Academic literature on the topic 'Air stripping'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Air stripping.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Air stripping"
Holmes, Don P. "AMMONIA AIR STRIPPING." Proceedings of the Water Environment Federation 2003, no. 2 (January 1, 2003): 926–32. http://dx.doi.org/10.2175/193864703784343433.
Full textStallings, Robert, Tony Rogers, and Michael Mullins. "Air Stripping of Volatile Organics." Journal of the IEST 28, no. 3 (May 1, 1985): 28–31. http://dx.doi.org/10.17764/jiet.1.28.3.41mx25137003kp18.
Full textAckerman, Joe, Elsie Jordaan, Babak Rezania, and Nazim Cicek. "Phosphorus removal from solids separated hog manure by air stripping." Canadian Biosystems Engineering 56, no. 1 (January 28, 2015): 6.13–6.20. http://dx.doi.org/10.7451/cbe.2014.56.6.13.
Full textFolino, Adele, Demetrio Antonio Zema, and Paolo S. Calabrò. "Environmental and Economic Sustainability of Swine Wastewater Treatments Using Ammonia Stripping and Anaerobic Digestion: A Short Review." Sustainability 12, no. 12 (June 18, 2020): 4971. http://dx.doi.org/10.3390/su12124971.
Full textTakuma, Satoshi, Yoshihiko Otu, and Youichi Shimoi. "Air Stripping of Odor Matters." JAPAN TAPPI JOURNAL 49, no. 3 (1995): 537–47. http://dx.doi.org/10.2524/jtappij.49.537.
Full textLee, Jae-Ho, Jeung-Jin Park, Gi-Choong Choi, Im-Gyu Byun, Tae-Joo Park, and Tae-Ho Lee. "Application of ultrasound and air stripping for the removal of aromatic hydrocarbons from spent sulfidic caustic for use in autotrophic denitrification as an electron donor." Water Science and Technology 67, no. 7 (April 1, 2013): 1497–502. http://dx.doi.org/10.2166/wst.2013.017.
Full textChen, Xiurong, Xiaoli Sun, Xiaoxiao Wang, Peng Xu, Chenchen Yang, Quanling Lu, and Shanshan Wang. "Two-stage air stripping combined with hydrolysis acidification process for coal gasification wastewater pretreatment." Water Science and Technology 79, no. 11 (June 1, 2019): 2185–94. http://dx.doi.org/10.2166/wst.2019.219.
Full textGASCONSVILADOMAT, F., I. SOUCHON, V. ATHES, and M. MARIN. "Membrane air-stripping of aroma compounds." Journal of Membrane Science 277, no. 1-2 (June 1, 2006): 129–36. http://dx.doi.org/10.1016/j.memsci.2005.10.023.
Full textLin, Yen-Han, and Gordon A. Hill. "Air stripping effect in a chemostat." Canadian Journal of Chemical Engineering 79, no. 6 (September 3, 2010): 995–98. http://dx.doi.org/10.1002/cjce.5450790619.
Full textRoberts, Paul V., and James A. Levy. "Energy Requirements for Air Stripping Trihalomethanes." Journal - American Water Works Association 77, no. 4 (April 1985): 138–46. http://dx.doi.org/10.1002/j.1551-8833.1985.tb05523.x.
Full textDissertations / Theses on the topic "Air stripping"
Bridgeforth, Sharonda E. (Sharonda Elaine) 1975. "Groundwater treatment technologies : air stripping vs. UV/oxidation." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/49999.
Full textIncludes bibliographical references (leaves 57-58).
by Sharonda E. Bridgeforth.
M.Eng.
Lamarche, Philippe. "Air stripping mass transfer correlations for volatile organics." Thesis, University of Ottawa (Canada), 1986. http://hdl.handle.net/10393/4763.
Full textMahmud, Hassan. "Removal of organics from water/wastewater by membrane air-stripping." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/NQ66171.pdf.
Full textDelduque, Thalita Pereira. "Remoção da amônia por air stripping em canais corrugados helicoidais." Universidade Tecnológica Federal do Paraná, 2017. http://repositorio.utfpr.edu.br/jspui/handle/1/2261.
Full textO presente trabalho propõe verificar o desempenho de um canal corrugado helicoidal aplicado na remoção de amônia, por meio do processo air stripping. O sist p ssui iâ tr i t r 4’’(≈100 m) e 10m de comprimento disposto de forma helicoidal. Avaliou-se a influência das condições operacionais como: vazão de ar (1000 L min-1 a 3000 L min-1), vazão do líquido (0,2 L min-1 a 1,0 L min-1), concentração de nitrogênio, pH (9,0 a 12,0) e declividade do canal (5% a 20%) na remoção da amônia. Foram realizados ensaios de caracterização hidrodinâmica do sistema com ajuste dos modelos uni-paramétricos: de N-reatores de mistura completa em série, dispersão de grande intensidade e pequena intensidade, visando a determinação dos coeficientes globais de transferência de massa (KLa). Entre os principais resultados, a massa de alcalinizante necessária para elevar o pH em média de 5 para 11,5, foi de 2,875g de NaOH por g de N presente na água residuária. Posteriormente, ensaios hidrodinâmicos indicaram que o escoamento do sistema tende a ser pistonado em função do seu alto número de reatores de mistura completa em série (49 a 69). Foram realizados 30 ensaios utilizando o planejamento estatístico, Delineamento Composto Central Rotacional (DCCR) com coeficiente de transferência de massa (KLa) de 19,7h-1 nas condições otimizadas de pH 10,5, Qar=2000 L min-1, Qliq=0,2 L min-1 na concentração de 0,6 mgL-1 N-NH3 atingindo a eficiência de remoção de N-NH3 de 70%. Com os valores experimentais foi possível obter o modelo reparametrizado das variáveis codificadas, que representa a remoção de N-NH3(%) em função do pH, da vazão de ar, da vazão do líquido e da concentração de N-NH3. Ao se comparar com torres convencionais de air stripping, o canal corrugado proporcionou maior tempo de contato ar com o líquido, para injeção do ar e menor altura manométrica de elevação da água residuária, reduzindo gastos construtivos e com energia elétrica.
The present work intent to verify the performance of a helical corrugated channel applied in the ammonia removal, through the air stripping process.The syst h s i t r l i t r 4 "(≈100 mm) and 10m long, helically arranged. The influence of the operating conditions was evaluated as: air flow (1000 Lmin-1 at 3000 L min-1), liquid flow (0.2 L min-1 at 1.0 L min-1), nitrogen concentration, pH (9.0 to 12.0) and channel slope (5% to 20%) in the ammonia removal. It was performed hydrodynamic characterization of the system with adjustment of the uni-parametric models: complete mix N-reactors in series, big intensity and small intensity dispersal, aiming the determination of the global coefficients of mass transfer (KLa). Among the main results, the alkaline mass required to raise the pH from 5 to 11.5 on average was 2.875 g of NaOH per g of N present in the wastewater. Subsequently, hydrodynamic tests indicated that the drain of the system tends to be pistoned due to its high number of compete mix reactors in grade (49 to 69). A total of 30 experiments were performed using the statistic design, Design Central Composit Rotational (DCCR) with mass transfer coefficient (KLa) of 19.7h-1 under optimized conditions of pH 10.5, Qar=2000 L min-1, Qliq=0.2 L min-1 in the concentration of 0.6 mgL-1 N-NH3 achieving the efficiency of removal of N-NH3 of 70%. With the experimental values it was possible to obtain the reparametrized model of the coded variables, which represents the removal of N-NH3 (%) as a function of pH, air flow, liquid flow and N-NH3 concentration. When compared to conventional air stripping towers, the corrugated channel provided longer air-to-liquid contact time for air injection and lower manometric height of wastewater elevation, reducing constructive and electricity expenditures.
RAMAKRISHNAN, BALAJI. "TREATMENT OF MTBE CONTAMINATED WATERS USING AIR STRIPPING AND ADVANCED OXIDATION PROCESSES." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1131024170.
Full textSilva, Consuelo Cristina Gomes. "Otimização de uma unidade de Air Stripping para remover BTEX de aguas residuarias." [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266502.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica
Made available in DSpace on 2018-08-03T22:33:18Z (GMT). No. of bitstreams: 1 Silva_ConsueloCristinaGomes_M.pdf: 1700273 bytes, checksum: 223e8e7c5d3ede67496010e0d1185395 (MD5) Previous issue date: 2004
Resumo: Com a busca constante pelo Desenvolvimento Sustentável, os órgãos ambientais estão demandando uma maior atenção à contaminação de recursos hídricos, provenientes de águas residuárias. As águas residuárias podem ser provenientes de descartes domésticos, industriais ou ainda pluviais. Os compostos químicos causam danos à saúde e ao equilíbrio dos ecossistemas. Um caso particular e de interesse é o caso do BTEX (Benzeno, Tolueno, Etilbenzeno e os Xilenos), pois, estes compostos são solventes de uso industrial comum e são tóxicos à saúde humana, além de inviabilizarem a exploração de aqüíferos por eles contaminados. Nesta pesquisa, apresentamos uma configuração otimizada em termos de consumo energético e custo fixo para uma unidade de Air Stripping respeitando as restrições ambientais e operacionais, descrevendo e efetuando o projeto ótimo da unidade para a remoção de BTEX presente em águas residuárias, apresentando uma metodologia para elaboração de projetos de sistemas de tratamento, dimensionando bombas e sopradores, elaborando um projeto de colunas de pratos perfurados e estimando custos em plantas químicas. O modelo considerado nesta pesquisa foi desenvolvido por ALBUQUERQUE (2002). Para a simulação da unidade de Air Stripping, usamos o pacote computacional GAMS (General Algebric Modeling System), que é designado à construção e solução de modelos grandes e complexos de programação matemática. Para a otimização da unidade, trabalhamos com Programação Não Linear e Programação Mista Inteira Não - Linear, a fim de minimizar o impacto resultante do lançamento destes poluentes e sua dispersão no meio ambiente. Os resultados indicam a remoção dos contaminantes em grau satisfatório para a unidade, além de atingirem os objetivos propostos
Abstract: With the constant search for the Sustainable Development, the ambient agencies are demanding bigger attention to contamination of resources hídricos, proceeding from residuary waters. The residuary waters can be proceeding from domestic, industrial or still pluvial discardings. Chemicals cause damages to the health and to the balance of ecosystems. A particular case of interest is the case of BTEX (Benzene, Toluene, Etilbenzene and the Xilenes), which are solvents of common industrial use and are toxic to the health human being, besides making impracticable the exploration of water-bearing or contaminated by them. In this research we present an optimal configuration in terms of energy consumption and fixed cost for a unit of Air Stripping, describing and effecting the excellent project of the unit for the present removal of BTEX in residuary waters, presenting a methodology for elaboration of projects of treatment systems, design bombs and puffers, elaborating a project of perforateed plate columns and estimating costs in chemical plants.The model considered in this research was developed by ALBUQUERQUE (2002). For the simulation of the unit of Air Stripping we use computational package GAMS (General Algebric Modeling System) that it is assigned to the construction and solution a complex models of mathematical programming. For the optimization of the unit we work with Non Linear Programming and Integer Mixed Non Linear Programming, in order to minimize the resultant impact of the launching of these pollutants and its dispersion in the environment. The results indicate remova I of the contaminates in satisfactory degree for the unit, besides reaching the objectives proposed in this work
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
Jahed, Mohammed Nazeem. "The application of differential pulse anodic stripping voltammetry for the determination of copper, lead, zinc and cadmium in airborne particulate matter." Thesis, [S.l. : s.n.], 1995. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1007&context=td_ptech.
Full textZhang, Linsen. "Air stripping with electromagnetic-vibration enhancement for cleaning up soils contaminated by petroleum products." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ60264.pdf.
Full textVoigt, David Robert 1954. "Optimization of combined air stripping and activated carbon adsorption for VOC removal from groundwater." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/191962.
Full textDjebbar, Yassine. "Prediction of mass transfer coefficients of air-stripping packed towers for volatile organic compound removal." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0011/NQ38780.pdf.
Full textBooks on the topic "Air stripping"
Rawe, Jim. Air stripping of aqueous solutions. Washington, DC: U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, 1991.
Find full textWallman, Harold. Design scale-up suitability for air-stripping columns. Cincinnati, OH: U.S Environmental Protection Agency, Water Engineering Research Laboratory, 1986.
Find full textWallman, Harold. Design scale-up suitability for air-stripping columns. Cincinnati, OH: U.S Environmental Protection Agency, Water Engineering Research Laboratory, 1986.
Find full textWallman, Harold. Design scale-up suitability for air-stripping columns. Cincinnati, OH: U.S Environmental Protection Agency, Water Engineering Research Laboratory, 1986.
Find full textWallman, Harold. Design scale-up suitability for air-stripping columns. Cincinnati, OH: U.S Environmental Protection Agency, Water Engineering Research Laboratory, 1986.
Find full textWallman, Harold. Design scale-up suitability for air-stripping columns. Cincinnati, OH: U.S Environmental Protection Agency, Water Engineering Research Laboratory, 1986.
Find full textUmphres, Mark D. An evaluation of the secondary effects of air stripping. Cincinnati, OH: U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory, 1990.
Find full textFairchild, Erik. Air stripping and carbon adsorption annotated bibliography: Treatment of contaminated ground water. [Olympia, Wash.]: Washington State Dept. of Ecology, 1988.
Find full textHall, Ronald M. Sunset Strip Furniture Stripping, Huntington Beach, California. [Atlanta, Ga.?]: U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 2003.
Find full textJang, W. Cascade air-stripping system for removal of semi-volatile organic contaminants: Feasibility study. Denver, CO: AWWA Research Foundation and American Water Works Association, 1990.
Find full textBook chapters on the topic "Air stripping"
Huang, Ju-Chang, and Chii Shang. "Air Stripping." In Advanced Physicochemical Treatment Processes, 47–79. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59745-029-4_2.
Full textKumar, Ashwani. "Membrane Air Stripping (MAS) Process." In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_1798-1.
Full textParenti, Paolo, and Giancarlo Cicerone. "Volatile Organic Compound (VOC) Air Stripping Pilot Restoration Program." In Contaminated Soil ’90, 1069–70. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3270-1_238.
Full textHocking, Graeme C., Winston L. Sweatman, Alistair D. Fitt, and Chris Breward. "Deformations Arising During Air-Knife Stripping in the Galvanisation of Steel." In Mathematics in Industry, 311–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25100-9_36.
Full textKvernheim, Arne Lund, Kristin Eitrem Landmark, Hanne M. Øren, and Ingolf Caspari. "Air Stripping Combined with Fid Detection for Oil-In-Water Analysis." In Produced Water 2, 415–23. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0379-4_38.
Full textCounce, R. M., J. H. Wilson, S. P. Singh, R. A. Ashworth, and M. G. Elliott. "Economic Model for Air Stripping of Volatile Organic Chemicals from Groundwater with Emission Controls." In Emerging Technologies in Hazardous Waste Management II, 177–212. Washington, DC: American Chemical Society, 1991. http://dx.doi.org/10.1021/bk-1991-0468.ch010.
Full textMeira Castro, Ana C., J. Matos, and A. Gavina. "Numerical Solution of a PDE System with Non-Linear Steady State Conditions that Translates the Air Stripping Pollutants Removal." In Nonlinear Science and Complexity, 211–19. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-9884-9_26.
Full textWehrle, K. "In-Situ Cleaning of CHC Contaminated Sites: Model-Scale Experiments Using the Air Injection (In-Situ Stripping) Method in Granular Soils." In Contaminated Soil ’90, 1061–62. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-3270-1_234.
Full textVreeken, C., and H. T. Sman. "The Use of a Hydrology Contaminant Transport Model for the Prediction of the Effect of Air Stripping on the in Situ Cleaning of Contaminated Soil." In Groundwater Contamination: Use of Models in Decision-Making, 329–36. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2301-0_30.
Full text"7. Air Stripping." In Studies in Environmental Science, 261–94. Elsevier, 1993. http://dx.doi.org/10.1016/s0166-1116(08)70529-6.
Full textConference papers on the topic "Air stripping"
Fang, C. S., and J. H. Liu. "Air Stripping for Treatment of Produced Water." In SPE California Regional Meeting. Society of Petroleum Engineers, 1987. http://dx.doi.org/10.2118/16328-ms.
Full textBoul, Peter, Kevin Lange, Bruce Conger, and Molly Anderson. "Air Stripping Designs for the Lunar Surface." In 40th International Conference on Environmental Systems. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-6152.
Full textWu, Fangtong, and Shujuan Wu. "Removal of Trihalomethanes from Drinking Water by Air Stripping." In 2009 International Conference on Energy and Environment Technology (ICEET 2009). IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.406.
Full textLi, Jian-Min, Yi-Peng Du, Zhi-Ying Dong, and Xiao-Li Zhao. "Air Stripping of High Concentration Ammonia Wastewater in Fertilizer Plant." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.1059.
Full textJ. Elbring, Gregory. "Crosswell Seismic Imaging Of An In-Situ Air Stripping Waste Remediation Process." In 6th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 1993. http://dx.doi.org/10.3997/2214-4609-pdb.209.1993_008.
Full textElbring, Gregory J. "Cross‐well seismic imaging of an in‐situ air stripping environmental remediatio process." In SEG Technical Program Expanded Abstracts 1993. Society of Exploration Geophysicists, 1993. http://dx.doi.org/10.1190/1.1822525.
Full textRUBLESKE, M. B., A. V. de QUADROS, A. M. BERNARDES, M. A. S. RODRIGUES, and M. G. SOARES. "TRATAMENTO DE LIXIVIADO DE ATERRO DE CURTUME ATRAVÉS DO PROCESSO DE AIR STRIPPING." In XI Congresso Brasileiro de Engenharia Química em Iniciação Científica. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeqic2015-281-33142-252928.
Full textCaulfield, Suzanne, and Ryo S. Amano. "Computational Study of the Air/Fuel Mixture in a Small Spark Ignition Engine." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34577.
Full textVolz, Melanie, Marco Konle, Mulubrhan Gebretsadik, Peter Habisreuther, and Nikolaos Zarzalis. "Investigation of a Prefilming Airblast Atomizer With Respect to Surface Stripping." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42576.
Full textYetao, Sun, and Guo Wali. "Research on Pretreatment of High Concentrated Ammonia-nitrogen Wastewater from Coal Gasification Process by Air Stripping." In 2011 International Conference on Intelligent Computation Technology and Automation (ICICTA). IEEE, 2011. http://dx.doi.org/10.1109/icicta.2011.500.
Full textReports on the topic "Air stripping"
CORPS OF ENGINEERS WASHINGTON DC. Air Stripping. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada402975.
Full textCORPS OF ENGINEERS WASHINGTON DC. Engineering and Design. Air Stripping. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada402937.
Full textRobinson, B. A., N. D. Rosenberg, G. A. Zyvoloski, and H. Viswanathan. Simulations of in situ air stripping demonstration at Savannah River. Office of Scientific and Technical Information (OSTI), June 1994. http://dx.doi.org/10.2172/10160854.
Full textLooney, B. B. Ultralow Level Mercury Treatment Using Chemical Reduction and Air Stripping. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/775069.
Full textLooney, B. B. Ultralow Level Mercury Treatment Using Chemical Reduction and Air Stripping: Scoping Report. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/760274.
Full textWhite, M. D., and T. J. Gilmore. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/454002.
Full textPoirier, M. R. Air Stripping of 1-Butanol During Cleaning of the 242-16H Evaporator: 1. Model Development and Conservative Predictions. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/777134.
Full textLooney, B. B., T. C. Hazen, D. S. Kaback, and C. A. Eddy. Full scale field test of the in situ air stripping process at the Savannah River integrated demonstration test site. Office of Scientific and Technical Information (OSTI), June 1991. http://dx.doi.org/10.2172/5624666.
Full textTracy, Noel A. Nondestructive Evaluation (NDE) Exploratory Development for Air Force Systems. Delivery Order 0006: Paint Stripping Effects on Fluorescent Penetrant Inspection. Fort Belvoir, VA: Defense Technical Information Center, December 2009. http://dx.doi.org/10.21236/ada522328.
Full textPoirier, M. R. Air Stripping of 1-Butanol During Cleaning of the 242-16H Evaporator: 2. Optimized Mass Transfer and Equilibrium Predictions. Office of Scientific and Technical Information (OSTI), April 2001. http://dx.doi.org/10.2172/779678.
Full text