To see the other types of publications on this topic, follow the link: AIA interneurons.

Journal articles on the topic 'AIA interneurons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'AIA interneurons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shinkai, Y., Y. Yamamoto, M. Fujiwara, et al. "Behavioral Choice between Conflicting Alternatives Is Regulated by a Receptor Guanylyl Cyclase, GCY-28, and a Receptor Tyrosine Kinase, SCD-2, in AIA Interneurons of Caenorhabditis elegans." Journal of Neuroscience 31, no. 8 (2011): 3007–15. http://dx.doi.org/10.1523/jneurosci.4691-10.2011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

D’Angelo, Vincenza, Mauro Giorgi, Emanuela Paldino, et al. "A2A Receptor Dysregulation in Dystonia DYT1 Knock-Out Mice." International Journal of Molecular Sciences 22, no. 5 (2021): 2691. http://dx.doi.org/10.3390/ijms22052691.

Full text
Abstract:
We aimed to investigate A2A receptors in the basal ganglia of a DYT1 mouse model of dystonia. A2A was studied in control Tor1a+/+ and Tor1a+/− knock-out mice. A2A expression was assessed by anti-A2A antibody immunofluorescence and Western blotting. The co-localization of A2A was studied in striatal cholinergic interneurons identified by anti-choline-acetyltransferase (ChAT) antibody. A2A mRNA and cyclic adenosine monophosphate (cAMP) contents were also assessed. In Tor1a+/+, Western blotting detected an A2A 45 kDa band, which was stronger in the striatum and the globus pallidus than in the entopeduncular nucleus. Moreover, in Tor1a+/+, immunofluorescence showed A2A roundish aggregates, 0.3–0.4 μm in diameter, denser in the neuropil of the striatum and the globus pallidus than in the entopeduncular nucleus. In Tor1a+/−, A2A Western blotting expression and immunofluorescence aggregates appeared either increased in the striatum and the globus pallidus, or reduced in the entopeduncular nucleus. Moreover, in Tor1a+/−, A2A aggregates appeared increased in number on ChAT positive interneurons compared to Tor1a+/+. Finally, in Tor1a+/−, an increased content of cAMP signal was detected in the striatum, while significant levels of A2A mRNA were neo-expressed in the globus pallidus. In Tor1a+/−, opposite changes of A2A receptors’ expression in the striatal-pallidal complex and the entopeduncular nucleus suggest that the pathophysiology of dystonia is critically dependent on a composite functional imbalance of the indirect over the direct pathway in basal ganglia.
APA, Harvard, Vancouver, ISO, and other styles
3

Song, Wen-Jie, Tatiana Tkatch, and D. James Surmeier. "Adenosine Receptor Expression and Modulation of Ca2+Channels in Rat Striatal Cholinergic Interneurons." Journal of Neurophysiology 83, no. 1 (2000): 322–32. http://dx.doi.org/10.1152/jn.2000.83.1.322.

Full text
Abstract:
Adenosine is a potent regulator of acetylcholine release in the striatum, yet the mechanisms mediating this regulation are largely undefined. To begin to fill this gap, adenosine receptor expression and coupling to voltage-dependent Ca2+ channels were studied in cholinergic interneurons by combined whole cell voltage-clamp recording and single-cell reverse transcription–polymerase chain reaction. Cholinergic interneurons were identified by the presence of choline acetyltransferase mRNA. Nearly all of these interneurons (90%, n = 28) expressed detectable levels of A1 adenosine receptor mRNA. A2a and A2b receptor mRNAs were less frequently detected. A3 receptor mRNA was undetectable. Adenosine rapidly and reversibly reduced N-type Ca2+ currents in cholinergic interneurons. The A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine completely blocked the effect of adenosine. The IC50 of the A1 receptor selective agonist 2-chloro-N6-cyclopentyladenosine was 45 nM, whereas it was near 30 μM for the A2a receptor agonist CGS-21680. Dialysis with GDPβS or brief exposure to the G protein (Gi/o) alkylating agent N-ethylmaleimide also blocked the adenosine modulation. The reduction in N-type currents was partially reversed by depolarizing prepulses. A membrane-delimited pathway mediated the modulation, because it was not seen in cell-attached patches when agonist was applied to the bath. Activation of protein kinase C attenuated the adenosine modulation. Taken together, our results argue that activation of A1 adenosine receptors in cholinergic interneurons reduces N-type Ca2+currents via a membrane-delimited, Gi/o class G-protein pathway that is regulated by protein kinase C. These observations establish a cellular mechanism by which adenosine may serve to reduce acetylcholine release.
APA, Harvard, Vancouver, ISO, and other styles
4

Freund, T. F., and G. Buzsáki. "Interneurons of the hippocampus." Hippocampus 6, no. 4 (1998): 347–470. http://dx.doi.org/10.1002/(sici)1098-1063(1996)6:4<347::aid-hipo1>3.0.co;2-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kharazia, V. N., R. J. Wenthold, and R. J. Weinberg. "GluR1-immunopositive interneurons in rat neocortex." Journal of Comparative Neurology 368, no. 3 (1996): 399–412. http://dx.doi.org/10.1002/(sici)1096-9861(19960506)368:3<399::aid-cne6>3.0.co;2-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arcangeli, Sara, Alessandro Tozzi, Michela Tantucci, et al. "Ischemic-LTP in Striatal Spiny Neurons of both Direct and Indirect Pathway Requires the Activation of D1-Like Receptors and NO/Soluble Guanylate Cyclase/cGMP Transmission." Journal of Cerebral Blood Flow & Metabolism 33, no. 2 (2012): 278–86. http://dx.doi.org/10.1038/jcbfm.2012.167.

Full text
Abstract:
Striatal medium-sized spiny neurons (MSNs) are highly vulnerable to ischemia. A brief ischemic insult, produced by oxygen and glucose deprivation (OGD), can induce ischemic long-term potentiation (i-LTP) of corticostriatal excitatory postsynaptic response. Since nitric oxide (NO) is involved in the pathophysiology of brain ischemia and the dopamine D1/D5-receptors (D1-like-R) are expressed in striatal NOS-positive interneurons, we hypothesized a relation between NOS-positive interneurons and striatal i-LTP, involving D1R activation and NO production. We investigated the mechanisms involved in i-LTP induced by OGD in corticostriatal slices and found that the D1-like-R antagonist SCH-23390 prevented i-LTP in all recorded MSNs. Immunofluorescence analysis confirmed the induction of i-LTP in both substance P-positive, (putative D1R-expressing) and adenosine A2A-receptor-positive (putative D2R-expressing) MSNs. Furthermore, i-LTP was dependent on a NOS/cGMP pathway since pharmacological blockade of NOS, guanylate-cyclase, or PKG prevented i-LTP. However, these compounds failed to prevent i-LTP in the presence of a NO donor or cGMP analog, respectively. Interestingly, the D1-like-R antagonism failed to prevent i-LTP when intracellular cGMP was pharmacologically increased. We propose that NO, produced by striatal NOS-positive interneurons via the stimulation of D1-like-R located on these cells, is critical for i-LTP induction in the entire population of MSNs involving a cGMP-dependent pathway.
APA, Harvard, Vancouver, ISO, and other styles
7

Buckmaster, Paul S., and Ivan Soltesz. "Neurobiology of hippocampal interneurons: A workshop review." Hippocampus 6, no. 3 (1996): 330–39. http://dx.doi.org/10.1002/(sici)1098-1063(1996)6:3<330::aid-hipo9>3.0.co;2-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maxwell, D. J., R. Kerr, E. Jankowska, and J. S. Riddell. "Synaptic connections of dorsal horn group II spinal interneurons: Synapses formed with the interneurons and by their axon collaterals." Journal of Comparative Neurology 380, no. 1 (1997): 51–69. http://dx.doi.org/10.1002/(sici)1096-9861(19970331)380:1<51::aid-cne4>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cicchetti, Francesca, Thomas G. Beach, and Andr� Parent. "Chemical phenotype of calretinin interneurons in the human striatum." Synapse 30, no. 3 (1998): 284–97. http://dx.doi.org/10.1002/(sici)1098-2396(199811)30:3<284::aid-syn6>3.0.co;2-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ratt�, St�phanie, and Ronald Chase. "Morphology of interneurons in the procerebrum of the snailHelix aspersa." Journal of Comparative Neurology 384, no. 3 (1997): 359–72. http://dx.doi.org/10.1002/(sici)1096-9861(19970804)384:3<359::aid-cne4>3.0.co;2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mart�nez-Guijarro, Francisco J., Jes�s G. Bri��n, Jos� M. Blasco-Ib��ez, Katsuo Okazaki, Hiroyoshi Hidaka, and Jos� R. Alonso. "Neurocalcin-immunoreactive cells in the rat hippocampus are GABAergic interneurons." Hippocampus 8, no. 1 (1998): 2–23. http://dx.doi.org/10.1002/(sici)1098-1063(1998)8:1<2::aid-hipo2>3.0.co;2-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Thomas, Traci M., Yol Smith, Allan I. Levey, and Steven M. Hersch. "Cortical inputs to m2-immunoreactive striatal interneurons in rat and monkey." Synapse 37, no. 4 (2000): 252–61. http://dx.doi.org/10.1002/1098-2396(20000915)37:4<252::aid-syn2>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tozzi, A., A. de Iure, M. Di Filippo, et al. "The Distinct Role of Medium Spiny Neurons and Cholinergic Interneurons in the D2/A2A Receptor Interaction in the Striatum: Implications for Parkinson's Disease." Journal of Neuroscience 31, no. 5 (2011): 1850–62. http://dx.doi.org/10.1523/jneurosci.4082-10.2011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Datskovskaia, Aygul, W. Breckinridge Carden, and Martha E. Bickford. "Y retinal terminals contact interneurons in the cat dorsal lateral geniculate nucleus." Journal of Comparative Neurology 430, no. 1 (2000): 85–100. http://dx.doi.org/10.1002/1096-9861(20010129)430:1<85::aid-cne1016>3.0.co;2-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Van Vulpen, E. H. S., and D. Van Der Kooy. "Differential maturation of cholinergic interneurons in the striatal patch versus matrix compartments." Journal of Comparative Neurology 365, no. 4 (1996): 683–91. http://dx.doi.org/10.1002/(sici)1096-9861(19960219)365:4<683::aid-cne12>3.0.co;2-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sadikot, Abbas F., and Rachel Sasseville. "Neurogenesis in the mammalian neostriatum and nucleus accumbens: Parvalbumin-immunoreactive GABAergic interneurons." Journal of Comparative Neurology 389, no. 2 (1997): 193–211. http://dx.doi.org/10.1002/(sici)1096-9861(19971215)389:2<193::aid-cne1>3.0.co;2-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ratt�, St�phanie, and Ronald Chase. "Synapse distribution of olfactory interneurons in the procerebrum of the snailHelix aspersa." Journal of Comparative Neurology 417, no. 3 (2000): 366–84. http://dx.doi.org/10.1002/(sici)1096-9861(20000214)417:3<366::aid-cne9>3.0.co;2-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Stocker, Reinhard F., Gertrud Heimbeck, Nana� Gendre, and J. Steven de Belle. "Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons." Journal of Neurobiology 32, no. 5 (1997): 443–56. http://dx.doi.org/10.1002/(sici)1097-4695(199705)32:5<443::aid-neu1>3.0.co;2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hu, Huaiyu. "Polysialic acid regulates chain formation by migrating olfactory interneuron precursors." Journal of Neuroscience Research 61, no. 5 (2000): 480–92. http://dx.doi.org/10.1002/1097-4547(20000901)61:5<480::aid-jnr2>3.0.co;2-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Christie, Brian R., Kevin M. Franks, Jeremy K. Seamans, Karin Saga, and Terrence J. Sejnowski. "Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells." Hippocampus 10, no. 6 (2000): 673–83. http://dx.doi.org/10.1002/1098-1063(2000)10:6<673::aid-hipo1005>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Puskár, Zita, and Miklós Antal. "Localization of last-order premotor interneurons in the lumbar spinal cord of rats." Journal of Comparative Neurology 389, no. 3 (1997): 377–89. http://dx.doi.org/10.1002/(sici)1096-9861(19971222)389:3<377::aid-cne2>3.0.co;2-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Insausti, Teresita C., and Claudio R. Lazzari. "Central projections of first-order ocellar interneurons in the bugTriatoma infestans (Heteroptera: Reduviidae)." Journal of Morphology 229, no. 2 (1996): 161–69. http://dx.doi.org/10.1002/(sici)1097-4687(199608)229:2<161::aid-jmor2>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ogawa, Hiroto, Yoshichika Baba, and Kotaro Oka. "Spike-dependent calcium influx in dendrites of the cricket giant interneuron." Journal of Neurobiology 44, no. 1 (2000): 45–56. http://dx.doi.org/10.1002/1097-4695(200007)44:1<45::aid-neu5>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nebeling, Bernd. "Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets." Journal of Experimental Zoology 286, no. 3 (2000): 219–30. http://dx.doi.org/10.1002/(sici)1097-010x(20000215)286:3<219::aid-jez1>3.0.co;2-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Benton, Jeanne L., and Barbara S. Beltz. "Effects of serotonin depletion on local interneurons in the developing olfactory pathway of lobsters." Journal of Neurobiology 46, no. 3 (2001): 193–205. http://dx.doi.org/10.1002/1097-4695(20010215)46:3<193::aid-neu1002>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Spruston, Nelson, Joachim L�bke, and Michael Frotscher. "Interneurons in the stratum lucidum of the rat hippocampus: An anatomical and electrophysiological characterization." Journal of Comparative Neurology 385, no. 3 (1997): 427–40. http://dx.doi.org/10.1002/(sici)1096-9861(19970901)385:3<427::aid-cne7>3.0.co;2-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sultan, Fahad, and James M. Bower. "Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis." Journal of Comparative Neurology 393, no. 3 (1998): 353–73. http://dx.doi.org/10.1002/(sici)1096-9861(19980413)393:3<353::aid-cne7>3.0.co;2-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Eide, Anne-Lill, Joel Glover, Ole Kjaerulff, and Ole Kiehn. "Characterization of commissural interneurons in the lumbar region of the neonatal rat spinal cord." Journal of Comparative Neurology 403, no. 3 (1999): 332–45. http://dx.doi.org/10.1002/(sici)1096-9861(19990118)403:3<332::aid-cne4>3.0.co;2-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bizon, Jennifer L., Julie C. Lauterborn, and Christine M. Gall. "Subpopulations of striatal interneurons can be distinguished on the basis of neurotrophic factor expression." Journal of Comparative Neurology 408, no. 2 (1999): 283–98. http://dx.doi.org/10.1002/(sici)1096-9861(19990531)408:2<283::aid-cne9>3.0.co;2-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kittmann, Rolf, Josef Schmitz, and Ansgar B�schges. "Premotor interneurons in generation of adaptive leg reflexes and voluntary movements in stick insects." Journal of Neurobiology 31, no. 4 (1996): 512–31. http://dx.doi.org/10.1002/(sici)1097-4695(199612)31:4<512::aid-neu10>3.0.co;2-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ritzmann, Roy E., and Alan J. Pollack. "Characterization of tactile-sensitive interneurons in the abdominal ganglia of the cockroach,Periplaneta americana." Journal of Neurobiology 34, no. 3 (1998): 227–41. http://dx.doi.org/10.1002/(sici)1097-4695(19980215)34:3<227::aid-neu3>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Commons, Kathryn G., and Teresa A. Milner. "Localization of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus." Journal of Comparative Neurology 381, no. 3 (1997): 373–87. http://dx.doi.org/10.1002/(sici)1096-9861(19970512)381:3<373::aid-cne8>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hikosaka, Ryou, and Masakazu Takahata. "Quantitative analyses of anatomical and electrotonic structures of crayfish nonspiking interneurons by three-dimensional morphometry." Journal of Comparative Neurology 392, no. 3 (1998): 373–89. http://dx.doi.org/10.1002/(sici)1096-9861(19980316)392:3<373::aid-cne7>3.0.co;2-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

McDonagh, Jennifer C., Robert B. Gorman, Edwin E. Gilliam, T. George Hornby, Robert M. Reinking, and Douglas G. Stuart. "Properties of spinal motoneurons and interneurons in the adult turtle: Provisional classification by cluster analysis." Journal of Comparative Neurology 400, no. 4 (1998): 544–70. http://dx.doi.org/10.1002/(sici)1096-9861(19981102)400:4<544::aid-cne8>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Schl�sser, Beate, Gaby Klausa, Graham Prime, and Gerrit Ten Bruggencate. "Postnatal development of calretinin- and parvalbumin-positive interneurons in the rat neostriatum: An immunohistochemical study." Journal of Comparative Neurology 405, no. 2 (1999): 185–98. http://dx.doi.org/10.1002/(sici)1096-9861(19990308)405:2<185::aid-cne4>3.0.co;2-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Van Vulpen, Eileen H. S., and Derek Van Der Kooy. "NGF facilitates the developmental maturation of the previously committed cholinergic interneurons in the striatal matrix." Journal of Comparative Neurology 411, no. 1 (1999): 87–96. http://dx.doi.org/10.1002/(sici)1096-9861(19990816)411:1<87::aid-cne7>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Willins, David L., Ariel Y. Deutch, and Bryan L. Roth. "Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex." Synapse 27, no. 1 (1997): 79–82. http://dx.doi.org/10.1002/(sici)1098-2396(199709)27:1<79::aid-syn8>3.0.co;2-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Stiedl, Oliver, Andreas Stumpner, David N. Mbungu, Gordon Atkins, and John F. Stout. "Morphology and physiology of local auditory interneurons in the prothoracic ganglion of the cricketAcheta domesticus." Journal of Experimental Zoology 279, no. 1 (1997): 43–53. http://dx.doi.org/10.1002/(sici)1097-010x(19970901)279:1<43::aid-jez4>3.0.co;2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Guly�s, Attila I., and Tam�s F. Freund. "Pyramidal cell dendrites are the primary targets of calbindin D28k-immunoreactive interneurons in the hippocampus." Hippocampus 6, no. 5 (1996): 525–34. http://dx.doi.org/10.1002/(sici)1098-1063(1996)6:5<525::aid-hipo5>3.0.co;2-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Woodson, Walter, Claudia R. Farb, and Joseph E. Ledoux. "Afferents from the auditory thalamus synapse on inhibitory interneurons in the lateral nucleus of the amygdala." Synapse 38, no. 2 (2000): 124–37. http://dx.doi.org/10.1002/1098-2396(200011)38:2<124::aid-syn3>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Teicher, Martin H., Nathalie L. Dumont, and Susan L. Andersen. "The developing prefrontal cortex: Is there a transient interneuron that stimulates catecholamine terminals?" Synapse 29, no. 1 (1998): 89–91. http://dx.doi.org/10.1002/(sici)1098-2396(199805)29:1<89::aid-syn9>3.0.co;2-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Meek, J., K. Grant, Y. Sugawara, T. G. M. Hafmans, M. Veron, and J. P. Denizot. "Interneurons of the ganglionic layer in the mormyrid electrosensory lateral line lobe: Morphology, immunohistochemistry, and synaptology." Journal of Comparative Neurology 375, no. 1 (1996): 43–65. http://dx.doi.org/10.1002/(sici)1096-9861(19961104)375:1<43::aid-cne3>3.0.co;2-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Smith, Yoland, Jean-Fran�ois Par�, and Denis Par�. "Differential innervation of parvalbumin-immunoreactive interneurons of the basolateral amygdaloid complex by cortical and intrinsic inputs." Journal of Comparative Neurology 416, no. 4 (2000): 496–508. http://dx.doi.org/10.1002/(sici)1096-9861(20000124)416:4<496::aid-cne6>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

K�ppenbender, Karsten D., David G. Standaert, Thomas J. Feuerstein, John B. Penney, Anne B. Young, and G. Bernhard Landwehrmeyer. "Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum." Journal of Comparative Neurology 419, no. 4 (2000): 407–21. http://dx.doi.org/10.1002/(sici)1096-9861(20000417)419:4<407::aid-cne1>3.0.co;2-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Tomasulo, Richard A., and Oswald Steward. "Homosynaptic and heterosynaptic changes in driving of dentate gyrus interneurons after brief tetanic stimulation in vivo." Hippocampus 6, no. 1 (1996): 62–71. http://dx.doi.org/10.1002/(sici)1098-1063(1996)6:1<62::aid-hipo11>3.0.co;2-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

D�rr, Volker, Rafael Kurtz, and Martin Egelhaaf. "Two classes of visual motion sensitive interneurons differ in direction and velocity dependency ofin vivo calcium dynamics." Journal of Neurobiology 46, no. 4 (2001): 289–300. http://dx.doi.org/10.1002/1097-4695(200103)46:4<289::aid-neu1009>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Smith, G. Troy, Ying Lu, and Harold H. Zakon. "Parvocells: A novel interneuron type in the pacemaker nucleus of a weakly electric fish." Journal of Comparative Neurology 423, no. 3 (2000): 427–39. http://dx.doi.org/10.1002/1096-9861(20000731)423:3<427::aid-cne6>3.0.co;2-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Nagayama, Toshiki. "Organization of exteroceptive inputs onto nonspiking local interneurones in the crayfish terminal abdominal ganglion." Journal of Experimental Zoology 279, no. 1 (1997): 29–42. http://dx.doi.org/10.1002/(sici)1097-010x(19970901)279:1<29::aid-jez3>3.0.co;2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Shetty, Ashok K., and Dennis A. Turner. "Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats." Journal of Comparative Neurology 394, no. 2 (1998): 252–69. http://dx.doi.org/10.1002/(sici)1096-9861(19980504)394:2<252::aid-cne9>3.0.co;2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wicklein, Martina, and Deszo Varj�. "Visual system of the european hummingbird hawkmothMacroglossum stellatarum (sphingidae, lepidoptera): Motion-sensitive interneurons of the lobula plate." Journal of Comparative Neurology 408, no. 2 (1999): 272–82. http://dx.doi.org/10.1002/(sici)1096-9861(19990531)408:2<272::aid-cne8>3.0.co;2-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography