Academic literature on the topic 'Ailes oscillantes (Hydrodynamique)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ailes oscillantes (Hydrodynamique).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Ailes oscillantes (Hydrodynamique)"

1

Lalande, Guillaume. "Conception d'un prototype expérimental d'hydrogénérateur à ailes oscillantes." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/26912/26912.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Allen, Demers Louis-Alexis. "Synthèse de mécanismes pour une génératrice hydrolienne à ailes oscillantes." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24964/24964.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Méhut, Arnaud. "Hydrogénérateur à ailes oscillantes : Conception d'un système de conversion électromécanique." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/27772/27772.pdf.

Full text
Abstract:
Ce mémoire développe la partie électrique du projet de l’hydrogénérateur à ailes oscillantes. Le but est de fournir à l’hydrogénérateur un système de conversion électromécanique avec son électronique de commande. Pour cela, deux types de machines électriques à aimants permanents ont été étudiées afin de déterminer celle qui officiera comme génératrice électrique. La forme du couple hydrodynamique impose le recours à un multiplicateur de vitesse. Un outil de dimensionnement du multiplicateur a été développé à partir d’une approche phénoménologique. Puis le dimensionnement d’inerties est évoqué dans le processus d’optimisation. Un outil d’optimisation complet de la conversion électromécanique a été élaboré en statique. Un autre outil pour la simulation dynamique a été mis au point afin de réaliser un asservissement de la vitesse de la turbine. Le convertisseur statique joue un rôle crucial puisqu’il doit maintenir une ondulation de vitesse de ±10% autour de la consigne pour valider le concept.
APA, Harvard, Vancouver, ISO, and other styles
4

Faure, Jean-Frédérick. "Étude des caractéristiques hydrodynamiques d'une aile oscillante." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26283/26283.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deschamp, Jérôme. "Étude expérimentale de l'hydrodynamique d'une aile oscillante." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26693/26693.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Plourde, Campagna Marc-André. "Hydrolienne à Ailes Oscillantes : conception et modélisation physique et économique de la technologie." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30072/30072.pdf.

Full text
Abstract:
Cette maîtrise s’inscrit dans un projet multidisciplinaire de développement d’une hydrolienne à ailes oscillantes de seconde génération (HAO-2) au Laboratoire de Mécanique des Fluides Numérique (LMFN) de l’Université Laval. Cette hydrolienne complètement submergée est composée de quatre ailes assemblées sur une base par gravité. Ce mémoire comporte deux volets. Le premier porte sur la conception des circuits de couplage pilonnement-tangage et d’extraction d’énergie de la HAO. Les solutions proposées et une vision de la HAO-2 seront présentées en détail. Un banc d’essai expérimental est conçu pour reproduire le circuit de couplage et simuler le mouvement et les efforts sur une aile. Il permet de démontrer la faisabilité du système élaboré et de déterminer son efficacité. Différents actionneurs de tangage ainsi que différents joints d’étanchéité sont analysés. Seulement les composantes offrant les meilleures performances sont présentées dans ce mémoire. Pour le couplage, un rendement maximal de 80% est mesuré. La modélisation des circuits hydrauliques nécessaire au second volet du projet a été calibrée sur les données expérimentales, notamment le frottement dans les joints d’étanchéité. Le second volet vise à modéliser sur le plan économique un parc HAO à différentes échelles et selon différentes conditions d’opération. Le programme dimensionne l’hydrolienne en fonction des conditions d’opération, puis en estime son coût de fabrication et l’énergie produite annuellement. Il calcule aussi le coût d’installation des turbines, le coût du réseau électrique et de son installation et finalement les dépenses en opération et maintenance (O&M). Le modèle tient également compte de la valeur de l’argent dans le temps en utilisant la valeur présente équivalente. Deux critères de performance sont utilisés pour les comparaisons, le coût de production (CP) et le coût de l’énergie (CE). Par ces critères, plusieurs analyses de sensibilité sont réalisées sur les paramètres importants du modèle. Sans aucun doute, le coût de fabrication et les frais d’O&M dominent largement le coût de l’énergie d’une HAO. Un site d’exploitation en particulier est étudié, près de l’Isle-aux-Coudres, sur lequel un CE de 20 ¢/kWh est obtenu pour un parc de 80 HAO de 1.25MW chacune.
This master’s thesis is part of a multidisciplinary project to develop a second generation of tidal oscillating wings turbine (HAO-2) at Laboratoire de Mécanique des Fluides Numérique (LMFN) from Laval University. This tidal turbine completely submerged is composed of four wings assembled on gravity-based structure. This work has two parts. The first one focuses on the hydraulic circuit design of the pitch-heave coupling and the energy extraction system. Proposed solutions and a vision of the HAO-2 will be presented in detail. An experimental apparatus is designed to reproduce the coupling circuit and simulate the motion and forces on a wing. It allows to demonstrate the developed system feasibility and determine its efficiency. Various actuators and seals are analyzed. Only components with the best performances are presented in this paper. For the coupling system, a maximum efficiency of 80% is measured. Hydraulic modeling necessary for the second phase of the project has also been calibrated on experimental data, especially, friction in seals. The second part treats the economic modeling of a tidal turbine farm at different scales and in different operating conditions. The program designs the turbine depending on the operating conditions, and then, it estimates the construction cost and it calculates the annual energy extracted. It also calculates the installation cost, the electricity infrastructure and their installation cost and finally the operation and maintenance cost (O&M) throughout the farm life time. The model also takes into account the value of money over time by using the net present value. For the cases comparison, the production cost (CP) and the energy cost (CE) are used. Several sensitivity analyses are carried out on the important parameters of the model. As would be expected, the construction cost and the O&M cost are key factors governing the energy cost of HAO. A particular site is studied, near the Isle-aux-Coudres, which a energy cost about 20 ¢/kWh is obtained for a farm with 80 HAO of 1.25MW each.
APA, Harvard, Vancouver, ISO, and other styles
7

Boudreau, Matthieu. "Optimizing the power-generation performance of flapping-foil turbines while simplifying their mechanical design with the use of elastic supports." Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/34484.

Full text
Abstract:
Due à la complexité des mécanismes typiquement requis pour contraindre l’aile d’une turbine à aile oscillante à suivre des mouvements spécifiques, cette thèse étudie la possibilité de bénéficier de mouvements non contraints, dits passifs. En pratique, cela implique que l’aile est attachée à la structure de la turbine à l’aide de supports élastiques indépendants en pilonnement et en tangage, formés de ressorts et d’amortisseurs. Par conséquent, seul un contrôle indirect des mouvements est possible en ajustant adéquatement les paramètres structuraux affectant la dynamique de l’aile, tels que les paramètres d’inertie, d’amortissement et de raideur de l’aile et de ses supports élastiques. En premier lieu, un prototype ayant des mouvements passifs autant en pilonnement qu’en tangage, et donc étant complètement passif, a été conçu et testé dans un canal à surface libre. Cette première phase du présent travail de recherche a confirmé la faisabilité et le potentiel de ce concept en permettant d’extraire une quantité significative d’énergie de l’écoulement d’eau. Cependant, l’efficacité maximale atteinte est demeurée inférieure à ce qui peut être obtenu en contraignant l’aile à suivre des mouvements précis. Suite à ces expériences, un algorithme résolvant la dynamique du solide a été implémenté et couplé au logiciel résolvant la dynamique du fluide gouverné par les équations de Navier-Stokes. Des simulations numériques ont été réalisées afin d’analyser plus en détail la dynamique de chacun des deux degrés de liberté de l’aile. Plutôt que de poursuivre notre étude du concept complètement passif immédiatement, un concept de turbine semi-passive caractérisée par un mouvement de tangage passif et un mouvement de pilonnement contraint a été considéré. Des efficacités de l’ordre de 45% ont été atteintes, se comparant ainsi aux meilleures performances rapportées dans la littérature concernant les turbines à ailes oscillantes complètement contraintes. En plus de révéler le fort potentiel de ce concept de turbine semi-passive, cette étude nous a permis de nous concentrer sur certains aspects spécifiques concernant la dynamique d’une aile attachée par des ressorts en tangage. Cette analyse plus détaillée de la physique en jeu a été facilitée par le nombre réduit de paramètres structuraux en jeu par rapport à une turbine pour laquelle le mouvement de pilonnement est lui aussi passif. L’une des découvertes importantes est que le centre de masse doit être situé en aval du point de pivot afin de générer un transfert d’énergie du mouvement de pilonnement vers le mouvement de tangage par l’entremise du couplage inertiel entre les deux degrés de liberté. Ce transfert d’énergie est crucial puisque les mouvements de tangage optimaux nécessitent de l’énergie en moyenne pour être soutenus. De plus, un paramètre combinant les effets liés au moment d’inertie de l’aile par rapport à son point de pivot et à la raideur en tangage a été proposé. Ce paramètre permet de bien caractériser la dynamique du mouvement de tangage passif de la turbine semi-passive. Il permet aussi de déterminer la raideur requise pour différentes valeurs du moment d’inertie afin de maintenir une performance optimale de la turbine. Utilisant les connaissances acquises concernant la dynamique des mouvements de tangage passifs, le concept de turbine à aile oscillante complètement passive a été revisité. Les meilleures efficacités obtenues avec la turbine semi-passive ont été égalées et ont même été surpassées puisque qu’une efficacité de 53.8% a été atteinte. Les résultats ont aussi démontré qu’une performance optimale pouvait être maintenue sur de larges plages de valeurs en ce qui concerne la masse en pilonnement ainsi que le moment d’inertie par rapport au point de pivot, pourvu que les raideurs en pilonnement et en tangage soient ajustées correctement.
Due to the complexity of the mechanisms typically required when designing a flapping-foil turbine to prescribe specific heave and pitch motions, this thesis investigates the possibility of benefiting from unconstrained motions. In practice, this means that the foil is attached to the turbine structure with independent elastic supports in heave and in pitch, which consist in springs and dampers. Consequently, only an indirect control over the foil motions is possible through an adequate adjustment of the structural parameters affecting the foil dynamics, namely the inertial, damping and stiffness characteristics of the elastically-supported foil. Such motions are referred to as passive motions. As a first step, a turbine prototype with passive heave and pitch motions, thus being fully-passive, has been designed and tested in a water channel. This first phase of the present research work has confirmed the feasibility and the potential of this concept to extract a significant amount of energy from a fluid flow. However, the maximum efficiency that has been obtained is smaller than what can be achieved when prescribing specific foil motions. Following these experiments, a solid solver has been implemented and coupled with a Navier-Stokes fluid solver. Numerical simulations have been carried out to analyze the dynamics of both degrees of freedom in more details. Instead of immediately pursuing our study of the fully-passive flappingfoil turbine, a semi-passive concept, with a passive pitch motion and a prescribed heave motion, has been considered. Efficiencies of the order of 45% have been achieved, hence competing with the best performance reported in the literature for flapping-foil turbines with prescribed motions. In addition to revealing the great potential of this semi-passive turbine concept, this study has allowed us to focus on some specific aspects of the dynamics of passive pitch motions. This more detailed analysis of the physics at play has been facilitated by the reduced number of structural parameters affecting the foil dynamics compared to a turbine for which the foil is also elastically-supported in heave. One of the main findings is that the center of mass must be positioned downstream of the pitch axis in order to generate a net transfer of energy from the heave motion to the pitch motion via the inertial coupling between the two degrees of freedom. This energy transfer is crucial because optimal pitch motions require energy on average to be sustained. Moreover, a parameter combining the effects of the moment of inertia of the foil about the pitch axis and the pitch stiffness has been proposed. This parameter effectively characterizes the pitch dynamics of the semi-passive turbine. It also allows properly scaling the pitch stiffness when different moments of inertia are considered with the objective of maintaining an optimal turbine performance. Having improved our knowledge about the dynamics of passive pitch motions, the fully-passive flapping-foil turbine concept has been revisited. The best efficiencies obtained with the semi-passive concept have been matched, and even exceeded since an efficiency of 53.8% has been reached. The results have also demonstrated that an optimal performance can be maintained over large ranges of values regarding the heaving mass and the moment of inertia when the heave and pitch stiffness coefficients are adjusted adequately.
APA, Harvard, Vancouver, ISO, and other styles
8

Gauthier, Étienne. "Oscillating-foils hydrokinetic turbine performance prediction : impact of turbulence modelling, of structure interference and of confinement." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26523.

Full text
Abstract:
Ce mémoire présente l’étude d’un prototype novateur d’hydrolienne basé sur l’utilisation d’ailes oscillantes. L’Hydrolienne à Ailes Oscillantes (HAO) est en développement depuis une dizaine d’années à l’Université Laval et le potentiel de cette technologie a d’ailleurs été vérifié numériquement et expérimentalement. Il est maintenant nécessaire de développer des outils permettant de prédire le comportement de l’hydrolienne lorsqu’installée en rivière ou en courant de marée. Pour ce faire, la dynamique des fluides numérique (CFD) est utilisée afin d’étudier l’impact de différents paramètres sur les performances de l’hydrolienne. L’étude présentée dans ce mémoire décrit notamment l’influence de la modélisation de la turbulence, de la présence de la structure de l’hydrolienne et des effets de confinement. Dans un premier temps, une étude sur l’aile oscillante comparant deux niveaux de modélisation de la turbulence est présentée. Cette étude a permis de montrer que malgré la présence de structures turbulentes plus fines dans le sillage de l’aile avec le modèle Scale-Adaptive Simulation, les signaux de forces instantanées ainsi que les paramètres moyens de performance sont très similaires à ceux obtenus avec le modèle Spalart-Allmaras qui est de fait utilisé pour simuler l’hydrolienne HAO complète. Ensuite, l’hydrolienne HAO constituée d’une paire d’ailes oscillantes à l’intérieur de sa structure est simulée. La technique de maillage par grilles superposées est utilisée afin de simuler le mouvement relatif des différents corps. Cette représentation de l’hydrolienne a permis d’étudier l’impact de la structure de celle-ci sur ses performances et ainsi d’optimiser sa forme afin de maximiser l’extraction d’énergie. En plus d’améliorer les performances, le carénage optimisé permet d’atténuer la sensibilité de l’hydrolienne à un écoulement amont désaligné. Le troisième principal aspect étudié est l’impact du confinement sur les performances de l’aile oscillante. En effet, les parois d’un canal d’essais, la topologie des fonds marins ainsi que la proximité de la surface de l’eau sont susceptibles d’avoir un impact sur les performances hydrodynamiques d’une hydrolienne. Les simulations réalisées sur une aile oscillante à différents niveaux de confinement ont montré que la puissance extraite augmente avec le niveau de blocage, mais en plus, que cette relation est linéaire pour un confinement inférieur à 40%. Finalement, une technique est suggérée afin de corréler les performances de l’aile oscillante dans différents environnements confinés.
This master’s thesis focuses on a novel prototype of hydrokinetic turbine based on oscillating foils. This concept known as HAO, which stands for “Hydrolienne à Ailes Oscillantes”, has been under development for about 10 years at Laval University and its potential in power extraction has been confirmed through numerical and experimental studies. Efforts are now focused on developing tools to predict the turbines behavior prior to its deployment in rivers or tidal streams. To achieve this goal, computational fluid dynamics (CFD) is used to investigate the impact of different parameters on the power-extraction performance of the HAO turbine. This study describes, among other things, the influence of the turbulence modeling, the presence of the frame structure and the blockage effects. First of all, a methodological study performed on a single oscillating foil is presented which compares two different turbulence modeling approaches. This work has shown that even if the Scale-Adaptive Simulation model presents finer structures in the wake of the foil, instantaneous forces and mean performance parameters closely match the results obtained with the Spalart-Allmaras model which is thus used to simulate the complete HAO hydrokinetic turbine prototype. In a second study, the HAO hydrokinetic turbine is simulated considering two hydrofoils oscillating within the frame structure. The overset mesh technique is used to represent the relative motions of the different bodies. This methodology allows to study the impact of the frame structure on the turbine performance and to optimize its shape in order to increase the power extracted. In addition to the enhanced performances, the optimized frame shape provides an improved robustness to misaligned upstream flows. The third principal aspect addressed in this thesis is the impact of flow confinement on the performance of oscillating-foils. In fact, towing tank walls, sea and river bed topology and free surface proximity are likely to have an impact on the turbine hydrodynamic performance. Simulations of a single oscillating foil for different blockage levels have shown that the power extracted increases with the blockage ratio, but more precisely that this relation is linear for confinement of less than 40%. Finally, a technique is suggested to correlate the performance of the oscillating-foils turbines in different confined environments.
APA, Harvard, Vancouver, ISO, and other styles
9

Kinsey, Thomas. "Analysis, optimization and demonstration of a new concept of hydrokinetic turbine based on oscillating hydrofoils." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28409/28409.pdf.

Full text
Abstract:
A new concept of hydrokinetic turbine based on oscillating hydrofoils is investigated. The objective of this study is to analyze the unsteady hydrodynamics of oscillating foils, to optimize their motions for maximum power extraction and to demonstrate in practice the potential of such a concept of turbine through experiments on a prototype. The analysis and optimization have been conducted via low Reynolds number, laminar numerical simulations as well as high Reynolds number, Unsteady Reynolds- Averaged Navier-Stokes (URANS) computations. A 2D and 3D numerical methodology relying on the use of sliding interfaces and suitable to the case of foils undergoing oscillations of large amplitudes is presented. Using that numerical strategy, a parametric study is conducted and leads to the identification of the dominant parameters impacting the hydrodynamic performance of the oscillating-foil turbine. Based on a large number of simulations, the performance of the oscillating-foil turbine has been mapped in relevant parametric spaces. In addition, optimal spatial configurations of turbines with tandem foils is also provided. The potential of the oscillating-foils hydrokinetic turbine has also been formally established in this work through field tests on a 2kW tandem-foils prototype. Its performance has been found to be competitive with the best competing technologies based on horizontal-axis rotor-blades. The experimental data have also been used here to validate the numerical models and have been found to strongly support the 3D numerical simulations.
Un nouveau concept d’hydrolienne bas´ee sur des ailes oscillantes est ´etudi´e. La pr´esente ´etude a pour but d’´etudier l’hydrodynamique instationnaire d’une aile oscillante, d’optimiser son mouvement afin de maximiser l’extraction de puissance et de d´emontrer le potentiel d’une turbine `a ailes oscillantes par une campagne exp´erimentale sur un prototype. L’analyse et l’optimisation de la turbine `a ailes oscillantes ont ´et´e effectu´ees par simulations num´eriques `a bas nombre de Reynolds (laminaire) ainsi qu’`a haut nombre de Reynolds (Unsteady Reynolds-Averaged Navier-Stokes; URANS). Une strat´egie num´erique 2D et 3D impliquant l’utilisation d’interfaces de glissement a ´et´e d´evelopp´ee sp´ecifiquement pour cette application de corps oscillants avec de grandes amplitudes de mouvement. `A l’aide de cette strat´egie num´erique, une ´etude param´etrique fut effectu´ee et permit l’identification des param`etres dominants en ce qui a trait `a la performance hydrodynamique de la turbine `a ailes oscillantes. Bas´e sur un grand nombre de simulations, les zones optimales de production de puissance ont ´et´e identifi´ees dans les espaces param´etriques pertinents. De plus, des configurations spatiales optimales ont ´et´e identifi´ees pour le cas de turbines `a ailes oscillantes en tandem. Le potentiel de l’hydrolienne `a ailes oscillantes a ´et´e formellement ´etabli dans ce travail grˆace `a une campagne exp´erimentale sur un prototype `a ailes en tandem de 2 kW. La performance de ce dernier s’av´era comp´etitive avec celle des hydroliennes de type rotors `a axe horizontal que l’on retrouve dans la majorit´e des designs d’hydrolienne propos´es. Les donn´ees de la campagne exp´erimentale ont ´egalement permis de valider les r´esultats des simulations num´eriques par leur accord avec les simulations 3D.
Tableau d'honneur de la FÉSP
APA, Harvard, Vancouver, ISO, and other styles
10

"Étude des caractéristiques hydrodynamiques d'une aile oscillante." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26283/26283.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography