Academic literature on the topic 'Air-mobile'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Air-mobile.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Air-mobile"
Timoshek, Alexandra, Douglas Eisinger, Song Bai, and Deb Niemeier. "Mobile Source Air Toxic Emissions." Transportation Research Record: Journal of the Transportation Research Board 2158, no. 1 (January 2010): 77–85. http://dx.doi.org/10.3141/2158-10.
Full textCollet, Susan. "Mobile Source Air Toxic Emissions." Journal of the Air & Waste Management Association 66, no. 2 (January 15, 2016): 97. http://dx.doi.org/10.1080/10962247.2016.1128721.
Full textGoldstein, B. D., and J. Warren. "HEI's mobile air toxics project." Environmental Health Perspectives 101, no. 3 (August 1993): 256–58. http://dx.doi.org/10.1289/ehp.93101256.
Full textKochneva, O. V., L. V. Podkolzina, A. V. Kozlovich, and D. V. Shabanov. "Mobile robotic air cushion system." IOP Conference Series: Earth and Environmental Science 539 (August 13, 2020): 012119. http://dx.doi.org/10.1088/1755-1315/539/1/012119.
Full textHoffmann, Gabriele. "Refrigerants for Mobile Air Conditioning." ATZ worldwide 119, no. 1 (January 2017): 16–21. http://dx.doi.org/10.1007/s38311-016-0162-x.
Full textLihui Lv, Lihui Lv, Wenqing Liu Wenqing Liu, Guangqiang Fan Guangqiang Fan, Tianshu Zhang Tianshu Zhang, Yunsheng Dong Yunsheng Dong, Zhenyi Chen Zhenyi Chen, Yang Liu Yang Liu, Haoyun Huang Haoyun Huang, and and Yang Zhou and Yang Zhou. "Application of mobile vehicle lidar for urban air pollution monitoring." Chinese Optics Letters 14, no. 6 (2016): 060101–60106. http://dx.doi.org/10.3788/col201614.060101.
Full textCook, C. "Modeling Interference Effects for Land-Mobile and Air-Mobile Communications." IEEE Transactions on Communications 35, no. 2 (1987): 151–65. http://dx.doi.org/10.1109/tcom.1987.1096752.
Full textErlangga, Yuliar Yasin, and Heri Setiawan. "PERANCANGAN MESIN PENGOLAH AIR BERSIH BERGERAK DENGAN MENGGUNAKAN SISTIM MODULAR UNTUK PENANGGULANGAN KEADAAN DARURAT AIR." Machine : Jurnal Teknik Mesin 4, no. 1 (January 2, 2018): 21–28. http://dx.doi.org/10.33019/jm.v4i1.448.
Full textReilly, Charles D., Stephen G. Waller, William J. Flynn, Miguel A. Montalvo, and Jane B. Ward. "U.S. Air Force Mobile Ophthalmic Surgery Team." Military Medicine 169, no. 12 (December 2004): 952–57. http://dx.doi.org/10.7205/milmed.169.12.952.
Full textAdams, Matthew, and Denis Corr. "A Mobile Air Pollution Monitoring Data Set." Data 4, no. 1 (December 22, 2018): 2. http://dx.doi.org/10.3390/data4010002.
Full textDissertations / Theses on the topic "Air-mobile"
Alvear, Alvear Óscar Patricio. "Mobile Sensing Architecture for Air Pollution Monitoring." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107928.
Full textIndustrial growth has brought unforeseen technological advances to our society. Unfortunately, the price to pay for these advances has been an increase of the air pollution levels worldwide, affecting both urban and countryside areas. Typically, air pollution monitoring relies on fixed monitoring stations to carry out the pollution control. However, this method is too expensive, not scalable, and hard to implement in any city. The Mobile Crowdsensing (MCS) approach, a novel paradigm whereby users are in charge of performing monitoring tasks, allows environment monitoring to be made using small sensors embedded in mobile vehicles. The possible scenarios can be divided into two: urban scenarios, where a wide set of vehicles are available, and rural and industrial areas, where vehicular traffic is scarce and limited to the main transportation arteries. Considering these two scenarios, in this thesis we propose an architecture, called EcoSensor, to monitor the air pollution using small sensors installed in vehicles, such as bicycles, private cars, or the public transportation system, applicable to urban scenarios, and the use of an Unmanned Aerial System (UAS) in rural scenarios. Three main components compose our architecture: a low-cost sensor to capture pollution data, a smartphone to preprocess the pollution information and transmit the data towards a central server, and the central server, to store and process pollution information. For urban scenarios, we analyze different alternatives regarding the design of a low-cost sensing unit based on commercial prototyping platforms such as Raspberry Pi or Arduino, and Commercial Off-the-shelf (COTS) air quality sensors. Moreover, we analyze and propose a process to perform pollution monitoring using our architecture. This process encompasses four basic operations: data reading, unit conversion, time variability reduction, and spatial interpolation. For rural scenarios, we propose the use of an Unmanned Aerial Vehicle (UAV) as a mobile sensor. Specifically, we equip the UAV with sensing capabilities through a Raspberry Pi microcomputer and low-cost air quality sensors. Finally, we propose an algorithm, called Pollution-driven UAV Control (PdUC), to control the UAV flight for monitoring tasks by focusing on the most polluted areas, and thereby attempting to improve the overall accuracy while minimizing flight time. We then propose an improvement to this algorithm, called Discretized Pollution-driven UAV Control (PdUC-D), where we discretize the target area by splitting it into small tiles, where each tile is monitored only once, thereby avoiding redundant sampling. Overall, we found that mobile sensing is a good approach for monitoring air pollution in any environment, either by using vehicles or bicycles in urban scenarios, or an UAVs in rural scenarios. We validate our proposal by comparing obtained values by our mobile sensors against typical values reported by monitoring stations at the same time and location, showing that the results are right, matching the expected values with a low error. Moreover, we proved that PdUC-D, our protocol for the autonomous guidance of UAVs performing air monitoring tasks, has better performance than typical mobility models in terms of reducing the prediction errors and reducing the time to cover the whole area.Moreover, we analyze and propose a process to perform pollution monitoring using our architecture. This process encompasses four basic operations: data reading, unit conversion, time variability reduction, and spatial interpolation.
El creixement industrial ha implicat grans avanços tecnològics per a la nostra societat. Lamentablement, el preu que cal pagar per aquests avanços ha sigut un augment significatiu dels nivells de contaminació de l'aire a tot el món, que afecta tant zones urbanes com zones rurals. En general, el monitoratge de la qualitat aire es fa mitjançant estacions de monitoratge fixes. No obstant això, aquest mètode és massa costós, poc escalable i difícil d'implementar a les nostres ciutats, les quals estan cada vegada més poblades. L'ús de Mobile CrowdSensing (MCS), paradigma en el qual el monitoratge el duen a terme els mateixos usuaris, permet realitzar monitorització ambiental tenint sensors mòbils integrats en vehicles. Els possibles escenaris es poden dividir en dos: entorns urbans, on hi ha un ampli conjunt de vehicles disponibles, i entorns rurals o industrials, on el trànsit vehicular és escàs i està limitat a les principals artèries de transport. Tenint en compte aquests dos escenaris, aquesta tesi proposa una arquitectura, anomenada EcoSensor, que permet monitorar la contaminació de l'aire utilitzant petits sensors de baix cost instal·lats en diferents tipus de vehicles, com ara bicicletes, automòbils o autobusos del sistema de transport públic, en el cas d'entorns urbans, i en UAVs (Unmanned Aerial Vehicles) en entorns rurals. L'arquitectura proposada està composta per tres components: un sensor de baix cost per a capturar dades de contaminació, un smartphone per a realitzar un preprocessament de la informació i per a transmetre les dades cap a un servidor central, i el servidor central, encarregat d'emmagatzemar i processar la informació de contaminació ambiental. Per a entorns urbans, analitzem diferents alternatives pel que fa al disseny d'una unitat de monitoratge (sensor mòbil) de baix cost basada en plataformes de prototipatge comercials com Raspberry Pi o Arduino, juntament amb sensors també de preu reduït. En la tesi fem una anàlisi, i proposem un procés, per a dur a terme el monitoratge ambiental utilitzant l'arquitectura proposada. Aquest procés abasta quatre operacions bàsiques: captura de dades, conversió d'unitats, reducció de la variabilitat temporal, i interpolació espacial. Per a entorns rurals, proposem l'ús de drons o Unmanned Aerial Vehicles (UAVs) com a unitats de sensorització mòbils. Específicament, equipem el dron amb capacitats de monitoratge a través d'un microordinador Raspberry Pi i sensors de qualitat de l'aire de baix cost. Finalment, es proposa un algorisme anomenat PdUC (Pollution-driven UAV Control) per a controlar el vol del UAV amb l'objectiu de realitzar monitoratge ambiental, que identifica les àrees més contaminades i que, d'aquesta manera, tracta de millorar la precisió general i la velocitat de monitoratge. A més, proposem una millora a aquest algorisme, denominada PdUC-D, basada en la discretització de l'àrea a monitorar dividint-la en xicotetes àrees (tiles), on cada tile es monitora una sola vegada, fet que evita dur a terme mostrejos redundants. En general, verifiquem que el monitoratge mòbil és una aproximació eficient i fiable per a monitorar la contaminació de l'aire en qualsevol entorn, ja siga usant vehicles o bicicletes en entorns urbans, o UAVs en entorns rurals. Pel que fa al procés de monitoratge ambiental, validem la nostra proposta comparant els valors obtinguts pels nostres sensors mòbils de baix cost pel que fa als valors típics de referència oferits per les estacions de monitoratge fixes per al mateix període i ubicació, i es comprova que els resultats són semblants, i estan d'acord amb el resultat esperat. A més, es demostra que PdUC-D permet guiar autònomament un UAV en tasques de monitoratge de l'aire, oferint un millor rendiment que els models de mobilitat típics, reduint tant els errors de predicció com el temps per a cobrir l'àrea completa, i aconseguint una major precisió dins de les àrees més
Alvear Alvear, ÓP. (2018). Mobile Sensing Architecture for Air Pollution Monitoring [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107928
TESIS
Rajaram, Dinakaran. "Secure Over the Air (OTA) Management Of Mobile Applications." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-116693.
Full textJanaaththanan, Sundarampillai. "OFDM based air interfaces for future mobile satellite systems." Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/773026/.
Full textHarbi, Yahya. "Enhanced air-interfaces for fifth generation mobile broadband communication." Thesis, University of York, 2017. http://etheses.whiterose.ac.uk/19155/.
Full textMeyer, Peter. "Air-pollution monitoring with a mobile CO₂-laser photoacoustic system /." Zürich, 1988. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8651.
Full textPerugu, Harikishan C. "Integrating Advanced Truck Models into Mobile Source PM2.5 Air Quality Modeling." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1377871388.
Full textRichard, Gaetan C., and Brian Donlin. "A NEW MOBILE TELEMETRY STATION FOR TESTING AIR-TO-GROUND WEAPONS." International Foundation for Telemetering, 1996. http://hdl.handle.net/10150/608379.
Full textThis paper describes a new mobile self contained telemetry station designed for field testing of air-to-ground weapons. The telemetry station makes creative use of existing equipment and incorporates a unique dual axis tracking system to provide complete coverage of most missions.
Sklavos, Alexandros. "Service area based OFDM air interface for beyond 3G mobile radio systems." Kaiserslautern Techn. Univ, 2004. http://deposit.d-nb.de/cgi-bin/dokserv?idn=972098607.
Full textFeng, Qixing. "Radio channel modelling for air-to-ground mobile communications in urban enviroments." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500653.
Full textWesterlund, Kurt. "Near-road Dispersion Modeling of Mobile Source Air Toxics (MSATs) in Florida." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5724.
Full textPh.D.
Doctorate
Civil, Environmental, and Construction Engineering
Engineering and Computer Science
Environmental Engineering
Books on the topic "Air-mobile"
Florida. Legislature. Senate. Committee on Transportation. Compliance with Federal Clean Air Act, mobile sources. [Tallahassee, FL]: The Committee, 1997.
Find full textWackter, David. Evaluation of mobile source air quality simulation models. Research Triangle Park, NC: The Office, 1986.
Find full textKhan, Farooq. LTE for 4G mobile broadband: Air interface technologies and performance. Cambridge, UK: Cambridge University Press, 2009.
Find full textLTE for 4G mobile broadband: Air interface technologies and performance. Cambridge, UK: Cambridge University Press, 2009.
Find full textFrangos, Constantinos. Mathematical Modelling, Nonlinear Control and Performance Evaluation of a Ground Based Mobile Air Defence System. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55498-9.
Full textStrub, Christopher M. The international legal implications of the Mobile Offshore Base: No army or air force is an island. Monterey, Calif: Naval Postgraduate School, 1997.
Find full textCalifornia. Legislature. Assembly. Committee on Environmental Safety and Toxic Materials. Interim hearing on mobile air conditioners: CFC emissions and environmental impact AB 2532 (Vasconcellos), October 24, 1989. Sacramento, Calif: State Capital, 1989.
Find full textLi yong Android qiang li kai fa Adobe AIR cheng shi. Taibei Shi: Jia kui zi xun, 2016.
Find full textHeller, Jonathan. Manufactured housing acquisition program (MAP): Ventilation and heat recovery system cost/benefit analysis. Seattle, WA: Ecotope, 1993.
Find full textAdministration, Bonneville Power. Field measurements of the heating efficiency of electric forced-air furnaces in six manufactured homes. Seattle, WA: Ecotope, 1994.
Find full textBook chapters on the topic "Air-mobile"
Bernieri, A., G. Betta, L. Ferrigno, and M. Laracca. "Mobile System for Air Pollution Evaluation." In Lecture Notes in Electrical Engineering, 423–27. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00684-0_81.
Full textWang, You-Chiun. "Mobile Solutions to Air Quality Monitoring." In Mobile Solutions and Their Usefulness in Everyday Life, 225–49. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93491-4_12.
Full textDeaton, Michael L., and James J. Winebrake. "Modeling Mobile Source Air Pollution Inventories." In Dynamic Modeling of Environmental Systems, 142–57. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1300-0_7.
Full textWang, Yuwen, Lei Wang, WeiJiong Zhang, and Dingde Jiang. "A Space-Air-Ground Integrated Networking Method for Air Mobile Targets." In Simulation Tools and Techniques, 117–26. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72792-5_11.
Full textFrangos, Constantinos. "Overview of the Mobile Air Defence System." In Mathematical Modelling, Nonlinear Control and Performance Evaluation of a Ground Based Mobile Air Defence System, 15–50. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55498-9_2.
Full textKhan, Mohammed Shafiul Alam, and Chris J. Mitchell. "Improving Air Interface User Privacy in Mobile Telephony." In Security Standardisation Research, 165–84. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27152-1_9.
Full textKoval, Anton, and Eloy Irigoyen. "Mobile Wireless System for Outdoor Air Quality Monitoring." In International Joint Conference SOCO’16-CISIS’16-ICEUTE’16, 345–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47364-2_33.
Full textFrangos, Constantinos. "Kinematic Model of the Mobile Air Defence System." In Mathematical Modelling, Nonlinear Control and Performance Evaluation of a Ground Based Mobile Air Defence System, 51–62. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55498-9_3.
Full textFrangos, Constantinos. "Operational Modes of the Mobile Air Defence System." In Mathematical Modelling, Nonlinear Control and Performance Evaluation of a Ground Based Mobile Air Defence System, 83–96. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55498-9_5.
Full textHampe, J. Felix, and Gerhard Schwabe. "Enhancing Mobile Commerce: Instant Music Purchasing over the Air." In Seeking Success in E-Business, 107–30. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-0-387-35692-1_7.
Full textConference papers on the topic "Air-mobile"
Hedgecock, W., P. Völgyesi, A. Ledeczi, X. Koutsoukos, A. Aldroubi, A. Szalay, and A. Terzis. "Mobile air pollution monitoring network." In the 2010 ACM Symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1774088.1774253.
Full textWiggins, Jason. "US Air Force Mobile Range Efficiencies." In SpaceOps 2012. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-1273979.
Full textTudose, Dan Stefan, Traian Alexandru Patrascu, Andrei Voinescu, Razvan Tataroiu, and Nicolae Tapus. "Mobile sensors in air pollution measurement." In 2011 8th Workshop on Positioning, Navigation and Communication (WPNC). IEEE, 2011. http://dx.doi.org/10.1109/wpnc.2011.5961035.
Full textRadecki, Richard L. "Mobile Air Conditioning and CFC's - An Update." In Automotive Industry in Expanding Countries. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1991. http://dx.doi.org/10.4271/911729.
Full textKetabdar, Hamed, Peyman Moghadam, Babak Naderi, and Mehran Roshandel. "Magnetic signatures in air for mobile devices." In the 14th international conference. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2371664.2371705.
Full textCarvalho, Vasco, Jose Gabriel Lopes, Helena G. Ramos, and F. Correa Alegria. "City-wide mobile air quality measurement system." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398299.
Full textMagnetto, Daniela, Stefano Mola, David H. DaCosta, Mark Golben, and Matthew Rosso. "A Metal Hydride Mobile Air Conditioning System." In SAE 2006 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2006. http://dx.doi.org/10.4271/2006-01-1235.
Full textSong, Jie, Gábor Sörös, Fabrizio Pece, Sean Ryan Fanello, Shahram Izadi, Cem Keskin, and Otmar Hilliges. "In-air gestures around unmodified mobile devices." In UIST '14: The 27th Annual ACM Symposium on User Interface Software and Technology. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2642918.2647373.
Full textPark, KwangJin, Patrick Valduriez, and Hyunseung Choo. "Mobile continuous nearest neighbor queries on air." In the 16th ACM SIGSPATIAL international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1463434.1463510.
Full textAgrawal, Sandip, Ionut Constandache, Shravan Gaonkar, Romit Roy Choudhury, Kevin Caves, and Frank DeRuyter. "Using mobile phones to write in air." In the 9th international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1999995.1999998.
Full textReports on the topic "Air-mobile"
Mei, V., F. Chen, and D. Kyle. Alternative non-CFC mobile air conditioning. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10191842.
Full textMei, V., F. Chen, and D. Kyle. Alternative non-CFC mobile air conditioning. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6930880.
Full textBrainard, Gregory F., Andrew A. Thompson, and James P. Lucas. Air Conditioner Requirements Validation Review of Mobile Subscriber Equipment (MSE). Fort Belvoir, VA: Defense Technical Information Center, May 1992. http://dx.doi.org/10.21236/ada251469.
Full textAdkison, Jesse D. Data Supporting Mobile Application Development for Use within the Marine Air-Ground Task Force. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ad1008832.
Full textTokarz, F. J., J. F. Cooper, and D. Haley. Commercialization of LLNL Zinc Air Fuel Cell Technology For Stationary And Mobile Applications And Electromechanical Battery For Mobile Applications Final Report CRADA No. TC-1420-97. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1408984.
Full textCarter, Donald T. Managing the Financial and Operational Issues Associated with the Hickam Air Force Base Trunked Land Mobile Radio Project,. Fort Belvoir, VA: Defense Technical Information Center, November 1995. http://dx.doi.org/10.21236/ada302725.
Full textMoskowitz, Warren P., and Gilbert Davidson. Program to Increase the Measurement Capabilities of the AFGL (Air Force Geophysics Laboratory) Fixed and Mobile High Altitude Lidar Systems. Fort Belvoir, VA: Defense Technical Information Center, March 1988. http://dx.doi.org/10.21236/ada194614.
Full textPekney, Natalie J., Matthew Reeder, Garret A. Veloski, and J. Rodney Diehl. Data Report for Monitoring at Six West Virginia Marcellus Shale Development Sites using NETL’s Mobile Air Monitoring Laboratory (July–November 2012). Office of Scientific and Technical Information (OSTI), June 2016. http://dx.doi.org/10.2172/1330216.
Full textQuinn, Matthew J., Curtis Hopkins, and Vern Wing. U.S. Air Force Operational Medicine: Using the Enterprise Estimating Supplies Program to Develop Materiel Solutions for the Mobile Aeromedical Staging Facility (FFQM1). Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada570243.
Full textTechnology News 559 - mobile dry scrubber provides cleaner air for downwind roof bolter. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, September 2017. http://dx.doi.org/10.26616/nioshpub2017208.
Full text