Academic literature on the topic 'Agent-based computing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Agent-based computing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Agent-based computing"
Kwang Mong Sim. "Agent-Based Cloud Computing." IEEE Transactions on Services Computing 5, no. 4 (2012): 564–77. http://dx.doi.org/10.1109/tsc.2011.52.
Full textShi, Zhongzhi, He Huang, Jiewen Luo, Fen Lin, and Haijun Zhang. "Agent-based grid computing." Applied Mathematical Modelling 30, no. 7 (July 2006): 629–40. http://dx.doi.org/10.1016/j.apm.2005.06.018.
Full textAleksander, Byrski. "Agent-based computing parameters tuning." Computer Science 14, no. 3 (2013): 491. http://dx.doi.org/10.7494/csci.2013.14.3.491.
Full textCentarowicz, Krzysztof, Maciej Paszyński, David Pardo, Tibor Bosse, and Han La Poutré. "Agent-based computing, adaptive algorithms and bio computing." Procedia Computer Science 1, no. 1 (May 2010): 1951–52. http://dx.doi.org/10.1016/j.procs.2010.04.218.
Full textKrzywicki, D., J. Stypka, P. Anielski, Ł. Faber, W. Turek, A. Byrski, and M. Kisiel-Dorohinicki. "Generation-free Agent-based Evolutionary Computing." Procedia Computer Science 29 (2014): 1068–77. http://dx.doi.org/10.1016/j.procs.2014.05.096.
Full textLee, Wonjun, Anna Squicciarini, and Elisa Bertino. "Agent-based accountable grid computing systems." Journal of Supercomputing 65, no. 2 (January 23, 2013): 903–29. http://dx.doi.org/10.1007/s11227-013-0871-5.
Full textKrzywicki, D., W. Turek, A. Byrski, and M. Kisiel-Dorohinicki. "Massively concurrent agent-based evolutionary computing." Journal of Computational Science 11 (November 2015): 153–62. http://dx.doi.org/10.1016/j.jocs.2015.07.003.
Full textSim, Kwang M. "Guest Editorial: Agent-based Grid computing." Applied Intelligence 25, no. 2 (October 2006): 127–29. http://dx.doi.org/10.1007/s10489-006-9649-2.
Full textNiazi, Muaz, and Amir Hussain. "Agent-based computing from multi-agent systems to agent-based models: a visual survey." Scientometrics 89, no. 2 (August 5, 2011): 479–99. http://dx.doi.org/10.1007/s11192-011-0468-9.
Full textHu, Jun, and Chun Guan. "An Emotional Agent Model Based on Granular Computing." Mathematical Problems in Engineering 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/601295.
Full textDissertations / Theses on the topic "Agent-based computing"
Cao, Junwei. "Agent-based resource management for grid computing." Thesis, University of Warwick, 2001. http://wrap.warwick.ac.uk/4172/.
Full textTang, Jia. "An agent-based peer-to-peer grid computing architecture." Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20060508.151716/index.html.
Full textRuan, Jianhua, Han-Shen Yuh, and Koping Wang. "Spider III: A multi-agent-based distributed computing system." CSUSB ScholarWorks, 2002. https://scholarworks.lib.csusb.edu/etd-project/2249.
Full textTashakor, Ghazal. "Scalable agent-based model simulation using distributed computing on system biology." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/671332.
Full textEl modelado basado en agentes es una herramienta computacional muy útil que permite simular un comportamiento complejo utilizando reglas tanto en escalas micro como macro. La complejidad de este tipo de modelado radica en la definición de las reglas que tendrán los agentes para definir los elementos estructurales o los patrones de comportamiento estáticos y/o dinámicos. La presente tesis aborda la definición de modelos complejos de redes biológicas que representan células cancerosas para obtener comportamientos sobre diferentes escenarios mediante simulación y conocer la evolución del proceso de metástasis para usuarios no expertos en sistemas de cómputo. Además se desarrolla una prueba de concepto de cómo incorporar técnicas de análisis de redes dinámicas y de aprendizaje automático en los modelos basados en agentes a partir del desarrollo de un sistema de simulación federado para mejorar el proceso de toma de decisiones. Para el desarrollo de esta tesis se han tenido que abordar, desde el punto de vista de la simulación, la representación de redes biológicas complejas basadas en grafos e investigar como integrar la topología y funciones de este tipo de redes interactuando un modelo basado en agentes. En este objetivo, se ha utilizado el modelo ABM como base para la construcción, agrupamiento y clasificación de los elementos de la red y que representan la estructura de una red biológica compleja y escalable. La simulación de un modelo complejo de múltiples escalas y múltiples agentes, proporciona una herramienta útil para que un científico, no-experto en computación, pueda ejecutar un modelo complejo paramétrico y utilizarlo como herramienta de análisis de escenarios o predicción de variaciones según los diferentes perfiles de pacientes considerados. El desarrollo se ha centrado en un modelo de tumor basado en agentes que ha evolucionado desde un modelo ABM simple y bien conocido, al cual se le han incorporado las variables y dinámicas referenciadas por el Hallmarks of Cancer, a un modelo complejo basado en grafos. Este modelo, basado en grafos, se utiliza para representar a diferentes niveles de interacción y dinámicas dentro de las células en la evolución de un tumor que permite diferentes grado de representaciones (a nivel molecular/celular). Todo ello se ha puesto en funcionamiento en un entorno de simulación y se ha creado un flujo de trabajo (workflow) para construir una red escalable compleja basada en un escenario de crecimiento tumoral y donde se aplican técnicas dinámicas para conocer el crecimiento de la red tumoral sobre diferentes patrones. La experimentación se ha realizado utilizando el entorno de simulación desarrollado considerado la ejecución de modelos para diferentes perfiles de pacientes, como muestra de su funcionalidad, para calcular parámetros de interés para el experto no-informático como por ejemplo la evolución del volumen del tumor. El entorno ha sido diseñado para descubrir y clasificar subgrafos del modelo de tumor basado en agentes, que permitirá distribuir los modelos en un sistema de cómputo de altas prestaciones y así poder analizar escenarios complejos y/o diferentes perfiles de pacientes con patrones tumorales con un alto número de células cancerosas en un tiempo reducido.
Agent-based modeling is a very useful computational tool to simulate complex behavior using rules at micro and macro scales. This type of modeling’s complexity is in defining the rules that the agents will have to define the structural elements or the static and dynamic behavior patterns. This thesis considers the definition of complex models of biological networks that represent cancer cells obtain behaviors on different scenarios by means of simulation and to know the evolution of the metastatic process for non-expert users of computer systems. Besides, a proof of concept has been developed to incorporate dynamic network analysis techniques and machine learning in agent-based models based on developing a federated simulation system to improve the decision-making process. For this thesis’s development, the representation of complex biological networks based on graphs has been analyzed, from the simulation point of view, to investigate how to integrate the topology and functions of this type of networks interacting with an agent-based model. For this purpose, the ABM model has been used as a basis for the construction, grouping, and classification of the network elements representing the structure of a complex and scalable biological network. The simulation of complex models with multiple scales and multiple agents provides a useful tool for a scientist, non-computer expert to execute a complex parametric model and use it to analyze scenarios or predict variations according to the different patient’s profiles. The development has focused on an agent-based tumor model that has evolved from a simple and well-known ABM model. The variables and dynamics referenced by the Hallmarks of Cancer have been incorporated into a complex model based on graphs. Based on graphs, this model is used to represent different levels of interaction and dynamics within cells in the evolution of a tumor with different degrees of representations (at the molecular/cellular level). A simulation environment and workflow have been created to build a complex, scalable network based on a tumor growth scenario. In this environment, dynamic techniques are applied to know the tumor network’s growth using different patterns. The experimentation has been carried out using the simulation environment developed considering the execution of models for different patient profiles, as a sample of its functionality, to calculate parameters of interest for the non-computer expert, such as the evolution of the tumor volume. The environment has been designed to discover and classify subgraphs of the agent-based tumor model to execute these models in a high-performance computer system. These executions will allow us to analyze complex scenarios and different profiles of patients with tumor patterns with a high number of cancer cells in a short time.
Bicak, Mesude. "Agent-based modelling of decentralized ant behaviour using high performance computing." Thesis, University of Sheffield, 2011. http://etheses.whiterose.ac.uk/1392/.
Full textGusukuma, Luke. "GPU Based Large Scale Multi-Agent Crowd Simulation and Path Planning." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/78098.
Full textMaster of Science
Mengistu, Dawit. "Multi-Agent Based Simulations in the Grid Environment." Licentiate thesis, Karlskrona : Blekinge Institute of Technology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-00371.
Full textMurdock, J. William. "Self-improvment through self-understanding : model-based reflection for agent adaptation." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/8225.
Full textKarimian, Kimia. "BioCompT - A Tutorial on Bio-Molecular Computing." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367943120.
Full textLiu, Zhengchun. "Modeling and simulation for healthcare operations management using high performance computing and agent-based model." Doctoral thesis, Universitat Autònoma de Barcelona, 2016. http://hdl.handle.net/10803/392743.
Full textHospital based emergency departments (EDs) are highly integrated service units to primarily handle the needs of the patients arriving without prior appointment, and with uncertain conditions. In this context, analysis and management of patient flows play a key role in developing policies and decision tools for overall performance improvement of the system. However, patient flows in EDs are considered to be very complex because of the different pathways patients may take and the inherent uncertainty and variability of healthcare processes. Due to the complexity and crucial role of an ED in the healthcare system, the ability to accurately represent, simulate and predict performance of ED is invaluable for decision makers to solve operations management problems. One way to realize this requirement is by modeling and simulation. Armed with the ability to execute a compute-intensive model and analyze huge datasets, the overall goal of this study is to develop tools to better understand the complexity (explain), evaluate policy (predict) and improve efficiencies (optimize) of ED units. The two main contributions are: (1) An agent-based model for quantitatively predicting and analyzing the complex behavior of emergency departments. The objective of this model is to grasp the non-linear association between macro-level features and micro-level behavior with the goal of better understanding the bottleneck of ED performance and provide ability to quantify such performance on defined condition. The model was built in collaboration with healthcare staff in a typical ED and has been implemented in a NetLogo modeling environment. In order to validate its adaptivity, the presented model has been calibrated to emulate a real ED in Spain, simulation results have proven the feasibility and ideality of using agent-based model & simulation techniques to study the ED system. Case studies are provided to present some capabilities of the simulator on quantitively analyzing ED behavior and supporting decision making. (2) A simulation and optimization based methodology for calibrating model parameters under data scarcity. To achieve high fidelity and credibility in conducting prediction and exploration of the actual system with simulation models, a rigorous calibration and validation procedure should firstly be applied. However, one of the key issues in calibration is the acquisition of valid source information from the target system. The aim of this contribution is to develop a systematic method to automatically calibrate a general emergency department model with incomplete data. The proposed calibration method enables simulation users to calibrate the general model for simulating their system without the involvement of model developers. High performance computing techniques were used to efficiently search for the optimal set of parameters. The case study indicates that the proposed method appears to be capable of properly calibrating and validating the simulation model with incomplete data. We believe that an automatic calibration tool released with a general ED model is promising for promoting the application of simulation in ED studies. In addition, the integration of the ED simulator and optimization techniques could be used for ED systematic performance optimization as well. Starting from simulating the emergency departments, our efforts proved the feasibility and ideality of using agent-based model methods to study healthcare systems.
Books on the topic "Agent-based computing"
Duarte, Bouça, and Gafagnão Amaro, eds. Agent-based computing. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textMangina, Eleni, Javier Carbo, and José M. Molina. Agent-Based Ubiquitous Computing. Paris: Atlantis Press, 2010. http://dx.doi.org/10.2991/978-94-91216-31-2.
Full textNiazi, Muaz A., and Amir Hussain. Cognitive Agent-based Computing-I. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-3852-2.
Full textGriffiths, Nathan, and Kuo-Ming Chao, eds. Agent-Based Service-Oriented Computing. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84996-041-0.
Full textCranefield, Stephen, and Insu Song, eds. Agent Based Simulation for a Sustainable Society and Multi-agent Smart Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35612-4.
Full textNiazi, Muaz A. Cognitive Agent-based Computing-I: A Unified Framework for Modeling Complex Adaptive Systems using Agent-based & Complex Network-based Methods. Dordrecht: Springer Netherlands, 2013.
Find full textZili, Zhang. Agent-based hybrid intelligent systems: An agent-based framework for complex problem solving. Berlin: Springer, 2004.
Find full text1959-, Padget Julian A., ed. Collaboration between human and artificial societies: Coordination and agent-based distributed computing. New York: Springer, 1999.
Find full textCranefield, Stephen. Agent Based Simulation for a Sustainable Society and Multi-agent Smart Computing: International Workshops, PRIMA 2011, Wollongong, Australia, November 14, 2011 Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textBook chapters on the topic "Agent-based computing"
Byrski, Aleksander, and Marek Kisiel-Dorohinicki. "Agent-Based Computing." In Evolutionary Multi-Agent Systems, 31–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51388-1_2.
Full textJennings, Nicholas R. "Agent-Based Computing." In Intelligent Information Processing, 17–30. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-0-387-35602-0_3.
Full textZhang, Minjie, Jia Tang, and John Fulcher. "Agent-Based Grid Computing." In Studies in Computational Intelligence, 439–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78293-3_11.
Full textJagtap, Manasi, Ankita Govekar, Nimita Joshi, Shambhavi Joshi, and Sandhya Arora. "AI-Based Interview Agent." In ICT Infrastructure and Computing, 527–35. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5331-6_54.
Full textLuck, Michael, Peter McBurney, and Jorge Gonzalez-Palacios. "Agent-Based Computing and Programming of Agent Systems." In Lecture Notes in Computer Science, 23–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11678823_2.
Full textVanhée, Loïs, Jacques Ferber, and Frank Dignum. "Agent-Based Evolving Societies." In Advances in Intelligent Systems and Computing, 283–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-39829-2_25.
Full textNorth, Michael J., and Cynthia S. Hood. "Users Matter: A Multi-agent Systems Model of High Performance Computing Cluster Users." In Multi-Agent and Multi-Agent-Based Simulation, 99–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-32243-6_9.
Full textNiazi, Muaz A., and Amir Hussain. "Introduction." In Cognitive Agent-based Computing-I, 1–14. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3852-2_1.
Full textNiazi, Muaz A., and Amir Hussain. "A Unified Framework." In Cognitive Agent-based Computing-I, 15–20. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3852-2_2.
Full textNiazi, Muaz A., and Amir Hussain. "Complex Adaptive Systems." In Cognitive Agent-based Computing-I, 21–32. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-3852-2_3.
Full textConference papers on the topic "Agent-based computing"
Chou, Yu-Cheng, David Ko, and Harry H. Cheng. "Mobile Agent Based Autonomic Dynamic Parallel Computing." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87750.
Full text"Workshop on agent based computing V." In 2008 International Multiconference on Computer Science and Information Technology. IEEE, 2008. http://dx.doi.org/10.1109/imcsit.2008.4747209.
Full textHafez, Mohamed Galal, and Mohamed Shaheen Elgamel. "Agent-Based Cloud Computing: A Survey." In 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud). IEEE, 2016. http://dx.doi.org/10.1109/ficloud.2016.48.
Full textLiu, Feng, Zhongwei Xu, and Qi Wang. "Grid Computing Monitoring Based on Agent." In 2006 First International Symposium on Pervasive Computing and Applications. IEEE, 2006. http://dx.doi.org/10.1109/spca.2006.297571.
Full textWajid, Usman, and Cesar A. Marin. "Agent-Based Computing for Enterprise Collaboration." In 2009 18th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE). IEEE, 2009. http://dx.doi.org/10.1109/wetice.2009.62.
Full textPuusepp, Renee. "Agent-based models for computing circulation." In ACADIA 2014: Design Agency. ACADIA, 2014. http://dx.doi.org/10.52842/conf.acadia.2014.043.
Full textCabri, Giacomo. "Agent-Based Computing for Enterprise Collaboration--Agent-Oriented Workflows and Services." In 15th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE'06). IEEE, 2006. http://dx.doi.org/10.1109/wetice.2006.17.
Full textLi, Xiong, Yujin Wu, Kai Wang, and Zongchang Xu. "Concurrent Negotiations for Agent-Based Grid Computing." In 2006 5th IEEE International Conference on Cognitive Informatics. IEEE, 2006. http://dx.doi.org/10.1109/coginf.2006.365673.
Full textCollier, R. W., M. J. O'Grady, G. M. P. O'Hare, C. Muldoon, D. Phelan, R. Strahan, and Y. Tong. "Self-organisation in agent-based mobile computing." In Proceedings. 15th International Workshop on Database and Expert Systems Applications, 2004. IEEE, 2004. http://dx.doi.org/10.1109/dexa.2004.1333567.
Full textSzpryngier, P., and M. Matuszek. "Selected security aspects of agent-based computing." In 2010 International Multiconference on Computer Science and Information Technology (IMCSIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/imcsit.2010.5679919.
Full textReports on the topic "Agent-based computing"
Dean, Michael. Agent-Based Computing Integration and Testing. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada462293.
Full textMacdonald, John S. Agent Based Computing and Effective Self-Synchronization in Netted Warfare. Fort Belvoir, VA: Defense Technical Information Center, February 2003. http://dx.doi.org/10.21236/ada415987.
Full textPollack, Martha E. Development of a Formal Theory of Agent-Based Computing for System Evaluation and System-Design Guidance. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada424483.
Full textKondratenko, Larysa O., Hanna T. Samoylenko, Arnold E. Kiv, Anna V. Selivanova, Oleg I. Pursky, Tetyana O. Filimonova, and Iryna O. Buchatska. Computer simulation of processes that influence adolescent learning motivation. [б. в.], June 2021. http://dx.doi.org/10.31812/123456789/4452.
Full text