To see the other types of publications on this topic, follow the link: Air gap.

Journal articles on the topic 'Air gap'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Air gap.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Houghtaling, Steven. "Air‐gap hydrophone." Journal of the Acoustical Society of America 94, no. 4 (October 1993): 2466–67. http://dx.doi.org/10.1121/1.407428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heyn, Ch, M. Schmidt, S. Schwaiger, A. Stemmann, S. Mendach, and W. Hansen. "Air-gap heterostructures." Applied Physics Letters 98, no. 3 (January 17, 2011): 033105. http://dx.doi.org/10.1063/1.3544047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Byres, Eric. "The air gap." Communications of the ACM 56, no. 8 (August 2013): 29–31. http://dx.doi.org/10.1145/2492007.2492018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kerut, Edmund Kenneth, Curtis Hannawalt, Charles T. Everson, and Navin C. Nanda. "The Air Gap Sign." Echocardiography 31, no. 3 (January 24, 2014): 400–401. http://dx.doi.org/10.1111/echo.12513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Benson, Byron W., Neil L. Frederiksen, and Paul W. Goaz. "Grid versus air gap." Oral Surgery, Oral Medicine, Oral Pathology 77, no. 1 (January 1994): 86–89. http://dx.doi.org/10.1016/s0030-4220(06)80113-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

PARKER, D. A., and G. M. DONNISON. "AN AIR‐GAP INSULATED PISTON." Industrial Lubrication and Tribology 39, no. 4 (April 1987): 124–31. http://dx.doi.org/10.1108/eb053352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Cui, Qianwen Chen, and Zheyao Wang. "Air-Gap Through-Silicon Vias." IEEE Electron Device Letters 34, no. 3 (March 2013): 441–43. http://dx.doi.org/10.1109/led.2013.2239601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Juhl-Olsen, Peter. "Air Gap Sign in Ultrasound." A & A Practice 12, no. 7 (April 2019): 256–57. http://dx.doi.org/10.1213/xaa.0000000000000947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kofler, H., and E. Reisinger. "Inductances of air gap generators." IEEE Transactions on Magnetics 24, no. 1 (1988): 63–65. http://dx.doi.org/10.1109/20.43857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seung Won Paek and Kwang Seok Seo. "Air-gap stacked spiral inductor." IEEE Microwave and Guided Wave Letters 7, no. 10 (1997): 329–31. http://dx.doi.org/10.1109/75.631191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

He, Bo, Naikui Gao, Haiyun Jin, and Zongren Peng. "Effects of Dynamic Air Gap on Air Gap Breakdown Discharge in Sand/Dust Environment." IEEJ Transactions on Electrical and Electronic Engineering 5, no. 6 (October 13, 2010): 724–25. http://dx.doi.org/10.1002/tee.20598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Khalifa, Atia E. "Performances of air gap and water gap MD desalination modules." Water Practice and Technology 13, no. 1 (March 1, 2018): 200–209. http://dx.doi.org/10.2166/wpt.2018.034.

Full text
Abstract:
Abstract Membrane distillation (MD) is a promising thermally-driven membrane separation technology for water desalination. In MD, water vapor is being separated from the hot feed water solution using a micro-porous hydrophobic membrane, due to the difference in vapor pressures across the membrane. In the present work, experiments are conducted to compare the performance of water gap membrane distillation (WGMD) and air gap membrane distillation (AGMD) modules under the main operating and design conditions including the feed and coolant temperatures, membrane material and pore sizes, and the gap width. Results showed that the WGMD module produced higher fluxes as compared to the AGMD module, for all test conditions. The feed temperature is the dominant factor affecting the system flux. The permeate flux increases with reducing the gap width for both water and air gap modules. However, WGMD module was found to be less sensitive to the change in the gap width compared to the AGMD module. The PTFE membrane produced higher permeate flux as compared to the PVDF membrane. Bigger mean pore diameter enhanced the permeate flux, however, this enhancement is marginal at high feed temperatures. With increasing the feed temperature, the GOR values increase and the specific energy consumption decreases.
APA, Harvard, Vancouver, ISO, and other styles
13

Wu, Zhiqiang, and Fei Guo. "Finned Tubular Air Gap Membrane Distillation." Membranes 13, no. 5 (May 8, 2023): 498. http://dx.doi.org/10.3390/membranes13050498.

Full text
Abstract:
Finned tubular air gap membrane distillation is a new membrane distillation method, and its functional performance, characterization parameters, finned tube structures, and other studies have clear academic and practical application value. Therefore, the tubular air gap membrane distillation experiment modules composed of PTFE membrane and finned tubes were constructed in this work, and three representative air gap structures, including tapered finned tube, flat finned tube, and expanded finned tube, were designed. Membrane distillation experiments were carried out in the form of water cooling and air cooling, and the influences of air gap structures, temperature, concentration, and flow rate on the transmembrane flux were analyzed. The good water-treatment ability of the finned tubular air gap membrane distillation model and the applicability of air cooling for the finned tubular air gap membrane distillation structure were verified. The membrane distillation test results show that with the tapered finned tubular air gap structure, the finned tubular air gap membrane distillation has the best performance. The maximum transmembrane flux of the finned tubular air gap membrane distillation could reach 16.3 kg/m2/h. Strengthening the convection heat transfer between air and fin tube could increase the transmembrane flux and improve the efficiency coefficient. The efficiency coefficient (σ) could reach 0.19 under the condition of air cooling. Compared with the conventional air gap membrane distillation configuration, air cooling configuration for air gap membrane distillation is an effective way to simplify the system design and offers a potential way for the practical applications of membrane distillation on an industrial scale.
APA, Harvard, Vancouver, ISO, and other styles
14

Takeuch, Yoshio. "Air-bone Gap in Normal Hearings." AUDIOLOGY JAPAN 37, no. 4 (1994): 295–99. http://dx.doi.org/10.4295/audiology.37.295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Nohguchi, Yasuaki. "Air-gap formation by snow melting." Annals of Glaciology 18 (1993): 251–56. http://dx.doi.org/10.3189/s0260305500011605.

Full text
Abstract:
This paper describes theoretically the formation of air gaps at the lower boundary of a snow cover during basal melting. In general, initiation of the formation of air gaps is dependent on both the horizontal heterogeneity of the snowmelt rate and viscous deformation. From this point of view, we propose a dimensionless parameter ξ (bridge-effect ratio) which is a function of the amplitude and wavelength of the heterogeneity of the snowmelt rate at the base, and the density, thickness and viscosity of the snow. This parameter expresses the heterogeneity of the normal stress at the base. We derive a necessary condition for air-gap formation in terms of the bridge-effect ratio, and show that a large amplitude, a small wavelength, a high density, a thin layer and/or high viscosities are favorable for air-gap formation.
APA, Harvard, Vancouver, ISO, and other styles
16

Nohguchi, Yasuaki. "Air-gap formation by snow melting." Annals of Glaciology 18 (1993): 251–56. http://dx.doi.org/10.1017/s0260305500011605.

Full text
Abstract:
This paper describes theoretically the formation of air gaps at the lower boundary of a snow cover during basal melting. In general, initiation of the formation of air gaps is dependent on both the horizontal heterogeneity of the snowmelt rate and viscous deformation. From this point of view, we propose a dimensionless parameter ξ (bridge-effect ratio) which is a function of the amplitude and wavelength of the heterogeneity of the snowmelt rate at the base, and the density, thickness and viscosity of the snow. This parameter expresses the heterogeneity of the normal stress at the base. We derive a necessary condition for air-gap formation in terms of the bridge-effect ratio, and show that a large amplitude, a small wavelength, a high density, a thin layer and/or high viscosities are favorable for air-gap formation.
APA, Harvard, Vancouver, ISO, and other styles
17

Shahu, Vandita T., and S. B. Thombre. "Air gap membrane distillation: A review." Journal of Renewable and Sustainable Energy 11, no. 4 (July 2019): 045901. http://dx.doi.org/10.1063/1.5063766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Ma, Yilong, and Lars Cleemann. "An ammonia-sensing air gap microelectrode." Analytical Biochemistry 174, no. 2 (November 1988): 666–71. http://dx.doi.org/10.1016/0003-2697(88)90071-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zaitsev, I. O., A. S. Levytskyi, and V. E. Sydorchuk. "AIR GAP CONTROL SYSTEM FOR HYDROGENERATORS." Devices and Methods of Measurements 8, no. 2 (June 9, 2017): 122–30. http://dx.doi.org/10.21122/2220-9506-2017-8-2-122-130.

Full text
Abstract:
In this paper, we report of the solving the actual problem of control the air gap in the hydrogenerators. The aim of the study was development of a computerized information-measuring system for measuring the air gap in the hydrogenator, which used two capacitive sensors with parallel coplanar electrodes, and the method of determining the shape of the envelope parameters hydrogenerator rotor poles relative to the center axis of rotation, using the measurement results of the air gap.In practical studies of the sensor circuit it has been shown that its use allows for the informative value of the sensor capacitance conversion function to obtain a high accuracy and resolution measurement with digital linearization of converting function of the sensor with use program utility. To determine the form deviations of the envelope line of the rotor pole from the ideal cylinder, which is one of the main structural defects of the technological errors as results the distortion of the shape of the air gap in the hydrogenator, when the machine was manufacture and assembly. It is proposed to describe the shape of the envelope to use a Fourier transform. Calculation of the coefficients of the Fourier series is performed using the method of least squares as the regression coefficients.Application of this method in processing the measuring data in a computerized information-measuring system the developed with the primary converter with coplanar parallel electrodes allowed attaining the high measurement accuracy and resolution informative in magnitude of the capacity.
APA, Harvard, Vancouver, ISO, and other styles
20

Humaid Al Khayari, Samira Aamir, and Norizan Mohd Kassim. "SERVICE QUALITY: GAP IN AIR TRANSPORTATION." Proceedings on Engineering Sciences 1, no. 2 (June 1, 2019): 321–34. http://dx.doi.org/10.24874/pes01.02.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Souers, P. Clark, Stan Ault, Rex Avara, Kerry L Bahl, Ron Boat, Bruce Cunningham, Doug Gidding, et al. "Air Gap Effects in LX-17." Propellants, Explosives, Pyrotechnics 31, no. 4 (August 2006): 294–98. http://dx.doi.org/10.1002/prep.200600040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Qi, Shiyu Xing, Jian Ma, and Aoxiang Liu. "Research air gap on electromagnetic field of high speed motor under the influence of air gap." Journal of Physics: Conference Series 2083, no. 2 (November 1, 2021): 022089. http://dx.doi.org/10.1088/1742-6596/2083/2/022089.

Full text
Abstract:
Abstract High speed motor are mainly used in aerospace, petrochemical and NC machining fields. Complex electromagnetic field is distributed in the motor. With the continuous maturity of asynchronous motor technology, research on magnetic field has been rapidly developed. In this paper, the changes of air gap and magnetic field of high speed motor under different working conditions is introduced. The magnetic field model of high-speed motor with Maxwell electromagnetic which established theory through Ansoft finite element software. The distribution of electromagnetic field in the motor is explored. The results show that the magnetic field distribution of induction motor tends to increase with the increase of the air gap magnetic field. Therefore, this study has an important guiding significance for the motor.
APA, Harvard, Vancouver, ISO, and other styles
23

Narayan, A., and R. Pitchumani. "Analysis of an air-cooled air gap membrane distillation module." Desalination 475 (February 2020): 114179. http://dx.doi.org/10.1016/j.desal.2019.114179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Khalifa, Atia E., and Suhaib M. Alawad. "Air gap and water gap multistage membrane distillation for water desalination." Desalination 437 (July 2018): 175–83. http://dx.doi.org/10.1016/j.desal.2018.03.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ueda, R., T. Sonoda, and K. Takayama. "Detection of air-gap flux and electromagnetic torque in air-gap of induction motor using amorphous ribbon." Journal of the Magnetics Society of Japan 11, no. 2 (1987): 341–44. http://dx.doi.org/10.3379/jmsjmag.11.341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Sơn, Lê Thanh, Nguyễn Trần Dũng, and Nguyễn Trần Điện. "EFFECT OF TEMPERATURE AND AIR-GAP WIDTH ON THE DESALINATION EFFICIENCY OF AIR-GAP MEMBRANE DISTILLATION MODULE." Tạp chí Khoa học và Công nghệ - Đại học Thái Nguyên 225, no. 02 (February 18, 2020): 17–23. http://dx.doi.org/10.34238/tnu-jst.2020.02.2354.

Full text
Abstract:
Khử mặn nước biển là một giải pháp đầy hứa hẹn có thể được áp dụng để giải quyết vấn đề khan hiếm nước ngọt và nước sạch ở Việt Nam, đặc biệt là ở các vùng hải đảo và vùng sâu vùng xa. Gần đây, việc áp dụng các kỹ thuật chưng cất màng để khử mặn đang thu hút sự chú ý của nhiều nhà khoa học vì tính đơn giản, dễ vận hành và tiết kiệm năng lượng. Một mô-đun chưng cất màng đệm khí (AGMD) đã được chế tạo trên cơ sở màng PE mật độ thấp với kích thước 12 x 5 cm, độ xốp, chiều dày và kích thước lỗ trung bình lần lượt là là 85%, 76 µm, và 0,3 µm. Chiều dày của lớp đệm khí được kiểm soát bởi sự thay đổi số lượng tấm lưới nhựa trong buồng thấm. Kết quả thu được cho thấy chất lượng của dung dịch thấm qua màng tương đương với chất lượng của nước cất và nhiệt độ dòng cấp, chiều dày của lớp đệm khí ảnh hưởng mạnh đến hiệu quả khử mặn của mô-đun AGMD. Điều kiện tối ưu được tìm thấy là nhiệt độ dòng cấp là 60°C, chiều dày của lớp đệm khí là 5 mm, khi đó thông lượng thu hồi nước đạt 2,5 L.m-2.h-1.
APA, Harvard, Vancouver, ISO, and other styles
27

af Klintberg, Tord, and Folke Björk. "Air Gap Method: Dependence of water removal on RH in room and height of floor air gap." Building and Environment 56 (October 2012): 1–7. http://dx.doi.org/10.1016/j.buildenv.2012.02.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Huang, Cui, Dong Wu, and Zheyao Wang. "Thermal Reliability Tests of Air-Gap TSVs With Combined Air-SiO2Liners." IEEE Transactions on Components, Packaging and Manufacturing Technology 6, no. 5 (May 2016): 703–11. http://dx.doi.org/10.1109/tcpmt.2016.2544761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

KANZAKI, Yuto, Yasuhiro SHIMAZAKI, and Naoto HARUKI. "Measurement of Air Field in Air Gap around Simulated Human Body." Proceedings of the Symposium on sports and human dynamics 2018 (2018): B—25. http://dx.doi.org/10.1299/jsmeshd.2018.b-25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

af Klintberg, Tord, and Folke Björk. "Air Gap Method: measurements of airflow inside air gaps of walls." Structural Survey 26, no. 4 (August 29, 2008): 343–63. http://dx.doi.org/10.1108/02630800810906584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Domens, P., J. Dupuy, A. Gibert, R. Diaz, B. Hutzler, J. P. Riu, and F. Ruhling. "Large air-gap discharge and Schlieren techniques." Journal of Physics D: Applied Physics 21, no. 11 (November 14, 1988): 1613–23. http://dx.doi.org/10.1088/0022-3727/21/11/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Boucinha, M., V. Chu, and J. P. Conde. "Air-gap amorphous silicon thin film transistors." Applied Physics Letters 73, no. 4 (July 27, 1998): 502–4. http://dx.doi.org/10.1063/1.121914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Busch‐Vishniac, Ilene J., Robert L. Wallace, and James E. West. "Electret transducer with variable effective air gap." Journal of the Acoustical Society of America 84, no. 1 (July 1988): 467. http://dx.doi.org/10.1121/1.396872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pfammatter, Alain, Eva Novoa, and Thomas Linder. "Can Myringoplasty Close the Air-Bone Gap?" Otology & Neurotology 34, no. 4 (June 2013): 705–10. http://dx.doi.org/10.1097/mao.0b013e3182898550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Morzuch, Waldemar. "Critical value of electric motor air gap." Mechanik, no. 11 (November 2015): 874–76. http://dx.doi.org/10.17814/mechanik.2015.11.524.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Carvalho, Silvânia A., and Stefano De Leo. "Light transmission through a triangular air gap." Journal of Modern Optics 60, no. 6 (March 2013): 437–43. http://dx.doi.org/10.1080/09500340.2013.783637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Qishan, Gu, and Gao Hongzhan. "Air Gap Field for Pm Electric Machines." Electric Machines & Power Systems 10, no. 5-6 (January 1985): 459–70. http://dx.doi.org/10.1080/07313568508909147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

ALKLAIBI, A., and N. LIOR. "Transport analysis of air-gap membrane distillation." Journal of Membrane Science 255, no. 1-2 (June 15, 2005): 239–53. http://dx.doi.org/10.1016/j.memsci.2005.01.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Clough, Benjamin, Jianming Dai, and Xi-Cheng Zhang. "Laser air photonics: beyond the terahertz gap." Materials Today 15, no. 1-2 (January 2012): 50–58. http://dx.doi.org/10.1016/s1369-7021(12)70020-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gallimberti, I., G. Bacchiega, Anne Bondiou-Clergerie, and Philippe Lalande. "Fundamental processes in long air gap discharges." Comptes Rendus Physique 3, no. 10 (December 2002): 1335–59. http://dx.doi.org/10.1016/s1631-0705(02)01414-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Tambo, T., J. Falson, D. Maryenko, Y. Kozuka, A. Tsukazaki, and M. Kawasaki. "Air-gap gating of MgZnO/ZnO heterostructures." Journal of Applied Physics 116, no. 8 (August 28, 2014): 084310. http://dx.doi.org/10.1063/1.4894155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hoofman, R. J. O. M., R. Caluwaerts, J. Michelon, P. Herrero Bernabé, J. P. Gueneau de Mussy, C. Bruynseraede, J. M. Lee, S. List, P. H. L. Bancken, and G. Beyer. "Self-aligned multi-level air gap integration." Microelectronic Engineering 83, no. 11-12 (November 2006): 2150–54. http://dx.doi.org/10.1016/j.mee.2006.09.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Abu Al‐Rub, Fahmi A., Fawzi Banat, and Khalid Bani‐Melhem. "Sensitivity Analysis of Air Gap Membrane Distillation." Separation Science and Technology 38, no. 15 (January 10, 2003): 3645–67. http://dx.doi.org/10.1081/ss-120024222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Busch‐Vishniac, Ilene J., Robert L. Wallace, and James E. West. "Electret transducers with variable actual air gap." Journal of the Acoustical Society of America 77, no. 5 (May 1985): 1983. http://dx.doi.org/10.1121/1.391765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Howey, David A., Peter R. N. Childs, and Andrew S. Holmes. "Air-Gap Convection in Rotating Electrical Machines." IEEE Transactions on Industrial Electronics 59, no. 3 (March 2012): 1367–75. http://dx.doi.org/10.1109/tie.2010.2100337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stiles, Enrique M. "Push-push multiple magnetic air gap transducer." Journal of the Acoustical Society of America 119, no. 4 (2006): 1908. http://dx.doi.org/10.1121/1.2195806.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Adamiak, Kazimierz. "Optimization of a Magnetic Separator Air-Gap." Magnetic Separation News 2, no. 2 (January 1, 1986): 97–113. http://dx.doi.org/10.1155/1986/80168.

Full text
Abstract:
The paper describes a method of optimization of a magnetic separator air-gap which serves to separate magnetic particles from volatile power plant dust. The method consists in seeking the air-gap dimensions, assuming that the shape of poles is known on the basis of magnetic force field analysis, or in seeking the shape of poles for the assumed force field distribution. In the second case the problem is reduced to solving a certain inverse boundary problem of the Dirichlet type.
APA, Harvard, Vancouver, ISO, and other styles
48

Krol, A., D. A. Bassano, C. C. Chamberlain, and S. C. Prasad. "Scatter reduction in mammography with air gap." Medical Physics 23, no. 7 (July 1996): 1263–70. http://dx.doi.org/10.1118/1.597869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bindels, Martijn, Niels Brand, and Bart Nelemans. "Modeling of semibatch air gap membrane distillation." Desalination 430 (March 2018): 98–106. http://dx.doi.org/10.1016/j.desal.2017.12.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Shiming, Lin Xu, Xi Wu, Ping Wang, Dongxu Jin, Junyong Hu, Shuping Zhang, Qiang Leng, and Debing Wu. "Air-gap diffusion distillation: Theory and experiment." Desalination 467 (October 2019): 64–78. http://dx.doi.org/10.1016/j.desal.2019.05.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography