To see the other types of publications on this topic, follow the link: Age-structured.

Journal articles on the topic 'Age-structured'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Age-structured.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

de Jong, Tom J., and B. Charlesworth. "Evolution in Age-Structured Populations." Journal of Ecology 83, no. 3 (June 1995): 548. http://dx.doi.org/10.2307/2261610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dewi, Sonya, and Peter Chesson. "The age-structured lottery model." Theoretical Population Biology 64, no. 3 (November 2003): 331–43. http://dx.doi.org/10.1016/s0040-5809(03)00094-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Frazer, C. "Structured cabling comes of age." IEE Review 48, no. 2 (March 1, 2002): 33–36. http://dx.doi.org/10.1049/ir:20020205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cochran, John M., and Yongzhi Xu. "Age-structured dengue epidemic model." Applicable Analysis 93, no. 11 (July 10, 2014): 2249–76. http://dx.doi.org/10.1080/00036811.2014.918963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MICÓ, JOAN C., DAVID SOLER, and ANTONIO CASELLES. "Age-Structured Human Population Dynamics." Journal of Mathematical Sociology 30, no. 1 (January 2006): 1–31. http://dx.doi.org/10.1080/00222500500323143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jørgensen, Sven Erik. "Evolution in age-structured populations." Ecological Modelling 78, no. 3 (April 1995): 288. http://dx.doi.org/10.1016/0304-3800(95)90079-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Curtsinger, James. "Evolution in age-structured populations." Experimental Gerontology 30, no. 6 (November 1995): 663–65. http://dx.doi.org/10.1016/0531-5565(95)90013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sulsky, Deborah, Richard R. Vance, and William I. Newman. "Time delays in age-structured populations." Journal of Theoretical Biology 141, no. 3 (December 1989): 403–22. http://dx.doi.org/10.1016/s0022-5193(89)80122-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bekkal-Brikci, Fadia, Khalid Boushaba, and Ovide Arino. "Nonlinear age structured model with cannibalism." Discrete & Continuous Dynamical Systems - B 7, no. 2 (2007): 201–18. http://dx.doi.org/10.3934/dcdsb.2007.7.201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tuljapurkar, Shripad. "Evolution in Age-Structured Populations.Brian Charlesworth." Quarterly Review of Biology 70, no. 4 (December 1995): 511. http://dx.doi.org/10.1086/419199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Quaas, Martin F., and Olli Tahvonen. "Strategic Harvesting of Age-Structured Populations." Marine Resource Economics 34, no. 4 (October 2019): 291–309. http://dx.doi.org/10.1086/705905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Oelschlager, Karl. "Limit Theorems for Age-Structured Populations." Annals of Probability 18, no. 1 (January 1990): 290–318. http://dx.doi.org/10.1214/aop/1176990950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hadeler, K. P. "Pair formation in age-structured populations." Acta Applicandae Mathematicae 14, no. 1-2 (1989): 91–102. http://dx.doi.org/10.1007/bf00046676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

ARINO, O., and W. V. SMITH. "MIGRATION IN AGE STRUCTURED POPULATION DYNAMICS." Mathematical Models and Methods in Applied Sciences 08, no. 05 (August 1998): 905–25. http://dx.doi.org/10.1142/s021820259800041x.

Full text
Abstract:
We introduce a linear model for age structured populations which migrate between several locations or patches. Birth is allowed in each patch. Existence, uniqueness and positivity of solutions is proved. A certain North Atlantic fishery is given as an example. Asymptotic solutions are characterized in a general system with periodic coefficients by spectral theory techniques and the results are applied to the example.
APA, Harvard, Vancouver, ISO, and other styles
15

Chuang, Yao-Li, Tom Chou, and Maria R. D’Orsogna. "Age-structured social interactions enhance radicalization." Journal of Mathematical Sociology 42, no. 3 (March 26, 2018): 128–51. http://dx.doi.org/10.1080/0022250x.2018.1448975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Medhin, N. G. "Optimal harvesting in age-structured populations." Journal of Optimization Theory and Applications 74, no. 3 (September 1992): 413–23. http://dx.doi.org/10.1007/bf00940318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Grosset, Luca, and Bruno Viscolani. "Age-structured linear-state differential games." European Journal of Operational Research 254, no. 1 (October 2016): 269–78. http://dx.doi.org/10.1016/j.ejor.2016.03.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Grosjean, Nicolas, and Thierry Huillet. "On simple age-structured population models." Applied Mathematical Modelling 41 (January 2017): 68–82. http://dx.doi.org/10.1016/j.apm.2016.08.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pilant, Michael, and William Rundell. "Determining the initial age distribution for an age structured population." Mathematical Population Studies 3, no. 1 (May 1991): 3–20. http://dx.doi.org/10.1080/08898489109525320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Clark, Jessica, Jennie S. Garbutt, Luke McNally, and Tom J. Little. "Disease spread in age structured populations with maternal age effects." Ecology Letters 20, no. 4 (March 7, 2017): 445–51. http://dx.doi.org/10.1111/ele.12745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hethcote, Herbert W. "An age-structured model for pertussis transmission." Mathematical Biosciences 145, no. 2 (October 1997): 89–136. http://dx.doi.org/10.1016/s0025-5564(97)00014-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

LI, J. "Persistence in discrete age-structured population models." Bulletin of Mathematical Biology 50, no. 4 (1988): 351–66. http://dx.doi.org/10.1016/s0092-8240(88)90003-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bowers, Michael A. "Dynamics of Age- and Habitat-Structured Populations." Oikos 69, no. 2 (March 1994): 327. http://dx.doi.org/10.2307/3546154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Zhihua, and Rong Yuan. "Takens–Bogdanov singularity for age structured models." Discrete & Continuous Dynamical Systems - B 25, no. 6 (2020): 2041–56. http://dx.doi.org/10.3934/dcdsb.2019201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Feichtinger, Gustav, Alexia Prskawetz, and Vladimir M. Veliov. "Age-structured optimal control in population economics." Theoretical Population Biology 65, no. 4 (June 2004): 373–87. http://dx.doi.org/10.1016/j.tpb.2003.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

ENGEN, S., B. E. SAETHER, T. KVALNES, and H. JENSEN. "Estimating fluctuating selection in age-structured populations." Journal of Evolutionary Biology 25, no. 8 (June 21, 2012): 1487–99. http://dx.doi.org/10.1111/j.1420-9101.2012.02530.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lou, Zhongyu, Fares Alnajar, Jose M. Alvarez, Ninghang Hu, and Theo Gevers. "Expression-Invariant Age Estimation Using Structured Learning." IEEE Transactions on Pattern Analysis and Machine Intelligence 40, no. 2 (February 1, 2018): 365–75. http://dx.doi.org/10.1109/tpami.2017.2679739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gourley, S. A., and Rongsong Liu. "An Age-structured Model of Bird Migration." Mathematical Modelling of Natural Phenomena 10, no. 6 (2015): 61–76. http://dx.doi.org/10.1051/mmnp/201510606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wakamoto, Yuichi, Alexander Y. Grosberg, and Edo Kussell. "OPTIMAL LINEAGE PRINCIPLE FOR AGE-STRUCTURED POPULATIONS." Evolution 66, no. 1 (September 13, 2011): 115–34. http://dx.doi.org/10.1111/j.1558-5646.2011.01418.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Degond, Pierre, Angelika Manhart, and Hui Yu. "An age-structured continuum model for myxobacteria." Mathematical Models and Methods in Applied Sciences 28, no. 09 (August 2018): 1737–70. http://dx.doi.org/10.1142/s0218202518400043.

Full text
Abstract:
Myxobacteria are social bacteria, that can glide in two dimensions and form counter-propagating, interacting waves. Here, we present a novel age-structured, continuous macroscopic model for the movement of myxobacteria. The derivation is based on microscopic interaction rules that can be formulated as a particle-based model and set within the Self-Organized Hydrodynamics (SOH) framework. The strength of this combined approach is that microscopic knowledge or data can be incorporated easily into the particle model, whilst the continuous model allows for easy numerical analysis of the different effects. However, we found that the derived macroscopic model lacks a diffusion term in the density equations, which is necessary to control the number of waves, indicating that a higher order approximation during the derivation is crucial. Upon ad hoc addition of the diffusion term, we found very good agreement between the age-structured model and the biology. In particular, we analyzed the influence of a refractory (insensitivity) period following a reversal of movement. Our analysis reveals that the refractory period is not necessary for wave formation, but essential to wave synchronization, indicating separate molecular mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
31

Fitzgibbon, W. E., M. E. Parrott, and G. F. Webb. "A diffusive age-structured SEIRS epidemic model." Methods and Applications of Analysis 3, no. 3 (1996): 358–69. http://dx.doi.org/10.4310/maa.1996.v3.n3.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fitzgibbon, William E., Jeff Morgan, and Mary E. Parrott. "Periodicity in diffusive age-structured SEIR models." Methods and Applications of Analysis 5, no. 2 (1998): 195–216. http://dx.doi.org/10.4310/maa.1998.v5.n2.a7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Müller, Johannes. "Optimal Vaccination Patterns in Age-Structured Populations." SIAM Journal on Applied Mathematics 59, no. 1 (January 1998): 222–41. http://dx.doi.org/10.1137/s0036139995293270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

McGarvey, Richard. "An Age-Structured Open-Access Fishery Model." Canadian Journal of Fisheries and Aquatic Sciences 51, no. 4 (April 1, 1994): 900–912. http://dx.doi.org/10.1139/f94-089.

Full text
Abstract:
A dynamic model for open-access fisheries is presented. In addition to density dependence in recruitment and fishing effort changing in proportion to the level of profit fishermen earn which characterizes previous open-access models, it incorporates full age structure for the fish stock, lognormal environmental recruitment variability, and gear selectivity. The predator–prey cycling solution of the original Schaefer dynamic model, and subsequent open-access models, persists for these model extensions. Density dependence in recruitment induces greater global stability. Environmental recruitment variability, common in marine populations, is destabilizing in the neighborhood of the open-access equilibrium. These two influences, combined in the open-access fishery model, generate robust long-lasting irregular cycles of stock and effort. Volterra proved for the original Lotka–Volterra model that the time averages of the variables over one cycle were exactly equal to their equilibrium steady states. This is shown to extend as a good approximation for the model presented here. Approximating model steady states of effort and catch by the corresponding averages from data time series underlies a new algorithm of parameter evaluation, applied here to an open-access model of the Georges Bank sea scallop (Placopecten magellanicus) fishery.
APA, Harvard, Vancouver, ISO, and other styles
35

Andreasen, Viggo, and Thomas Frommelt. "A School-Oriented, Age-Structured Epidemic Model." SIAM Journal on Applied Mathematics 65, no. 6 (January 2005): 1870–87. http://dx.doi.org/10.1137/040610684.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bose, A., and I. Kaj. "Diffusion Approximation for an Age-Structured Population." Annals of Applied Probability 5, no. 1 (February 1995): 140–57. http://dx.doi.org/10.1214/aoap/1177004833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huang, Yunxin, Alun L. Lloyd, Mathieu Legros, and Fred Gould. "Gene-drive in age-structured insect populations." Evolutionary Applications 2, no. 2 (November 12, 2008): 143–59. http://dx.doi.org/10.1111/j.1752-4571.2008.00049.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

TAHVONEN, OLLI. "Optimal Harvesting of Age-structured Fish Populations." Marine Resource Economics 24, no. 2 (January 2009): 147–69. http://dx.doi.org/10.1086/mre.24.2.42731377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Galvani, Alison P., and Montgomery Slatkin. "Intense selection in an age–structured population." Proceedings of the Royal Society of London. Series B: Biological Sciences 271, no. 1535 (January 22, 2004): 171–76. http://dx.doi.org/10.1098/rspb.2003.2573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Saha, L. M., and Neha Kumra. "Complexities in age structured predator-prey system." Applied Mathematical Sciences 9 (2015): 5939–49. http://dx.doi.org/10.12988/ams.2015.58531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

FENG, ZHILAN, LIBIN RONG, and ROBERT K. SWIHART. "DYNAMICS OF AN AGE-STRUCTURED METAPOPULATION MODEL." Natural Resource Modeling 18, no. 4 (June 28, 2008): 415–40. http://dx.doi.org/10.1111/j.1939-7445.2005.tb00166.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

GONZÁLEZ-PARRA, GILBERTO, LUCAS JÓDAR, FRANCISCO JOSÉ SANTONJA, and RAFAEL JACINTO VILLANUEVA. "An Age-Structured Model for Childhood Obesity." Mathematical Population Studies 17, no. 1 (January 29, 2010): 1–11. http://dx.doi.org/10.1080/07481180903467218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Tchuenche, J. M. "An age-structured model with delay mortality." Biosystems 81, no. 3 (September 2005): 255–60. http://dx.doi.org/10.1016/j.biosystems.2005.05.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Jia. "Persistence in discrete age-structured population models." Bulletin of Mathematical Biology 50, no. 4 (July 1988): 351–66. http://dx.doi.org/10.1007/bf02459705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Krzyzanski, Wojciech. "Pharmacodynamic models of age-structured cell populations." Journal of Pharmacokinetics and Pharmacodynamics 42, no. 5 (September 16, 2015): 573–89. http://dx.doi.org/10.1007/s10928-015-9446-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Krzyzanski, Wojciech, Pawel Wiczling, and Asfiha Gebre. "Age-structured population model of cell survival." Journal of Pharmacokinetics and Pharmacodynamics 44, no. 4 (March 29, 2017): 305–16. http://dx.doi.org/10.1007/s10928-017-9520-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Vlad, Marcel Ovidiu. "Separable models for age-structured population genetics." Journal of Mathematical Biology 26, no. 1 (February 1988): 73–92. http://dx.doi.org/10.1007/bf00280174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Andreasen, Viggo. "Disease regulation of age-structured host populations." Theoretical Population Biology 36, no. 2 (October 1989): 214–39. http://dx.doi.org/10.1016/0040-5809(89)90031-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Castro, Manuela L. de, Jacques A. L. Silva, and Dagoberto A. R. Justo. "Stability in an age-structured metapopulation model." Journal of Mathematical Biology 52, no. 2 (September 29, 2005): 183–208. http://dx.doi.org/10.1007/s00285-005-0352-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gandolfi, Alberto, Mimmo Iannelli, and Gabriela Marinoschi. "An age-structured model of epidermis growth." Journal of Mathematical Biology 62, no. 1 (February 23, 2010): 111–41. http://dx.doi.org/10.1007/s00285-010-0330-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography