Academic literature on the topic 'Agent mining'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Agent mining.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Agent mining"
Cao, Longbing, Vladimir Gorodetsky, and Pericles A. Mitkas. "Agent Mining: The Synergy of Agents and Data Mining." IEEE Intelligent Systems 24, no. 3 (May 2009): 64–72. http://dx.doi.org/10.1109/mis.2009.45.
Full textM., Inbavalli. "An Intelligent Agent based Mining Techniques for Distributed Data Mining." Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (March 31, 2020): 610–17. http://dx.doi.org/10.5373/jardcs/v12sp4/20201527.
Full textSabitha, R., and Karthik. "EMPLOYING AGENTS IN DESCRIPTIVE MINING." International Journal of Research -GRANTHAALAYAH 4, no. 2 (February 29, 2016): 111–20. http://dx.doi.org/10.29121/granthaalayah.v4.i2.2016.2821.
Full textYan, Jiaqi, Daning Hu, Stephen S. Liao, and Huaiqing Wang. "Mining Agents’ Goals in Agent-Oriented Business Processes." ACM Transactions on Management Information Systems 5, no. 4 (March 21, 2015): 1–22. http://dx.doi.org/10.1145/2629448.
Full textP, Rohini, and Sree Lakshmi.P. "Agent-Driven Distributed Data Mining." International Journal of Science and Engineering Applications 2, no. 5 (May 1, 2013): 103–9. http://dx.doi.org/10.7753/ijsea0205.1003.
Full textBoylu, Fidan, Haldun Aytug, and Gary J. Koehler. "Data mining with agent gaming." Information Technology and Management 11, no. 1 (January 20, 2010): 1–6. http://dx.doi.org/10.1007/s10799-010-0064-3.
Full textCao, Longbing, Gerhard Weiss, and Philip S. Yu. "A brief introduction to agent mining." Autonomous Agents and Multi-Agent Systems 25, no. 3 (May 9, 2012): 419–24. http://dx.doi.org/10.1007/s10458-011-9191-4.
Full textDevasekhar, V., and P. Natarajan. "Multi-agent based data mining aggregation approaches using machine learning techniques." International Journal of Engineering & Technology 7, no. 3 (June 23, 2018): 1136. http://dx.doi.org/10.14419/ijet.v7i3.9631.
Full textSymeonidis, Andreas L., Kyriakos C. Chatzidimitriou, Ioannis N. Athanasiadis, and Pericles A. Mitkas. "Data mining for agent reasoning: A synergy for training intelligent agents." Engineering Applications of Artificial Intelligence 20, no. 8 (December 2007): 1097–111. http://dx.doi.org/10.1016/j.engappai.2007.02.009.
Full textSherief, Abdallah. "Mining Dynamics: Using Data Mining Techniques to Analyze Multi-agent Learning." Journal of Intelligent Systems 26, no. 4 (September 26, 2017): 613–24. http://dx.doi.org/10.1515/jisys-2016-0136.
Full textDissertations / Theses on the topic "Agent mining"
Chaimontree, Santhana. "Multi-agent data mining with negotiation : a study in multi-agent based clustering." Thesis, University of Liverpool, 2012. http://livrepository.liverpool.ac.uk/7673/.
Full textAlbashiri, Kamal Ali. "An investigation into the issues of multi-agent data mining." Thesis, University of Liverpool, 2010. http://livrepository.liverpool.ac.uk/1275/.
Full textChau, Michael, Daniel Zeng, Hsinchun Chen, Michael Huang, and David Hendriawan. "Design and evaluation of a multi-agent collaborative Web mining system." Elsevier, 2003. http://hdl.handle.net/10150/105861.
Full textMost existing Web search tools work only with individual users and do not help a user benefit from previous search experiences of others. In this paper, we present the Collaborative Spider, a multi-agent system designed to provide post-retrieval analysis and enable across-user collaboration in Web search and mining. This system allows the user to annotate search sessions and share them with other users. We also report a user study designed to evaluate the effectiveness of this system. Our experimental findings show that subjectsâ search performance was degraded, compared to individual search scenarios in which users had no access to previous searches, when they had access to a limited number (e.g., 1 or 2) of earlier search sessions done by other users. However, search performance improved significantly when subjects had access to more search sessions. This indicates that gain from collaboration through collaborative Web searching and analysis does not outweigh the overhead of browsing and comprehending other usersâ past searches until a certain number of shared sessions have been reached. In this paper, we also catalog and analyze several different types of user collaboration behavior observed in the context of Web mining.
Kerns, Kelly Michael Kumar Vijay. "A self-organized data mining agent framework to dynamically discover neural networks." Diss., UMK access, 2004.
Find full text"A thesis in computer science." Typescript. Advisor: Vijay Kumar. Vita. Title from "catalog record" of the print edition Description based on contents viewed Feb. 21, 2006. Includes bibliographical references (leaves 96-98). Online version of the print edition.
NOVALES, REINIER MOREJON. "A MULTI-AGENT APPROACH TO DATA MINING PROCESSES: APPLICATIONS TO HEALTH CARE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=34660@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
A mineração de dados é um tema em alta que atrai pesquisadores de diferentes áreas, como bancos de dados, aprendizado de máquina e sistemas multiagentes. Como consequência do crescimento do volume de dados, há uma necessidade crescente de obter conhecimento desses grandes conjuntos de dados que são muito difíceis de manipular e processar com os métodos tradicionais. Os agentes de software podem desempenhar um papel significativo ao executar processos de mineração de dados de maneira mais eficiente. Por exemplo, eles podem trabalhar para realizar seleção, extração, pré-processamento e integração de dados, bem como mineração paralela, distribuída ou de múltiplas fontes. Este trabalho propõe uma abordagem (na forma de um framework) que usa agentes de software para gerenciar processos de mineração de dados. Para testar sua aplicabilidade, utilizamos vários conjuntos de dados relacionados ao domínio de saúde, representando alguns cenários de uso (hipotireoidismo, diabetes e arritmia).
Data mining is a hot topic that attracts researchers from different areas, such as databases, machine learning, and multi-agent systems. As a consequence of the growth of data volume, there is a growing need to obtain knowledge from these large data sets that are very difficult to handle and process with traditional methods. Software agents can play a significant role performing data mining processes in ways that are more efficient. For instance, they can work to perform selection, extraction, preprocessing and integration of data as well as parallel, distributed, or multisource mining. This work proposes an approach (in the form of a framework) that uses software agents to manage data mining processes. In order to test its applicability, we use several data sets related to health care domain representing some usage scenarios (hypothyroidism, diabetes and arrhythmia).
Kerr, Wesley. "Learning to Recognize Agent Activities and Intentions." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/193649.
Full textAbdo, Walid A. A. "Enhancing association rules algorithms for mining distributed databases. Integration of fast BitTable and multi-agent association rules mining in distributed medical databases for decision support." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5661.
Full textAbdo, Walid Adly Atteya. "Enhancing association rules algorithms for mining distributed databases : integration of fast BitTable and multi-agent association rules mining in distributed medical databases for decision support." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5661.
Full textSainani, Varsha. "Hybrid Layered Intrusion Detection System." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_theses/44.
Full textKritzinger, Jacob Johannes. "The game of diminishing returns : Architecture as a regenerative agent of man and nature." Diss., University of Pretoria, 2018. http://hdl.handle.net/2263/63622.
Full textMyn gebasseerde aktiwiteite het 'n hoër produksie en verwagting as ooit tevore met die bevolking se eksponensiële toename. Hierdie gemeenskappe vorm deel van die wêreld se vebruikersmark. Die publiek koop aanhoudend produkte wat binne 'n paar jaar op die vullishoop beland, byvoorbeeld elektroniese objekte. Die meerderheid myne word gevind in onontwikkelde lande of in 'n plattelandse omgewing. Die nadeel van myne wat ver van stedelike gebiede is, is dat die nuwe gemeenskappe alleenlik gevorm word om die stigting van die myn. Dit is bewys dat die onvermydelike staking van produksie van myne veroorsaak sosiale verwoesting in sulke gemeenskappe. Dit is nie die enigste probleem nie. Hierdie gemeenskappe het geen sosiale groepseenheid nie en bestaan meestal van mense van verskillende agtergronde en plekke. Hulle is saamgegooi as gevolg van werksgeleenthede. Die gevolg daarvan is dat die gemeenskap se individuele identiteit swak is, en xenofobiese gevoelens ontstaan. Die vraag is, kan 'n sisteem ontwerp word om 'n gemeenskaplike identiteit te help vorm? Wat sal help om die gemeenskap bymekaar te hou en te ontwikkel na die myn toemaak? Die finale plan vir die toemaak van 'n myn is gewoonlik nie bevredigend genoeg nie. Gebaseer op verouderde omgewingsinformasie en omgewingswette word te min beskermings opsies aangebied vir die rehabilitasie van die gebied. Onomkeerbare sosiale en omgewingsvernietiging sal in die toekoms volg, nie net vir Suid-Afrika nie, maar wêreldwyd, indien ons nie begin kyk na nuwe kreatiewe idees, en moontlike oplossings vir hierdie myn gemeenskappe nie. Die verhandeling versoek en beoog 'n oplossing met argitektuur as basis en agtergrond, vir die gemeenskap en die omgewings stabiliteit, deur die vorming van 'n sterker gemeenskaps identiteit wat gebaseer word of omgewings rehabilitasie. Die voorgestelde terrein plan en ontwikkeling skep 'n buffer tussen die Refilwe gemeenskap en die Cullinan Diamant Myn se grootste slyk dam. Die aanhoudende populasie aanwas van die Refilwe gemeenskap het eindomsontwikkeling tot aan sy grense gestoot in terme van sy ligging tot die slyk dam. Huidiglik grens die gemeenskap aan die slyk dam wat 'n gesondheids risiko is vir mens en dier wat daar lewe. Die geskiedenis van Refilwe vertoonbeeld die tydperk van Apartheid en Apartheidswette van segregasie, 'n politiese sisteem wat tot vandag toe die identiteit van die inwoners en die gemeenskap negatief beinvloed. Onlangse gemeenskapsgedrewe argitektuur mislukkings, lei hierdie verhandeling na die heroorweging van hoe argitektuur 'n gemeenskap kan rehabiliteer. Ter afsluiting, ondersoek die verhandeling die moontlikheid om die huidige potensiaal te gebruik in 'n geaffekteerde ruimte en om die toepaslike gemeenskapbehoeftes te analiseer. Die argiteksgedrewe antwoord sal primêr gebaseer wees op data versamel van verskeie oorde, insluitende maar nie beperk tot: terreinstudies, omgewings analises, feite en historiese inligtig. Die projek was ontwikkel om argitektuur te gebruik as 'n moontlike antwoord vir die herstel van mens en die natuur en om 'n nuwe simbiose te skep.
Mini Dissertation MArch(Prof)--University of Pretoria, 2018.
Architecture
MArch (Prof)
Unrestricted
Books on the topic "Agent mining"
service), SpringerLink (Online, ed. Data Mining and Multi-agent Integration. Boston, MA: Springer-Verlag US, 2009.
Find full textCao, Longbing, ed. Data Mining and Multi-agent Integration. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0522-2.
Full textDuarte, Bouça, and Gafagnão Amaro, eds. Agent-based computing. Hauppauge, N.Y: Nova Science Publishers, 2010.
Find full textZili, Zhang. Agent-based hybrid intelligent systems: An agent-based framework for complex problem solving. Berlin: Springer, 2004.
Find full textMario, Kušek, Nguyễn Ngọc Thanh, Howlett Robert J, Jain Lakhmi C, and SpringerLink (Online service), eds. Agent and Multi-Agent Systems. Technologies and Applications: 6th KES International Conference, KES-AMSTA 2012,Dubrovnik, Croatia, June 25-27, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textChengqi, Zhang, ed. Agent-based hybrid intelligent systems: An agent-based fromework for complex problem solving. New York: Springer, 2004.
Find full textS, Yu Philip, Weiss Gerhard, Liu Jiming, Gorodetski Vladimir I. 1937-, and SpringerLink (Online service), eds. Agents and Data Mining Interaction: 4th International Workshop, ADMI 2009, Budapest, Hungary, May 10-15,2009, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
Find full textThanh, Nguyẽ̂n Ngọc, ed. Agent and multi-agent systems: Technologies and applications : second KES international symposium, KES-AMSTA 2008 : Inchʻŏn, Korea, March 26-28, 2008 : proceedings. Berlin: Springer, 2008.
Find full textKES-AMSTA 2010 (2010 Gdynia, Poland). Agent and multi-agent systems: technologies and applications: 4th KES International Symposium, KES-AMSTA 2010, Gdynia, Poland, June 23-25, 2010 ; proceedings. Berlin: Springer, 2010.
Find full textMeyer, John-Jules Ch. Knowledge Representation for Agents and Multi-Agent Systems: First International Workshop, KRAMAS 2008, Sydney, Australia, September 17, 2008, Revised Selected Papers. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.
Find full textBook chapters on the topic "Agent mining"
Cao, Longbing, Chengqi Zhang, Philip S. Yu, and Yanchang Zhao. "Agent-Driven Data Mining." In Domain Driven Data Mining, 145–69. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-5737-5_7.
Full textSelmi, Safa, and Wahiba Ben Abdessalem Karaa. "Multi-Agent System for Text Mining." In Mining Multimedia Documents, 53–66. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315399744-5.
Full textSelmi, Safa, and Wahiba Ben Abdessalem Karaa. "Multi-Agent System for Text Mining." In Mining Multimedia Documents, 53–66. Boca Raton : CRC Press, [2017]: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/b21638-4.
Full textBaik, Sung Wook, Jerzy Bala, and Ju Sang Cho. "Agent Based Distributed Data Mining." In Parallel and Distributed Computing: Applications and Technologies, 42–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30501-9_11.
Full textCao, Longbing, Dan Luo, and Chengqi Zhang. "Ubiquitous Intelligence in Agent Mining." In Lecture Notes in Computer Science, 23–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03603-3_3.
Full textYang, Cheng-Lin, and Yun-Heh Chen-Burger. "A Hybrid On-line Topic Groups Mining Platform." In Agent and Multi-Agent Systems: Technologies and Applications, 205–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19728-9_17.
Full textShoham, Yoav, and Rob Powers. "Multi-agent Learning." In Encyclopedia of Machine Learning and Data Mining, 857–60. Boston, MA: Springer US, 2017. http://dx.doi.org/10.1007/978-1-4899-7687-1_568.
Full textChen, Renlong, and Ying Tan. "A Multi-branch Ensemble Agent Network for Multi-agent Reinforcement Learning." In Data Mining and Big Data, 485–98. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7502-7_44.
Full textKim, Jae Kyeong, and Yoon Ho Cho. "Using Web Usage Mining and SVD to Improve E-commerce Recommendation Quality." In Intelligent Agents and Multi-Agent Systems, 86–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-39896-7_8.
Full textMuyeba, Maybin, Keeley Crockett, and John Keane. "A Hybrid Interestingness Heuristic Approach for Attribute-Oriented Mining." In Agent and Multi-Agent Systems: Technologies and Applications, 414–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22000-5_43.
Full textConference papers on the topic "Agent mining"
Skorupka, Dariusz, Stanisław Stanek, and Mariusz Żytniewski. "Agent supported process mining." In CENTRAL EUROPEAN SYMPOSIUM ON THERMOPHYSICS 2019 (CEST). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114159.
Full textKumar, M. Naresh, and B. Eswara Reddy. "Improved classification association rule mining." In Multi-Agent Systems (IAMA 2009). IEEE, 2009. http://dx.doi.org/10.1109/iama.2009.5228045.
Full textMadiraju, Praveen, and Yanqing Zhang. "Web usage data mining agent." In AeroSense 2002, edited by Belur V. Dasarathy. SPIE, 2002. http://dx.doi.org/10.1117/12.460231.
Full textAnand, T., S. Padmapriya, and E. Kirubakaran. "Terror tracking using advanced web mining perspective." In Multi-Agent Systems (IAMA 2009). IEEE, 2009. http://dx.doi.org/10.1109/iama.2009.5228034.
Full textOliveira, Gustavo H. B. S., Josenildo C. da Silva, Omar A. C. Cortes, and Luciano R. Coutinho. "A Multi-Agent Architecture for Distributed Data Mining Systems." In Brazilian e-Science Workshop. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/bresci.2022.222487.
Full textKhashfeh, Mouayad, Moamin A. Mahmoud, and Mohd Sharifuddin Ahmad. "A Text Mining Algorithm Optimising the Determination of Relevant Studies." In 2018 International Symposium on Agent, Multi-Agent Systems and Robotics (ISAMSR). IEEE, 2018. http://dx.doi.org/10.1109/isamsr.2018.8540553.
Full textMangla, Monika. "Exploiting OLAP and data mining for augmenting e-business." In Multi-Agent Systems (IAMA 2009). IEEE, 2009. http://dx.doi.org/10.1109/iama.2009.5228057.
Full textTalib, Ramzan, Bernhard Volz, and Stefan Jablonski. "Agent Assignment for Process Management: Agent Performance Evaluation Framework." In 2010 IEEE International Conference on Data Mining Workshops (ICDMW). IEEE, 2010. http://dx.doi.org/10.1109/icdmw.2010.99.
Full textPatel, Darshana, and J. S. Shah. "Mobile agent and distributed data mining." In 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT). IEEE, 2016. http://dx.doi.org/10.1109/icatcct.2016.7912060.
Full textKusumura, Yukitaka, Yoshinori Hijikata, and Shogo Nishida. "Text mining agent for net auction." In the 2004 ACM symposium. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/967900.968124.
Full textReports on the topic "Agent mining"
Kozachenko, Nadiia. Artificial relevance as a way to strengthen an argument : presentation. Department of Philosophy, April 2022. http://dx.doi.org/10.31812/123456789/6686.
Full textCytryn, Eddie, Mark R. Liles, and Omer Frenkel. Mining multidrug-resistant desert soil bacteria for biocontrol activity and biologically-active compounds. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598174.bard.
Full textThomashow, Linda, Leonid Chernin, Ilan Chet, David M. Weller, and Dmitri Mavrodi. Genetically Engineered Microbial Agents for Biocontrol of Plant Fungal Diseases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696521.bard.
Full text