Academic literature on the topic 'Air heat recovery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Air heat recovery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Air heat recovery"
Nasif, Mohammad Shakir, and Rafat Al-Waked. "Effect of Air to Air Fixed Plate Enthalpy Energy Recovery Heat Exchanger Flow Profile on Air Conditioning System Energy Recovery." Applied Mechanics and Materials 819 (January 2016): 245–49. http://dx.doi.org/10.4028/www.scientific.net/amm.819.245.
Full textPapakostas, K. T., and G. C. Kiosis. "Heat recovery in an air-conditioning system with air-to-air heat exchanger." International Journal of Sustainable Energy 34, no. 3-4 (January 27, 2014): 221–31. http://dx.doi.org/10.1080/14786451.2013.879139.
Full textBryszewska-Mazurek, Anna, and Wojciech Mazurek. "Experimental investigation of a heat pipe heat exchanger for heat recovery." E3S Web of Conferences 45 (2018): 00012. http://dx.doi.org/10.1051/e3sconf/20184500012.
Full textFehrm, Mats, Wilhelm Reiners, and Matthias Ungemach. "Exhaust air heat recovery in buildings." International Journal of Refrigeration 25, no. 4 (June 2002): 439–49. http://dx.doi.org/10.1016/s0140-7007(01)00035-4.
Full textKrokida, M. K., and G. I. Bisharat. "Heat Recovery from Dryer Exhaust Air." Drying Technology 22, no. 7 (December 31, 2004): 1661–74. http://dx.doi.org/10.1081/drt-200025626.
Full textAbd El-Baky, Mostafa A., and Mousa M. Mohamed. "Heat pipe heat exchanger for heat recovery in air conditioning." Applied Thermal Engineering 27, no. 4 (March 2007): 795–801. http://dx.doi.org/10.1016/j.applthermaleng.2006.10.020.
Full textXUE, Lianzheng, Guoyuan MA, Feng ZHOU, and Lei WANG. "Operation characteristics of air–air heat pipe inserted plate heat exchanger for heat recovery." Energy and Buildings 185 (February 2019): 66–75. http://dx.doi.org/10.1016/j.enbuild.2018.12.036.
Full textRoulet, C. A., F. D. Heidt, F. Foradini, and M. C. Pibiri. "Real heat recovery with air handling units." Energy and Buildings 33, no. 5 (May 2001): 495–502. http://dx.doi.org/10.1016/s0378-7788(00)00104-3.
Full textGrzebielec, Andrzej, Artur Rusowicz, and Adam Szelągowski. "Air purification in industrial plants producing automotive rubber components in terms of energy efficiency." Open Engineering 7, no. 1 (April 27, 2017): 106–14. http://dx.doi.org/10.1515/eng-2017-0015.
Full textMarques, Hugo, Mónica Oliveira, and Nelson Martins. "Innovative polymeric air–air heat recovery system — Life cycle assessment." Energy Reports 6 (February 2020): 429–35. http://dx.doi.org/10.1016/j.egyr.2019.08.084.
Full textDissertations / Theses on the topic "Air heat recovery"
Meyer, Meyer. "Development of a range of air-to-air heat pipe heat recovery heat exchangers." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16389.
Full textENGLISH ABSTRACT: As the demand for less expensive energy is increasing world-wide, energy conservation is becoming a more-and-more important economic consideration. In light of this, means to recover energy from waste fluid streams is also becoming more-and-more important. An efficient and cost effective means of conserving energy is to recover heat from a low temperature waste fluid stream and use this heat to preheat another process stream. Heat pipe heat exchangers (HPHEs) are devices capable of cost effectively salvaging wasted energy in this way. HPHEs are liquid-coupled indirect transfer type heat exchangers except that the HPHE employs heat pipes or thermosyphons as the major heat transfer mechanism from the high temperature to the low-temperature fluid. The primary advantage of using a HPHE is that it does not require an external pump to circulate the coupling fluid. The hot and cold streams can also be completely isolated preventing cross-contamination of the fluids. In addition, the HPHE has no moving parts. In this thesis, the development of a range of air-to-air HPHEs is investigated. Such an investigation involved the theoretical modelling of HPHEs such that a demonstration unit could be designed, installed in a practical industrial application and then evaluated by considering various financial aspects such as initial costs, running costs and energy savings. To develop the HPHE theoretical model, inside heat transfer coefficients for the evaporator and condenser sections of thermosyphons were investigated with R134a and Butane as two separate working fluids. The experiments on the thermosyphons were undertaken at vertical and at an inclination angle of 45° to the horizontal. Different diameters were considered and evaporator to condenser length ratios kept constant. The results showed that R134a provided for larger heat transfer rates than the Butane operated thermosyphons for similar temperature differences despite the fact that the latent heat of vaporization for Butane is higher than that of R134a. As an example, a R134a charged thermosyphon yielded heat transfer rates in the region of 1160 W whilst the same thermosyphon charged with Butane yielded heat transfer rates in the region of 730 W at 23 °C . Results also showed that higher heat transfer rates were possible when the thermosyphons operated at 45°. Typically, for a thermosyphon with a diameter of 31.9 mm and an evaporator to condenser length ratio of 0.24, an increase in the heat transfer rate of 24 % could be achieved. Theoretical inside heat transfer coefficients were also formulated which were found to correlate reasonably well with most proposed correlations. However, an understanding of the detailed two-phase flow and heat transfer behaviour of the working fluid inside thermosyphons is difficult to model. Correlations proposing this behaviour were formulated and include the use of R134a and Butane as the working fluids. The correlations were formulated from thermosyphons of diameters of 14.99 mm, 17.272 mm, 22.225 mm and 31.9 mm. The evaporator to condenser length ratio for the 31.9 mm diameter thermosyphon was 0.24 whilst the other thermosyphons had ratios of 1. The heat fluxes ranged from 1800-43500 W/m2. The following theoretical inside heat transfer coefficients were proposed for vertical and inclined operations (READ CORRECT FORMULA IN FULL TEXT ABSTRACT) φ = 90° ei h = 3.4516x105Ja−0.855Ku1.344 φ = 45° ei h = 1.4796x105Ja−0.993Ku1.3 φ = 90° l l l ci l l v h x k g 1/ 3 2.05 2 4.61561 109Re 0.364 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ φ = 45° l l l ci l l v h x k g 1/ 3 1.916 2 3.7233 10 5Re 0.136 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ The theoretically modelled demonstration HPHE was installed into an existing air drier system. Heat recoveries of approximately 8.8 kW could be recovered for the hot waste stream with a hot air mass flow rate of 0.55 kg/s at an inlet temperature of 51.64 °C and outlet temperature of 35.9 °C in an environment of 20 °C. Based on this recovery, energy savings of 32.18 % could be achieved and a payback period for the HPHE was calculated in the region of 3.3 years. It is recommended that not withstanding the accuracies of roughly 25 % achieved by the theoretically predicted correlations to that of the experimental work, performance parameters such as the liquid fill charge ratios, the evaporator to condenser length ratios and the orientation angles should be further investigated.
AFRIKAANSE OPSOMMING: As gevolg van die groeiende aanvraag na goedkoper energie, word die behoud van energie ‘n al hoe belangriker ekonomiese oorweging. Dus word die maniere om energie te herwin van afval-vloeierstrome al hoe meer intensief ondersoek. Een effektiewe manier om energie te herwin, is om die lae-temperatuur-afval-vloeierstroom (wat sou verlore gaan) se hitte te gebruik om ‘n ander vloeierstroom mee te verhit. Hier dien dit dan as voorverhitting van die ander, kouer, vloeierstroom. Hittepyp hitteruilers (HPHR’s) is laekoste toestelle wat gebruik kan word vir hierdie doel. ‘n HPHR is ‘n vloeistof-gekoppelde indirekte-oordrag hitteruiler, behalwe vir die feit dat dié hitteruiler gebruik maak van hittepype (of hittebuise) wat die grootste deel van sy hitteoordragsmeganisme uitmaak. Die primêre voordele van ‘n HPHR is dat dit geen bewegende dele het nie, die koue- en warmstrome totaal geïsoleer bly van mekaar en geen eksterne pomp benodig word om die werkvloeier mee te sirkuleer nie. In hierdie tesis word ‘n ondersoek gedoen oor die ontwikkeling van ‘n bestek van lug-totlug HPHR’s. Hierdie ondersoek het die teoretiese modellering van so ‘n HPHR geverg, sodat ‘n demonstrasie eenheid ontwerp kon word. Hierdie demonstrasie eenheid is geïnstalleer in ‘n praktiese industriële toepassing waar dit geïvalueer is deur na aspekte soos finansiële voordele en energie-besparings te kyk. Om die teoretiese HPHR model te kon ontwikkel, moes daar gekyk word na die binnehitteoordragskoëffisiënte van die verdamper- en kondensordeursneë, asook R134a en Butaan as onderskeie werksvloeiers. Die eksperimente met die hittebuise is gedoen in die vertikale en 45° (gemeet vanaf die horisontaal) posisies. Verskillende diameters is ook ondersoek, maar met die verdamper- en kondensor-lengteverhouding wat konstant gehou is. Die resultate wys dat R134a as werksvloeier in die hittebuise voorsiening maak vir groter hitteoordragstempo’s in vergelyking met Butaan as werksvloeier by min of meer dieselfde temperatuur verskil – dít ten spyte van die feit dat Butaan ‘n hoër latente-hittetydens- verdampings eienskap het. As voorbeeld gee ‘n R134a-gelaaide hittebuis ‘n hitteoordragstempo van omtrent 1160 W terwyl dieselfde hittebuis wat met Butaan gelaai is, slegs ongeveer 730 W lewer by 23 °C. Die resultate wys ook duidelik dat hoër hitteoordragstempo’s verkry word indien die hittebuis bedryf word teen ‘n hoek van 45°. ‘n Tipiese toename in hitteoordragstempo is ongeveer 24 % vir ‘n hittebuis met ‘n diameter van 31.9 mm en ‘n verdamper- tot kondensor-lengteverhouding van 0.24. Teoretiese binne-hitteoordragskoëffisiënte is ook geformuleer. Dié waardes stem redelik goed ooreen met die meeste voorgestelde korrelasies. Nieteenstaande die feit dat gedetailleerde twee-fase-vloei en die hitteoordragsgedrag van die werksvloeier binne hittebuise nog nie goed deur die wetenskaplike wêreld verstaan word nie. Korrelasies wat hierdie gedrag voorstel is geformuleer en sluit weereens die gebruik van R134a en Butaan as werksvloeiers in. Die korrelasies is geformuleer vanaf hittebuise met diameters van onderskeidelik 14.99 mm, 17.272 mm, 22.225 mm en 31.9 mm. Die verdamper- tot kondensor-lengteverhoudings vir die 31.9 mm deursnit hittebuis was 0.24 terwyl die ander hittebuise ‘n verhouding van 1 gehad het. Die hitte-vloede het gewissel van 1800-45300 W/m2. Die volgende teoretiese geformuleerde binne-hitteoordragskoëffisiënte word voorgestel vir beide vertikale sowel as nie-vertikale toepassing (LEES KORREKTE FORMULE IN VOLTEKS OPSOMMING) φ = 90° ei h = 3.4516x105Ja−0.855Ku1.344 φ = 45° ei h = 1.4796x105Ja−0.993Ku1.3 φ = 90° l l l ci l l v h x k g 1/ 3 2.05 2 4.61561 109Re 0.364 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ φ = 45° l l l ci l l v h x k g 1/ 3 1.916 2 3.7233 10 5Re 0.136 ν ρ ρ ρ − ⎡ ⎡ ⎛ ⎞⎤ ⎤ = ⎢ ⎢ ⎜ ⎟⎥ ⎥ ⎢ ⎢ ⎜ − ⎟⎥ ⎥ ⎣ ⎣ ⎝ ⎠⎦ ⎦ Die wiskundig-gemodelleerde demostrasie HPHR is geïnstalleer binne ‘n bestaande lugdroër-sisteem. Drywing van om en by 8.8 kW kon herwin word vanaf die warm-afvalvloeierstroom met ‘n massa vloei van 0.55 kg/s teen ‘n inlaattemperatuur van 51.64 °C en ‘n uitlaattemperatuur van 35.9 °C binne ‘n omgewing van 20 °C. Na aanleiding van hierdie herwinning, kan energiebesparings van tot 32.18 % verkry word. Die HPHR se installasiekoste kan binne ‘n berekende tydperk van ongeveer 3.3 jaar gedelg word deur hierdie besparing. Verdamper- tot kondensator-lengteverhouding, vloeistofvulverhouding en die oriëntasiehoek vereis verdere ondersoek, aangesien daar slegs ‘n akkuraatheid van 25 % verkry is tussen teoretiese voorspellings en praktiese metings.
Gillott, Mark C. "A novel mechanical ventilation heat recovery/heat pump system." Thesis, University of Nottingham, 2000. http://eprints.nottingham.ac.uk/12148/.
Full textRodriguez-Anderson, Santiago Martin. "Sensible Air to Air Heat Recovery Strategies in a Passive House." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2123.
Full textAhmad, Mardiana Idayu. "Novel heat recovery systems for building applications." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13852/.
Full textLiu, Shuli. "A novel heat recovery/desiccant cooling system." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/11602/.
Full textHoeck, Christopher Brady. "Analysis of a DDGS Air-Drying System with heat recovery." [Ames, Iowa : Iowa State University], 2008.
Find full textParr, Eric. "Performance of an air-to-air heat pump heating and recovery unit at high ventilation rates." Thesis, University of Central Lancashire, 2007. http://clok.uclan.ac.uk/20042/.
Full textDuarte, Marta. "Heat recovery units in ventilation : Investigation of the heat recovery system for LB20 and LB21 in Building 99, University of Gävle." Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-21825.
Full textGustafsson, Marcus. "Energy efficient and economic renovation of residential buildings with low-temperature heating and air heat recovery." Licentiate thesis, KTH, Strömnings- och klimatteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172982.
Full textByggnader står för omkring 40 % av den totala energianvändningen i EU. Energieffektivisering av byggnader är och fortsätter därför att vara en viktig fråga. Även om stora framsteg har gjorts när det gäller att minska energianvändningen i nya byggnader så är det stora beståndet av befintliga byggnader med dålig energiprestanda förmodligen ett ännu viktigare område att fokusera på. Denna avhandling behandlar energieffektiviseringsåtgärder som kan lämpa sig för renovering av befintliga hus, i synnerhet lågtemperaturvärmesystem och ventilationssystem med värmeåtervinning. Energiprestanda, miljöpåverkan och kostnader utvärderas för en rad systemkombinationer, för små och stora hus med olika värmebehov och för olika klimat i Europa. Resultaten togs fram genom simuleringar med energiberäkningsprogram. Lågtemperatursystem och värmeåtervinning framstod båda som lovande lösningar för energieffektivisering av europeiska hus, särskilt i norra Europa, eftersom dessa åtgärder har större effekt i kalla klimat och på hus med stort värmebehov. Prestandan för värmepumpar, såväl av utelufts- som frånluftstyp, förbättrades med lågtemperaturvärmesystem. Valet mellan frånluftsvärmepump och värmeåtervinning till ventilationsluft kan antas bero på specifika förhållanden för varje fall, men de är båda mer kostnadseffektiva och har lägre miljöpåverkan än system utan värmeåtervinning. Värmepumpen har fördelen att den kan återvinna värme året runt, förutsatt att den producerar varmvatten. Ekonomiska och miljömässiga aspekter av energieffektiviseringsåtgärder stämmer inte alltid överens. Dels lägre kostnad ibland betyda större miljöpåverkan, dels kan det finnas divergens mellan olika miljöaspekter. Detta gör det svårt att fastställa subventioner för att främja energieffektiviseringsåtgärder.
QC 20150904
Katta, Kiran Kumar. "Phase change cooling applications engine cooling /." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textBooks on the topic "Air heat recovery"
Zhang, Li-Zhi. Total heat recovery: Heat & moisture recovery from ventilation air. New York: Nova Science Publishers, 2009.
Find full textSavoie, Martin J. Air pollution aspects of modular heat-recovery incinerators. Champaign, Ill: US Army Corps of Engineers, Construction Engineering Research Laboratory, 1986.
Find full textJunior, Christine, Daniel Jänsch, and Oliver Dingel, eds. Energy and Thermal Management, Air Conditioning, Waste Heat Recovery. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47196-9.
Full textHeller, Jonathan. Manufactured housing acquisition program (MAP): Ventilation and heat recovery system cost/benefit analysis. Seattle, WA: Ecotope, 1993.
Find full textPiersol, P. Development of a procedure to assess organic outgassing from heat recovery ventilators: Prepared for the R-2000 Home Program : a project of the New Housing Division, Energy Policy Programs and Conservation Sector, Energy, Mines and Resources Canada. Ottawa: R-2000 Home Program, 1987.
Find full textCommittee, CAPCOA/ARB/EPA Cogeneration. Cogeneration and resource recovery permitting handbook. [California?]: The Committee, 1986.
Find full textEicker, Ursula. Solar Technologies for Buildings. New York: John Wiley & Sons, Ltd., 2006.
Find full textKuznecov, Vyacheslav, and Oleg Bryuhanov. Gasified boiler units. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1003548.
Full textHeart illness and intimacy: How caring relationships aid recovery. Baltimore: Johns Hopkins University Press, 1992.
Find full textBook chapters on the topic "Air heat recovery"
Madhikermi, Manik, Narges Yousefnezhad, and Kary Främling. "Heat Recovery Unit Failure Detection in Air Handling Unit." In Advances in Production Management Systems. Smart Manufacturing for Industry 4.0, 343–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99707-0_43.
Full textMiyaji, Nobuaki, and Jörg Kleemann. "Waste Heat Recovery from Cabin Exhaust Air by Use of Heat Pump." In Proceedings, 106–18. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33466-6_8.
Full textNasif, Mohammad Shakir. "Air-to-Air Fixed Plate Energy Recovery Heat Exchangers for Building’s HVAC Systems." In Sustainable Thermal Power Resources Through Future Engineering, 63–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2968-5_5.
Full textKäppner, Christoph, Jörg Fritzsche, Nuria Garrido Gonzalez, and Holger Lange. "Hybrid-Optimized Engine Cooling Concept." In Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 3–8. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_1.
Full textTarantik, Karina, Martin Kluge, Kilian Bartholomé, Eugen Geczi, Uwe Vetter, Mark Vergez, and Jan König. "Reproducibility and Reliability in Manufacturing New High-Temperature Thermoelectric Modules." In Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 109–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_10.
Full textJänsch, Daniel, Jens Lauterbach, Markus Pohle, and Peter Steinberg. "Thermoelectrics – An Opportunity for the Automotive Industry?" In Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 116–43. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_11.
Full textYildirim, Kemal-Edip, Matthias Finkenrath, Mehmet Gökoglu, and Frank Seidel. "Monitoring the Fresh-Air Flow Rate for Energy-Efficient Bus Ventilation." In Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 147–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_12.
Full textFabian, Ahrendts, Thoma Werner, and Köhler Jürgen. "Amelioration of Energy Efficiency for Refrigeration Cycles by Means of Ejectors." In Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 159–67. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_13.
Full textTokan, T., E. Aeini, and S. Kabelac. "Performance Control of Refrigeration Cycles by Adjustment of the Composition of the Working Fluid." In Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 168–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_14.
Full textBartholomé, Kilian, T. Hess, M. Winkler, A. Mahlke, and J. König. "New Concept for High-Efficient Cooling Systems Based on Solid-State Caloric Materials as Refrigerant." In Energy and Thermal Management, Air Conditioning, Waste Heat Recovery, 178–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47196-9_15.
Full textConference papers on the topic "Air heat recovery"
Fisk, William. "Residential ventilation and heat recovery with air-to-air heat exchangers." In AIP Conference Proceedings Vol. 135. AIP, 1985. http://dx.doi.org/10.1063/1.35481.
Full textWei, Fan, Yunhan Xiao, and Shijie Zhang. "Latent Heat Recovery and Performance Studies for an Open Cycle Absorption Heat Transformer." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51105.
Full textMcCullough, Charles R., Scott M. Thompson, and Heejin Cho. "Heat Recovery With Oscillating Heat Pipes." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66241.
Full textWalter, Heimo, and Wladimir Linzer. "Flow Stability of Heat Recovery Steam Generators." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53040.
Full textSanaye, Sepehr, Omid Hamidkhani, Mostafa Shabanian, Rohollah Espanani, and Abdolreza Hoshyar. "Thermoeconomic Optimization of Heat Recovery Steam Generators." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-28297.
Full textPorumb, Bogdan A., and Mugur C. Balan. "Simulation of heat transfer and pressure drop in bundles type air to air heat recovery equipment." In 2014 49th International Universities Power Engineering Conference (UPEC). IEEE, 2014. http://dx.doi.org/10.1109/upec.2014.6934807.
Full textZhou, Xian, Hua Liu, Lin Fu, and Shigang Zhang. "Experimental Study of Natural Gas Combustion Flue Gas Waste Heat Recovery System Based on Direct Contact Heat Transfer and Absorption Heat Pump." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18316.
Full textD'Agostino, Diana, Concetta Marino, Francesco Minichiello, and Francesco Russo. "HEAT RECOVERY IN AIR CONDITIONING SYSTEMS FOR OFFICE BUILDINGS." In ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.880.
Full textD'Agostino, Diana, Concetta Marino, Francesco Minichiello, and Francesco Russo. "HEAT RECOVERY IN AIR CONDITIONING SYSTEMS FOR OFFICE BUILDINGS." In ICHMT International Symposium on Advances in Computational Heat Transfer. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/ichmt.2017.cht-7.880.
Full textCatalano, Luciano Andrea, Fabio De Bellis, Riccardo Amirante, and Matteo Rignanese. "A High-Efficiency Heat Exchanger for Closed Cycle and Heat Recovery Gas Turbines." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22509.
Full textReports on the topic "Air heat recovery"
Rodriguez-Anderson, Santiago. Sensible Air to Air Heat Recovery Strategies in a Passive House. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.2121.
Full textBigorre, Sebastien P., Benjamin Pietro, Alejandra Gubler, Francesca Search, Emerson Hasbrouck, Sergio Pezoa, and Robert A. Weller. Stratus 17 Seventeenth Setting of the Stratus Ocean Reference Station Cruise on Board RV Cabo de Hornos April 3 - 16, 2018 Valparaiso - Valparaiso, Chile. Woods Hole Oceanographic Institution, March 2021. http://dx.doi.org/10.1575/1912/27245.
Full textPlueddemann, Albert, Benjamin Pietro, and Emerson Hasbrouck. The Northwest Tropical Atlantic Station (NTAS): NTAS-19 Mooring Turnaround Cruise Report Cruise On Board RV Ronald H. Brown October 14 - November 1, 2020. Woods Hole Oceanographic Institution, January 2021. http://dx.doi.org/10.1575/1912/27012.
Full text