Academic literature on the topic 'Air conditioning – Energy consumption – Data processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Air conditioning – Energy consumption – Data processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Air conditioning – Energy consumption – Data processing"
Hussin, Masnida, Raja Azlina Raja Mahmood, and Mas Rina Mustaffa. "Sensor Communication Model Using Cyber-Physical System Approach for Green Data Center." International Journal of Interactive Mobile Technologies (iJIM) 13, no. 10 (September 25, 2019): 188. http://dx.doi.org/10.3991/ijim.v13i10.11310.
Full textLachhab, Fadwa, Mohamed Bakhouya, Radouane Ouladsine, and Mohammed Essaaidi. "A context-driven platform using Internet of things and data stream processing for heating, ventilation and air conditioning systems control." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 233, no. 7 (April 9, 2019): 877–88. http://dx.doi.org/10.1177/0959651819841534.
Full textFeng, Yayuan, Youxian Huang, Haifeng Shang, Junwei Lou, Ala deen Knefaty, Jian Yao, and Rongyue Zheng. "Prediction of Hourly Air-Conditioning Energy Consumption in Office Buildings Based on Gaussian Process Regression." Energies 15, no. 13 (June 24, 2022): 4626. http://dx.doi.org/10.3390/en15134626.
Full textArvidsson, Simon, Marcus Gullstrand, Beril Sirmacek, and Maria Riveiro. "Sensor Fusion and Convolutional Neural Networks for Indoor Occupancy Prediction Using Multiple Low-Cost Low-Resolution Heat Sensor Data." Sensors 21, no. 4 (February 3, 2021): 1036. http://dx.doi.org/10.3390/s21041036.
Full textEspejel-Blanco, Daniel Fernando, José Antonio Hoyo-Montaño, Jaime Arau, Guillermo Valencia-Palomo, Abel García-Barrientos, Héctor Ricardo Hernández-De-León, and Jorge Luis Camas-Anzueto. "HVAC Control System Using Predicted Mean Vote Index for Energy Savings in Buildings." Buildings 12, no. 1 (January 3, 2022): 38. http://dx.doi.org/10.3390/buildings12010038.
Full textMagtibay, Oscar Bryan M., Rodelio H. Cabrera, Joselito P. Roxas, and Mark Anthony De Vera. "Green switch: an IoT based energy monitoring system for mabini building in De La Salle Lipa." Indonesian Journal of Electrical Engineering and Computer Science 24, no. 2 (November 1, 2021): 754. http://dx.doi.org/10.11591/ijeecs.v24.i2.pp754-761.
Full textEssa, Mohamed El-Sayed M., Ahmed M. El-shafeey, Amna Hassan Omar, Adel Essa Fathi, Ahmed Sabry Abo El Maref, Joseph Victor W. Lotfy, and Mohamed Saleh El-Sayed. "Reliable Integration of Neural Network and Internet of Things for Forecasting, Controlling, and Monitoring of Experimental Building Management System." Sustainability 15, no. 3 (January 24, 2023): 2168. http://dx.doi.org/10.3390/su15032168.
Full textSermsuk, Maytungkorn, Yanin Sukjai, Montri Wiboonrat, and Kunlanan Kiatkittipong. "Utilising Cold Energy from Liquefied Natural Gas (LNG) to Reduce the Electricity Cost of Data Centres." Energies 14, no. 19 (October 1, 2021): 6269. http://dx.doi.org/10.3390/en14196269.
Full textGhali, Abdulrahman Aminu, Rohiza Ahmad, and Hitham Alhussian. "A Framework for Mitigating DDoS and DOS Attacks in IoT Environment Using Hybrid Approach." Electronics 10, no. 11 (May 27, 2021): 1282. http://dx.doi.org/10.3390/electronics10111282.
Full textSong, Li Fei, Tao Li, Qi Fen Li, Lin Hui Zhao, Xin Zhao, Lei Zhang, Jia Lin Zhao, and Jing Jing Xu. "Data Center Room Air Conditioning Energy Consumption Analysis." Applied Mechanics and Materials 672-674 (October 2014): 518–21. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.518.
Full textDissertations / Theses on the topic "Air conditioning – Energy consumption – Data processing"
Skön, J. P. (Jukka-Pekka). "Intelligent information processing in building monitoring systems and applications." Doctoral thesis, Oulun yliopisto, 2015. http://urn.fi/urn:isbn:9789526209913.
Full textTiivistelmä Rakennus- ja kiinteistösektori on suurin fossiilisilla polttoaineilla tuotetun energian käyttäjä. Noin 40 prosenttia kaikesta energiankulutuksesta liittyy rakennuksiin, rakentamiseen, rakennusmateriaaleihin ja rakennuksien ylläpitoon. Ilmastonmuutoksen ehkäisyssä rakennusten energiankäytön vähentämisellä on suuri merkitys ja rakennuksissa energiansäästöpotentiaali on suurin. Tämän seurauksena yhä tiiviimpi ja energiatehokkaampi rakentaminen asettaa haasteita hyvän sisäilman laadun turvaamiselle. Näistä seikoista johtuen sisäilman laadun tutkiminen ja jatkuvatoiminen mittaaminen on tärkeää. Väitöskirjan päätavoitteena on kuvata kehitetty energiankulutuksen ja sisäilman laadun monitorointijärjestelmä. Järjestelmän tuottamaa mittaustietoa on jalostettu eri loppukäyttäjiä palvelevaan muotoon. Tiedonjalostusprosessi koostuu tiedon keräämisestä, esikäsittelystä, tiedonlouhinnasta, visualisoinnista, tulosten tulkitsemisesta ja oleellisen tiedon välittämisestä loppukäyttäjille. Aineiston analysointiin on käytetty tiedonlouhintamenetelmiä, kuten esimerkiksi klusterointia ja ennustavaa mallintamista. Väitöskirjan toisena tavoitteena on tuoda esille jatkuvatoimiseen mittaamiseen liittyviä haasteita sekä rohkaista yrityksiä ja organisaatioita käyttämään tietovarantoja monipuolisemmin ja tehokkaammin. Väitöskirja pohjautuu viiteen julkaisuun, joissa kuvataan kehitetty monitorointijärjestelmä, osoitetaan tiedonjalostusprosessin toimivuus erilaisissa tapauksissa ja esitetään esimerkkejä kuhunkin prosessivaiheeseen soveltuvista laskennallisista menetelmistä. Julkaisuissa on kuvattu energiankulutuksen ja sisäilman laadun informaatiopalvelu sekä sisäilman laatuun liittyviä data-analyysejä omakoti- ja kerrostaloissa sekä koulurakennuksissa. Innovatiivinen digitaalisen tiedon hyödyntäminen on avainasemassa kehitettäessä uusia informaatiopalveluita. Kiinteistöalalle on kehitetty lukuisia informaatioon pohjautuvia palveluita, mutta ala tarjoaa edelleen hyviä liiketoimintamahdollisuuksia kyvykkäille ja kehittyneille yrityksille sekä organisaatioille
Meitl, Thomas J. "Annual energy consumption of reciprocating refrigeration systems for humidity control." 1985. http://hdl.handle.net/2097/27498.
Full textKhatib, Akram Ghassan. "Evaluation of performance of an air handling unit using wireless monitoring system and modeling." Thesis, 2014. http://hdl.handle.net/1805/5943.
Full textHeating, ventilation, and air conditioning (HVAC) is the technology responsible to maintain temperature levels and air quality in buildings to certain standards. In a commercial setting, HVAC systems accounted for more than 50% of the total energy cost of the building in 2013 [13]. New control methods are always being worked on to improve the effectiveness and efficiency of the system. These control systems include model predictive control (MPC), evolutionary algorithm (EA), evolutionary programming (EP), and proportional-integral-derivative (PID) controllers. Such control tools are used on new HVAC system to ensure the ultimate efficiency and ensure the comfort of occupants. However, there is a need for a system that can monitor the energy performance of the HVAC system and ensure that it is operating in its optimal operation and controlled as expected. In this thesis, an air handling unit (AHU) of an HVAC system was modeled to analyze its performance using real data collected from an operating AHU using a wireless monitoring system. The purpose was to monitor the AHU's performance, analyze its key parameters to identify flaws, and evaluate the energy waste. This system will provide the maintenance personnel to key information to them to act for increasing energy efficiency. The mechanical model was experimentally validated first. Them a baseline operating condition was established. Finally, the system under extreme weather conditions was evaluated. The AHU's subsystem performance, the energy consumption and the potential wastes were monitored and quantified. The developed system was able to constantly monitor the system and report to the maintenance personnel the information they need. I can be used to identify energy savings opportunities due to controls malfunction. Implementation of this system will provide the system's key performance indicators, offer feedback for adjustment of control strategies, and identify the potential savings. To further verify the capabilities of the model, a case study was performed on an air handling unit on campus for a three month monitoring period. According to the mechanical model, a total of 63,455 kWh can be potentially saved on the unit by adjusting controls. In addition the mechanical model was able to identify other energy savings opportunities due to set point changes that may result in a total of 77,141 kWh.
Arienti, João Henrique Leal. "Time series forecasting applied to an energy management system ‐ A comparison between Deep Learning Models and other Machine Learning Models." Master's thesis, 2020. http://hdl.handle.net/10362/108172.
Full textA large amount of energy used by the world comes from buildings’ energy consumption. HVAC (Heat, Ventilation, and Air Conditioning) systems are the biggest offenders when it comes to buildings’ energy consumption. It is important to provide environmental comfort in buildings but indoor wellbeing is directly related to an increase in energy consumption. This dilemma creates a huge opportunity for a solution that balances occupant comfort and energy consumption. Within this context, the Ambiosensing project was launched to develop a complete energy management system that differentiates itself from other existing commercial solutions by being an inexpensive and intelligent system. The Ambiosensing project focused on the topic of Time Series Forecasting to achieve the goal of creating predictive models to help the energy management system to anticipate indoor environmental scenarios. A good approach for Time Series Forecasting problems is to apply Machine Learning, more specifically Deep Learning. This work project intends to investigate and develop Deep Learning and other Machine Learning models that can deal with multivariate Time Series Forecasting, to assess how well can a Deep Learning approach perform on a Time Series Forecasting problem, especially, LSTM (Long Short-Term Memory) Recurrent Neural Networks (RNN) and to establish a comparison between Deep Learning and other Machine Learning models like Linear Regression, Decision Trees, Random Forest, Gradient Boosting Machines and others within this context.
Books on the topic "Air conditioning – Energy consumption – Data processing"
Federspiel, Clifford. Recovery Act: Federspiel Controls (now Vigilent) and State of California Department of General Services data center energy efficient cooling control demonstration: Achieving instant energy savings with Vigilent. Sacramento, California]: [California Energy Commission], 2012.
Find full textMihaylov, Vyacheslav, Elena Sotnikova, and Nina Kalpina. Eco-friendly air protection systems for motor transport facilities. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1093106.
Full textShengelia, Revaz. Modern Economics. Universal, Georgia, 2021. http://dx.doi.org/10.36962/rsme012021.
Full textBook chapters on the topic "Air conditioning – Energy consumption – Data processing"
Ma, Liangdong, Fengmei Lu, Jili Zhang, and Yiying Xu. "Research on Energy Consumption Data Characteristics of Office Building VRV Air Conditioning Outdoor Unit Based on Energy Consumption Monitoring Platform." In Environmental Science and Engineering, 1325–35. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9528-4_134.
Full textSethuramalingam, Ramamoorthy, and Abhishek Asthana. "Design Improvement of Water-Cooled Data Centres Using Computational Fluid Dynamics." In Springer Proceedings in Energy, 105–13. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_14.
Full textUjeed, Terigele, Tianyi Zhao, Liangdong Ma, and Mingsheng Liu. "Research on Electricity Consumption Characteristics of Centralized Air Conditioning Units for Data Restoration of Building Energy Consumption Monitoring Platform." In Environmental Science and Engineering, 1295–303. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9528-4_131.
Full textN., Kapilan, and Vidhya P. "Challenges and Issues of IoT Application in Heating Ventilating Air Conditioning Systems." In Role of IoT in Green Energy Systems, 171–93. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6709-8.ch008.
Full textSun, Bin, Jianing Pan, Pingshan Wang, Yan Yan, Wen Liu, and Jinjun Li. "Study on Energy Consumption Characteristics of Air Conditioning in an Existing Residential Building." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220378.
Full textMardamutu, Kanahavalli, Vasaki Ponnusamy, and Noor Zaman. "Green Energy in Data Centers." In Advances in Environmental Engineering and Green Technologies, 234–49. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9792-8.ch012.
Full textKhan, Tahmeena, and Alfred J. Lawrence. "Technological Interventions and Indoor Air Quality Assessment in Smart Environments: A Review." In Indoor Air Quality Assessment for Smart Environments. IOS Press, 2022. http://dx.doi.org/10.3233/aise220004.
Full textDickerson, Keith, David Faulkner, and Paul Kingston. "Improving the Energy Efficiency of Telephone Exchanges (Switching Centers)." In Green Services Engineering, Optimization, and Modeling in the Technological Age, 223–49. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8447-8.ch009.
Full textDickerson, Keith, David Faulkner, and Paul Kingston. "Improving the Energy Efficiency of Telephone Exchanges (Switching Centers)." In Civil and Environmental Engineering, 1517–40. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9619-8.ch069.
Full textConference papers on the topic "Air conditioning – Energy consumption – Data processing"
Nakajo, Yusuke, Jayati Athavale, Minami Yoda, Yogendra Joshi, and Hiroaki Nishi. "Improving Energy Efficiency in Data Centers by Controlling Task Distribution and Cooling." In ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipack2018-8305.
Full textNakajo, Yusuke, and Hiroaki Nishi. "Temperature-Based Request Distribution for Effective CRAC and Equipment Life-Cycle Extension." In ASME 2017 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2017 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/ipack2017-74341.
Full textYang, Xu, Jingjing Gao, Lei Zhang, Xiaoli Li, Liu Gu, Jiarui Cui, and Chaonan Tong. "A forecasting method of air conditioning energy consumption based on extreme learning machine algorithm." In 2017 IEEE 6th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2017. http://dx.doi.org/10.1109/ddcls.2017.8068050.
Full textChumnanvanichkul, Pornpra, Pisitpol Chirapongsananurak, and Naebboon Hoonchareon. "Three-level Classification of Air Conditioning Energy Consumption for Building Energy Management System Using Data Mining Techniques." In 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). IEEE, 2019. http://dx.doi.org/10.1109/gtdasia.2019.8716004.
Full textChan, Korey, and Saeid Bashash. "Modeling and Energy Cost Optimization of Air Conditioning Loads in Smart Grid Environments." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5284.
Full textMunera, Sebastian, and Yong X. Tao. "Effect of Prismatic Skylight on the Power Consumption and Air-Conditioning Loads." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64488.
Full textZhang, Quansheng, and Marcello Canova. "Lumped-Parameter Modeling of an Automotive Air Conditioning System for Energy Optimization and Management." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3835.
Full textKameel, Ramiz, and Essam E. Khalil. "Energy Efficiency Analyses of Air-Conditioning Systems in Commercial Buildings in Egypt." In ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/detc2003/cie-48256.
Full textLettieri, David J., Amip J. Shah, and Van P. Carey. "Exergy-Based Environmental Design of a Computer Room Air Conditioning Unit." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11461.
Full textKadam, Sambhaji T., Ibrahim Hassan, Liangzhu (Leon) Wang, and Mohammad Azizur Rahman. "Impact of Urban Microclimate on Air Conditioning Energy Consumption Using Different Convective Heat Transfer Coefficient Correlations Available in Building Energy Simulation Tools." In ASME 2021 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/fedsm2021-65589.
Full text