles in Trypanosoma brucei Antigenic Variation." Eukaryotic Cell 14, no. 3 (January 9, 2015): 196–205. http://dx.doi.org/10.1128/ec.00207-14.
Full textDubois, Melissa E., Karen P. Demick, and John M. Mansfield. "Trypanosomes Expressing a Mosaic Variant Surface Glycoprotein Coat Escape Early Detection by the Immune System." Infection and Immunity 73, no. 5 (May 2005): 2690–97. http://dx.doi.org/10.1128/iai.73.5.2690-2697.2005.
Full textLenz, Krauth-Siegel, and Schmidt. "Natural Sesquiterpene Lactones of the 4,15-iso-Atriplicolide Type are Inhibitors of Trypanothione Reductase." Molecules 24, no. 20 (October 16, 2019): 3737. http://dx.doi.org/10.3390/molecules24203737.
Full textHOLMES, P. H., E. KATUNGUKA-RWAKISHAYA, J. J. BENNISON, G. J. WASSINK, and J. J. PARKINS. "Impact of nutrition on the pathophysiology of bovine trypanosomiasis." Parasitology 120, no. 7 (May 2000): 73–85. http://dx.doi.org/10.1017/s0031182099005806.
Full textKwofie, Kofi D., Nguyen Huu Tung, Mitsuko Suzuki-Ohashi, Michael Amoa-Bosompem, Richard Adegle, Maxwell M. Sakyiamah, Frederick Ayertey, et al. "Antitrypanosomal Activities and Mechanisms of Action of Novel Tetracyclic Iridoids from Morinda lucida Benth." Antimicrobial Agents and Chemotherapy 60, no. 6 (March 7, 2016): 3283–90. http://dx.doi.org/10.1128/aac.01916-15.
Full textBoniface, Pone Kamdem, and Ferreira Igne Elizabeth. "Flavonoid-derived Privileged Scaffolds in anti-Trypanosoma brucei Drug Discovery." Current Drug Targets 20, no. 12 (August 22, 2019): 1295–314. http://dx.doi.org/10.2174/1389450120666190618114857.
Full textShibata, Sayaka, J. Robert Gillespie, Angela M. Kelley, Alberto J. Napuli, Zhongsheng Zhang, Kuzma V. Kovzun, Ranae M. Pefley, et al. "Selective Inhibitors of Methionyl-tRNA Synthetase Have Potent Activity against Trypanosoma brucei Infection in Mice." Antimicrobial Agents and Chemotherapy 55, no. 5 (January 31, 2011): 1982–89. http://dx.doi.org/10.1128/aac.01796-10.
Full textLu, Jun, Suman K. Vodnala, Anna-Lena Gustavsson, Tomas N. Gustafsson, Birger Sjöberg, Henrik A. Johansson, Sangit Kumar, et al. "Ebsulfur Is a Benzisothiazolone Cytocidal Inhibitor Targeting the Trypanothione Reductase of Trypanosoma brucei." Journal of Biological Chemistry 288, no. 38 (July 29, 2013): 27456–68. http://dx.doi.org/10.1074/jbc.m113.495101.
Full textMENZIES, STEFANIE K., LINDSAY B. TULLOCH, GORDON J. FLORENCE, and TERRY K. SMITH. "The trypanosome alternative oxidase: a potential drug target?" Parasitology 145, no. 2 (November 29, 2016): 175–83. http://dx.doi.org/10.1017/s0031182016002109.
Full textArnston, Phillip M., and William N. Setzer. "Macromolecular Targets of Antiparasitic Germacranolide Sesquiterpenoids: An In Silico Investigation." Combinatorial Chemistry & High Throughput Screening 23, no. 6 (October 5, 2020): 477–503. http://dx.doi.org/10.2174/1386207323666200218114759.
Full textSchopf, Lisa R., Hanna Filutowicz, Xiao-Juan Bi, and John M. Mansfield. "Interleukin-4-Dependent Immunoglobulin G1 Isotype Switch in the Presence of a Polarized Antigen-Specific Th1-Cell Response to the Trypanosome Variant Surface Glycoprotein." Infection and Immunity 66, no. 2 (February 1, 1998): 451–61. http://dx.doi.org/10.1128/iai.66.2.451-461.1998.
Full textKalidas, Savitha, Igor Cestari, Severine Monnerat, Qiong Li, Sandesh Regmi, Nicholas Hasle, Mehdi Labaied, Marilyn Parsons, Kenneth Stuart, and Margaret A. Phillips. "Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei." Eukaryotic Cell 13, no. 4 (February 21, 2014): 504–16. http://dx.doi.org/10.1128/ec.00017-14.
Full textOjo, Kayode K., J. Robert Gillespie, Aaron J. Riechers, Alberto J. Napuli, Christophe L. M. J. Verlinde, Frederick S. Buckner, Michael H. Gelb, et al. "Glycogen Synthase Kinase 3 Is a Potential Drug Target for African Trypanosomiasis Therapy." Antimicrobial Agents and Chemotherapy 52, no. 10 (July 21, 2008): 3710–17. http://dx.doi.org/10.1128/aac.00364-08.
Full textLejon, Veerle, Jo Robays, François Xavier N'Siesi, Dieudonné Mumba, Annemie Hoogstoel, Sylvie Bisser, Hansotto Reiber, Marleen Boelaert, and Philippe Büscher. "Treatment Failure Related to Intrathecal Immunoglobulin M (IgM) Synthesis, Cerebrospinal Fluid IgM, and Interleukin-10 in Patients with Hemolymphatic-Stage Sleeping Sickness." Clinical and Vaccine Immunology 14, no. 6 (April 11, 2007): 732–37. http://dx.doi.org/10.1128/cvi.00103-07.
Full textMorty, Rory E., John D. Lonsdale-Eccles, Reinhardt Mentele, Ennes A. Auerswald, and Theresa H. T. Coetzer. "Trypanosome-Derived Oligopeptidase B Is Released into the Plasma of Infected Rodents, Where It Persists and Retains Full Catalytic Activity." Infection and Immunity 69, no. 4 (April 1, 2001): 2757–61. http://dx.doi.org/10.1128/iai.69.4.2757-2761.2001.
Full textMabille, Dorien, Camila Cardoso Santos, Rik Hendrickx, Mathieu Claes, Peter Takac, Christine Clayton, Sarah Hendrickx, et al. "4E Interacting Protein as a Potential Novel Drug Target for Nucleoside Analogues in Trypanosoma brucei." Microorganisms 9, no. 4 (April 13, 2021): 826. http://dx.doi.org/10.3390/microorganisms9040826.
Full textSubramanya, Sandesh, C. Frank Hardin, Dietmar Steverding, and Kojo Mensa-Wilmot. "Glycosylphosphatidylinositol-specific phospholipase C regulates transferrin endocytosis in the African trypanosome." Biochemical Journal 417, no. 3 (January 16, 2009): 685–94. http://dx.doi.org/10.1042/bj20080167.
Full textBehera, Ranjan, Sarah M. Thomas, and Kojo Mensa-Wilmot. "New Chemical Scaffolds for Human African Trypanosomiasis Lead Discovery from a Screen of Tyrosine Kinase Inhibitor Drugs." Antimicrobial Agents and Chemotherapy 58, no. 4 (January 27, 2014): 2202–10. http://dx.doi.org/10.1128/aac.01691-13.
Full textAresta-Branco, Francisco, Margarida Sanches-Vaz, Fabio Bento, João A. Rodrigues, and Luisa M. Figueiredo. "African trypanosomes expressing multiple VSGs are rapidly eliminated by the host immune system." Proceedings of the National Academy of Sciences 116, no. 41 (September 25, 2019): 20725–35. http://dx.doi.org/10.1073/pnas.1905120116.
Full textAksoy, Emre, Aurélien Vigneron, XiaoLi Bing, Xin Zhao, Michelle O’Neill, Yi-neng Wu, James D. Bangs, Brian L. Weiss, and Serap Aksoy. "Mammalian African trypanosome VSG coat enhances tsetse’s vector competence." Proceedings of the National Academy of Sciences 113, no. 25 (May 16, 2016): 6961–66. http://dx.doi.org/10.1073/pnas.1600304113.
Full textTang, Sonya C., and Theresa A. Shapiro. "Newly Identified Antibacterial Compounds Are Topoisomerase Poisons in African Trypanosomes." Antimicrobial Agents and Chemotherapy 54, no. 2 (December 14, 2009): 620–26. http://dx.doi.org/10.1128/aac.01025-09.
Full text