To see the other types of publications on this topic, follow the link: Airborne and field campaigns.

Journal articles on the topic 'Airborne and field campaigns'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Airborne and field campaigns.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Olson, Jennifer R., James H. Crawford, Gao Chen, William H. Brune, Ian C. Faloona, David Tan, Hartwig Harder, and Monica Martinez. "A reevaluation of airborne HOxobservations from NASA field campaigns." Journal of Geophysical Research: Atmospheres 111, no. D10 (May 19, 2006): n/a. http://dx.doi.org/10.1029/2005jd006617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Larar, A. M., W. L. Smith, D. K. Zhou, X. Liu, H. Revercomb, J. P. Taylor, S. M. Newman, and P. Schlüssel. "IASI spectral radiance performance validation: case study assessment from the JAIVEx field campaign." Atmospheric Chemistry and Physics Discussions 9, no. 2 (April 23, 2009): 10193–234. http://dx.doi.org/10.5194/acpd-9-10193-2009.

Full text
Abstract:
Abstract. Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated Fourier Transform Spectrometer (FTS) sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral and spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This manuscript focuses on validating infrared spectral radiance from the Infrared Atmospheric Sounding Interferometer (IASI) through a case study analysis using data obtained during the recent Joint Airborne IASI Validation Experiment (JAIVEx) field campaign. Emphasis is placed upon the benefits achievable from employing airborne interferometers such as the NAST-I since, in addition to IASI radiance calibration performance assessments, cross-validation with other advanced sounders such as the AQUA Atmospheric InfraRed Sounder (AIRS) is enabled.
APA, Harvard, Vancouver, ISO, and other styles
3

Walker, Jeffrey P., Edward J. Kim, and Anthony W. England. "Introduction to the Special Issue on Airborne Field Campaigns for Soil Moisture." IEEE Geoscience and Remote Sensing Letters 6, no. 4 (October 2009): 623–24. http://dx.doi.org/10.1109/lgrs.2009.2026982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Larar, A. M., W. L. Smith, D. K. Zhou, X. Liu, H. Revercomb, J. P. Taylor, S. M. Newman, and P. Schlüssel. "IASI spectral radiance validation inter-comparisons: case study assessment from the JAIVEx field campaign." Atmospheric Chemistry and Physics 10, no. 2 (January 19, 2010): 411–30. http://dx.doi.org/10.5194/acp-10-411-2010.

Full text
Abstract:
Abstract. Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated Fourier Transform Spectrometer (FTS) sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral and spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This manuscript focuses on validating infrared spectral radiance from the Infrared Atmospheric Sounding Interferometer (IASI) through a case study analysis using data obtained during the recent Joint Airborne IASI Validation Experiment (JAIVEx) field campaign. Emphasis is placed upon the benefits achievable from employing airborne interferometers such as the NAST-I since, in addition to IASI radiance calibration performance assessments, cross-validation with other advanced sounders such as the AQUA Atmospheric InfraRed Sounder (AIRS) is enabled.
APA, Harvard, Vancouver, ISO, and other styles
5

Thiel, S., L. Ammannato, A. Bais, B. Bandy, M. Blumthaler, B. Bohn, O. Engelsen, et al. "Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO): overview of the field campaigns." Atmospheric Chemistry and Physics 8, no. 6 (March 26, 2008): 1789–812. http://dx.doi.org/10.5194/acp-8-1789-2008.

Full text
Abstract:
Abstract. Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK) and Lower Bavaria (Germany) combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UVSPEC and the three-dimensional radiation transfer model MYSTIC. During both campaigns the spectral actinic flux density was measured at several locations at ground level and in the air by up to four different aircraft. This allows the comparison of measured and simulated actinic radiation profiles. In addition satellite data were used to complete the information of the three dimensional input data set for the simulation. A three-dimensional simulation of actinic flux density data under cloudy sky conditions requires a realistic simulation of the cloud field to be used as an input for the 3-D radiation transfer model calculations. Two different approaches were applied, to derive high- and low-resolution data sets, with a grid resolution of about 100 m and 1 km, respectively. The results of the measured and simulated radiation profiles as well as the results of the ground based measurements are presented in terms of photolysis rate profiles for ozone and nitrogen dioxide. During both campaigns all spectroradiometer systems agreed within ±10% if mandatory corrections e.g. stray light correction were applied. Stability changes of the systems were below 5% over the 4 week campaign periods and negligible over a few days. The J(O1D) data of the single monochromator systems can be evaluated for zenith angles less than 70°, which was satisfied by nearly all airborne measurements during both campaigns. The comparison of the airborne measurements with corresponding simulations is presented for the total, downward and upward flux during selected clear sky periods of both campaigns. The compliance between the measured (from three aircraft) and simulated downward and total flux profiles lies in the range of ±15%.
APA, Harvard, Vancouver, ISO, and other styles
6

Thiel, S., L. Ammannato, A. Bais, B. Bandy, M. Blumthaler, B. Bohn, O. Engelsen, et al. "Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO): overview of the field campaigns." Atmospheric Chemistry and Physics Discussions 7, no. 5 (September 13, 2007): 13417–73. http://dx.doi.org/10.5194/acpd-7-13417-2007.

Full text
Abstract:
Abstract. Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK) and Lower Bavaria (Germany) combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UVSPEC and the three-dimensional radiation transfer model MYSTIC. During both campaigns the spectral actinic flux density was measured at several locations at ground level and in the air by up to four different aircraft. This allows the comparison of measured and simulated actinic radiation profiles. In addition satellite data were used to complete the information of the three dimensional input data set for the simulation. A three-dimensional simulation of actinic flux density data under cloudy sky conditions requires a realistic simulation of the cloud field to be used as an input for the 3-D radiation transfer model calculations. Two different approaches were applied, to derive high- and low-resolution data sets, with a grid resolution of about 100 m and 1 km, respectively. The results of the measured and simulated radiation profiles as well as the results of the ground based measurements are presented in terms of photolysis rate profiles for ozone and nitrogen dioxide. During both campaigns all spectroradiometer systems agreed within ±10% if mandatory corrections e.g. stray light correction were applied. Stability changes of the systems were below 5% over the 4 week campaign periods and negligible over a few days. The J(O1D) data of the single monochromator systems can be evaluated for zenith angles less than 70°, which was satisfied by nearly all airborne measurements during both campaigns. The comparison of the airborne measurements with corresponding simulations is presented for the total, downward and upward flux during selected clear sky periods of both campaigns. The compliance between the measured (from three aircraft) and simulated downward and total flux profiles lies in the range of ±15%.
APA, Harvard, Vancouver, ISO, and other styles
7

Silvestri, Malvina, Federico Rabuffi, Antonino Pisciotta, Massimo Musacchio, Iole Diliberto, Claudia Spinetti, Valerio Lombardo, Laura Colini, and Maria Buongiorno. "Analysis of Thermal Anomalies in Volcanic Areas Using Multiscale and Multitemporal Monitoring: Vulcano Island Test Case." Remote Sensing 11, no. 2 (January 11, 2019): 134. http://dx.doi.org/10.3390/rs11020134.

Full text
Abstract:
Surface temperatures derived by 208 ASTER and L8 satellite imagery were analysed to test multiscale and multitemporal capability through available sets of thermal data to support the volcanic monitoring of Vulcano Island in Italy. The analysis of thermal historical series derived by ASTER and L8 shows that two are the main thermally active areas: La Fossa crater and the mud pool of Fangaia. In this work we aimed to assess the correlation between the satellite-retrieved temperatures with those measured during the daytime ground field campaign conducted within the same time period and, in particular cases, simultaneously. Moreover, nighttime data acquired by an airborne and field campaign were processed with the same methodology applied to satellite data for a multiscale approach verification. Historical meteorological data acquired from a weather station were also considered. Statistically significant correlations were observed between nighttime acquisitions and meteorological data. Correlations were also significant for temperature measured during the airborne campaign, while differences up to 50% with daytime acquisition during the ground field campaigns were observed. The analysis of the results suggests that within nighttime data acquisition, differences between satellite-derived temperatures and ground temperature measurements are considerably reduced; therefore nighttime data acquisition is recommended to detect thermal anomalies.
APA, Harvard, Vancouver, ISO, and other styles
8

Merlaud, Alexis, Livio Belegante, Daniel-Eduard Constantin, Mirjam Den Hoed, Andreas Carlos Meier, Marc Allaart, Magdalena Ardelean, et al. "Satellite validation strategy assessments based on the AROMAT campaigns." Atmospheric Measurement Techniques 13, no. 10 (October 15, 2020): 5513–35. http://dx.doi.org/10.5194/amt-13-5513-2020.

Full text
Abstract:
Abstract. The Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaigns took place in Romania in September 2014 and August 2015. They focused on two sites: the Bucharest urban area and large power plants in the Jiu Valley. The main objectives of the campaigns were to test recently developed airborne observation systems dedicated to air quality studies and to verify their applicability for the validation of space-borne atmospheric missions such as the TROPOspheric Monitoring Instrument (TROPOMI)/Sentinel-5 Precursor (S5P). We present the AROMAT campaigns from the perspective of findings related to the validation of tropospheric NO2, SO2, and H2CO. We also quantify the emissions of NOx and SO2 at both measurement sites. We show that tropospheric NO2 vertical column density (VCD) measurements using airborne mapping instruments are well suited for satellite validation in principle. The signal-to-noise ratio of the airborne NO2 measurements is an order of magnitude higher than its space-borne counterpart when the airborne measurements are averaged at the TROPOMI pixel scale. However, we show that the temporal variation of the NO2 VCDs during a flight might be a significant source of comparison error. Considering the random error of the TROPOMI tropospheric NO2 VCD (σ), the dynamic range of the NO2 VCDs field extends from detection limit up to 37 σ (2.6×1016 molec. cm−2) and 29 σ (2×1016 molec. cm−2) for Bucharest and the Jiu Valley, respectively. For both areas, we simulate validation exercises applied to the TROPOMI tropospheric NO2 product. These simulations indicate that a comparison error budget closely matching the TROPOMI optimal target accuracy of 25 % can be obtained by adding NO2 and aerosol profile information to the airborne mapping observations, which constrains the investigated accuracy to within 28 %. In addition to NO2, our study also addresses the measurements of SO2 emissions from power plants in the Jiu Valley and an urban hotspot of H2CO in the centre of Bucharest. For these two species, we conclude that the best validation strategy would consist of deploying ground-based measurement systems at well-identified locations.
APA, Harvard, Vancouver, ISO, and other styles
9

Chadwick, K. Dana, Philip G. Brodrick, Kathleen Grant, Tristan Goulden, Amanda Henderson, Nicola Falco, Haruko Wainwright, et al. "Integrating airborne remote sensing and field campaigns for ecology and Earth system science." Methods in Ecology and Evolution 11, no. 11 (September 24, 2020): 1492–508. http://dx.doi.org/10.1111/2041-210x.13463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Knudsen, Erlend M., Bernd Heinold, Sandro Dahlke, Heiko Bozem, Susanne Crewell, Irina V. Gorodetskaya, Georg Heygster, et al. "Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017." Atmospheric Chemistry and Physics 18, no. 24 (December 18, 2018): 17995–8022. http://dx.doi.org/10.5194/acp-18-17995-2018.

Full text
Abstract:
Abstract. The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the 35-day period of the campaigns, using near-surface and upper-air meteorological observations, as well as operational satellite, analysis, and reanalysis data. Over the campaign period, short-term synoptic variability was substantial, dominating over the seasonal cycle. During the first campaign week, cold and dry Arctic air from the north persisted, with a distinct but seasonally unusual cold air outbreak. Cloudy conditions with mostly low-level clouds prevailed. The subsequent 2 weeks were characterized by warm and moist maritime air from the south and east, which included two events of warm air advection. These synoptical disturbances caused lower cloud cover fractions and higher-reaching cloud systems. In the final 2 weeks, adiabatically warmed air from the west dominated, with cloud properties strongly varying within the range of the two other periods. Results presented here provide synoptic information needed to analyze and interpret data of upcoming studies from ACLOUD/PASCAL, while also offering unprecedented measurements in a sparsely observed region.
APA, Harvard, Vancouver, ISO, and other styles
11

Ackley, S. F., S. Stammerjohn, T. Maksym, M. Smith, J. Cassano, P. Guest, J. L. Tison, et al. "Sea-ice production and air/ice/ocean/biogeochemistry interactions in the Ross Sea during the PIPERS 2017 autumn field campaign." Annals of Glaciology 61, no. 82 (June 11, 2020): 181–95. http://dx.doi.org/10.1017/aog.2020.31.

Full text
Abstract:
AbstractThe Ross Sea is known for showing the greatest sea-ice increase, as observed globally, particularly from 1979 to 2015. However, corresponding changes in sea-ice thickness and production in the Ross Sea are not known, nor how these changes have impacted water masses, carbon fluxes, biogeochemical processes and availability of micronutrients. The PIPERS project sought to address these questions during an autumn ship campaign in 2017 and two spring airborne campaigns in 2016 and 2017. PIPERS used a multidisciplinary approach of manned and autonomous platforms to study the coupled air/ice/ocean/biogeochemical interactions during autumn and related those to spring conditions. Unexpectedly, the Ross Sea experienced record low sea ice in spring 2016 and autumn 2017. The delayed ice advance in 2017 contributed to (1) increased ice production and export in coastal polynyas, (2) thinner snow and ice cover in the central pack, (3) lower sea-ice Chl-a burdens and differences in sympagic communities, (4) sustained ocean heat flux delaying ice thickening and (5) a melting, anomalously southward ice edge persisting into winter. Despite these impacts, airborne observations in spring 2017 suggest that winter ice production over the continental shelf was likely not anomalous.
APA, Harvard, Vancouver, ISO, and other styles
12

Jethva, Hiren, Omar Torres, Lorraine Remer, Jens Redemann, John Livingston, Stephen Dunagan, Yohei Shinozuka, Meloe Kacenelenbogen, Michal Segal Rosenheimer, and Rob Spurr. "Validating MODIS above-cloud aerosol optical depth retrieved from “color ratio” algorithm using direct measurements made by NASA's airborne AATS and 4STAR sensors." Atmospheric Measurement Techniques 9, no. 10 (October 14, 2016): 5053–62. http://dx.doi.org/10.5194/amt-9-5053-2016.

Full text
Abstract:
Abstract. We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the “color ratio” method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASA's airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne matchups revealed a good agreement (root-mean-square difference < 0.1), with most matchups falling within the estimated uncertainties associated the MODIS retrievals (about −10 to +50 %). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30–50 % for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite-based retrievals.
APA, Harvard, Vancouver, ISO, and other styles
13

Sorooshian, Armin, Bruce Anderson, Susanne E. Bauer, Rachel A. Braun, Brian Cairns, Ewan Crosbie, Hossein Dadashazar, et al. "Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast." Bulletin of the American Meteorological Society 100, no. 8 (August 2019): 1511–28. http://dx.doi.org/10.1175/bams-d-18-0100.1.

Full text
Abstract:
AbstractWe report on a multiyear set of airborne field campaigns (2005–16) off the California coast to examine aerosols, clouds, and meteorology, and how lessons learned tie into the upcoming NASA Earth Venture Suborbital (EVS-3) campaign: Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE; 2019–23). The largest uncertainty in estimating global anthropogenic radiative forcing is associated with the interactions of aerosol particles with clouds, which stems from the variability of cloud systems and the multiple feedbacks that affect and hamper efforts to ascribe changes in cloud properties to aerosol perturbations. While past campaigns have been limited in flight hours and the ability to fly in and around clouds, efforts sponsored by the Office of Naval Research have resulted in 113 single aircraft flights (>500 flight hours) in a fixed region with warm marine boundary layer clouds. All flights used nearly the same payload of instruments on a Twin Otter to fly below, in, and above clouds, producing an unprecedented dataset. We provide here i) an overview of statistics of aerosol, cloud, and meteorological conditions encountered in those campaigns and ii) quantification of model-relevant metrics associated with aerosol–cloud interactions leveraging the high data volume and statistics. Based on lessons learned from those flights, we describe the pragmatic innovation in sampling strategy (dual-aircraft approach with combined in situ and remote sensing) that will be used in ACTIVATE to generate a dataset that can advance scientific understanding and improve physical parameterizations for Earth system and weather forecasting models, and for assessing next-generation remote sensing retrieval algorithms.
APA, Harvard, Vancouver, ISO, and other styles
14

Bourgeois, Ilann, Jeff Peischl, Chelsea R. Thompson, Kenneth C. Aikin, Teresa Campos, Hannah Clark, Róisín Commane, et al. "Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions." Atmospheric Chemistry and Physics 20, no. 17 (September 11, 2020): 10611–35. http://dx.doi.org/10.5194/acp-20-10611-2020.

Full text
Abstract:
Abstract. Ozone is a key constituent of the troposphere, where it drives photochemical processes, impacts air quality, and acts as a climate forcer. Large-scale in situ observations of ozone commensurate with the grid resolution of current Earth system models are necessary to validate model outputs and satellite retrievals. In this paper, we examine measurements from the Atmospheric Tomography (ATom; four deployments in 2016–2018) and the HIAPER Pole-to-Pole Observations (HIPPO; five deployments in 2009–2011) experiments, two global-scale airborne campaigns covering the Pacific and Atlantic basins. ATom and HIPPO represent the first global-scale, vertically resolved measurements of O3 distributions throughout the troposphere, with HIPPO sampling the atmosphere over the Pacific and ATom sampling both the Pacific and Atlantic. Given the relatively limited temporal resolution of these two campaigns, we first compare ATom and HIPPO ozone data to longer-term observational records to establish the representativeness of our dataset. We show that these two airborne campaigns captured on average 53 %, 54 %, and 38 % of the ozone variability in the marine boundary layer, free troposphere, and upper troposphere–lower stratosphere (UTLS), respectively, at nine well-established ozonesonde sites. Additionally, ATom captured the most frequent ozone concentrations measured by regular commercial aircraft flights in the northern Atlantic UTLS. We then use the repeated vertical profiles from these two campaigns to confirm and extend the existing knowledge of tropospheric ozone spatial and vertical distributions throughout the remote troposphere. We highlight a clear hemispheric gradient, with greater ozone in the Northern Hemisphere, consistent with greater precursor emissions and consistent with previous modeling and satellite studies. We also show that the ozone distribution below 8 km was similar in the extra-tropics of the Atlantic and Pacific basins, likely due to zonal circulation patterns. However, twice as much ozone was found in the tropical Atlantic as in the tropical Pacific, due to well-documented dynamical patterns transporting continental air masses over the Atlantic. Finally, we show that the seasonal variability of tropospheric ozone over the Pacific and the Atlantic basins is driven year-round by transported continental plumes and photochemistry, and the vertical distribution is driven by photochemistry and mixing with stratospheric air. This new dataset provides additional constraints for global climate and chemistry models to improve our understanding of both ozone production and loss processes in remote regions, as well as the influence of anthropogenic emissions on baseline ozone.
APA, Harvard, Vancouver, ISO, and other styles
15

Sobrino, J. A., J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, E. de Miguel, G. Sòria, M. Romaguera, et al. "Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview." Hydrology and Earth System Sciences 13, no. 11 (November 3, 2009): 2031–37. http://dx.doi.org/10.5194/hess-13-2031-2009.

Full text
Abstract:
Abstract. The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de Técnica Aerospacial (INTA), and it has been involved in several field campaigns since 2004. This paper presents an overview of the work performed with the AHS thermal imagery provided in the framework of the SPARC and SEN2FLEX campaigns, carried out respectively in 2004 and 2005 over an agricultural area in Spain. The data collected in both campaigns allowed for the first time the development and testing of algorithms for land surface temperature and emissivity retrieval as well as the estimation of evapotranspiration from AHS data. Errors were found to be around 1.5 K for land surface temperature and 1 mm/day for evapotranspiration.
APA, Harvard, Vancouver, ISO, and other styles
16

Sobrino, J. A., J. C. Jiménez-Muñoz, P. J. Zarco-Tejada, G. Sepulcre-Cantó, E. de Miguel, G. Sòria, M. Romaguera, et al. "Thermal remote sensing from Airborne Hyperspectral Scanner data in the framework of the SPARC and SEN2FLEX projects: an overview." Hydrology and Earth System Sciences Discussions 6, no. 3 (June 5, 2009): 4107–24. http://dx.doi.org/10.5194/hessd-6-4107-2009.

Full text
Abstract:
Abstract. The AHS (Airborne Hyperspectral Scanner) instrument has 80 spectral bands covering the visible and near infrared (VNIR), short wave infrared (SWIR), mid infrared (MIR) and thermal infrared (TIR) spectral range. The instrument is operated by Instituto Nacional de Técnica Aerospacial (INTA), and it has been involved in several field campaigns since 2004. This paper presents an overview of the work performed with the AHS thermal imagery provided in the framework of the SPARC and SEN2FLEX campaigns, carried out respectively in 2004 and 2005 over an agricultural area in Spain. The data collected in both campaigns allowed for the first time the development and testing of algorithms for land surface temperature and emissivity retrieval as well as the estimation of evapotranspiration from AHS data. Errors were found to be around 1.5 K for land surface temperature and 1 mm/day for evapotranspiration.
APA, Harvard, Vancouver, ISO, and other styles
17

Crosbie, Ewan, Matthew D. Brown, Michael Shook, Luke Ziemba, Richard H. Moore, Taylor Shingler, Edward Winstead, et al. "Development and characterization of a high-efficiency, aircraft-based axial cyclone cloud water collector." Atmospheric Measurement Techniques 11, no. 9 (September 5, 2018): 5025–48. http://dx.doi.org/10.5194/amt-11-5025-2018.

Full text
Abstract:
Abstract. A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Following previous designs, the probe uses inertial separation to remove cloud droplets from the airstream, which are subsequently collected and stored for offline analysis. We report details of the design, operation, and modelled and measured probe performance. Computational fluid dynamics (CFD) was used to understand the flow patterns around the complex interior geometrical features that were optimized to ensure efficient droplet capture. CFD simulations coupled with particle tracking and multiphase surface transport modelling provide detailed estimates of the probe performance across the entire range of flight operating conditions and sampling scenarios. Physical operation of the probe was tested on a Lockheed C-130 Hercules (fuselage mounted) and de Havilland Twin Otter (wing pylon mounted) during three airborne field campaigns. During C-130 flights on the final field campaign, the probe reflected the most developed version of the design and a median cloud water collection rate of 4.5 mL min−1 was achieved. This allowed samples to be collected over 1–2 min under optimal cloud conditions. Flights on the Twin Otter featured an inter-comparison of the new probe with a slotted-rod collector, which has an extensive airborne campaign legacy. Comparison of trace species concentrations showed good agreement between collection techniques, with absolute concentrations of most major ions agreeing within 30 %, over a range of several orders of magnitude.
APA, Harvard, Vancouver, ISO, and other styles
18

Magurno, Davide, William Cossich, Tiziano Maestri, Richard Bantges, Helen Brindley, Stuart Fox, Chawn Harlow, et al. "Cirrus Cloud Identification from Airborne Far-Infrared and Mid-Infrared Spectra." Remote Sensing 12, no. 13 (June 30, 2020): 2097. http://dx.doi.org/10.3390/rs12132097.

Full text
Abstract:
Airborne interferometric data, obtained from the Cirrus Coupled Cloud-Radiation Experiment (CIRCCREX) and from the PiknMix-F field campaign, are used to test the ability of a machine learning cloud identification and classification algorithm (CIC). Data comprise a set of spectral radiances measured by the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) and the Airborne Research Interferometer Evaluation System (ARIES). Co-located measurements of the two sensors allow observations of the upwelling radiance for clear and cloudy conditions across the far- and mid-infrared part of the spectrum. Theoretical sensitivity studies show that the performance of the CIC algorithm improves with cloud altitude. These tests also suggest that, for conditions encompassing those sampled by the flight campaigns, the additional information contained within the far-infrared improves the algorithm’s performance compared to using mid-infrared data only. When the CIC is applied to the airborne radiance measurements, the classification performance of the algorithm is very high. However, in this case, the limited temporal and spatial variability in the measured spectra results in a less obvious advantage being apparent when using both mid- and far-infrared radiances compared to using mid-infrared information only. These results suggest that the CIC algorithm will be a useful addition to existing cloud classification tools but that further analyses of nadir radiance observations spanning the infrared and sampling a wider range of atmospheric and cloud conditions are required to fully probe its capabilities. This will be realised with the launch of the Far-infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission, ESA’s 9th Earth Explorer.
APA, Harvard, Vancouver, ISO, and other styles
19

Mankoff, Kenneth D., Dirk van As, Austin Lines, Thue Bording, Joshua Elliott, Rune Kraghede, Hubert Cantalloube, et al. "Search and recovery of aircraft parts in ice-sheet crevasse fields using airborne and in situ geophysical sensors." Journal of Glaciology 66, no. 257 (April 24, 2020): 496–508. http://dx.doi.org/10.1017/jog.2020.26.

Full text
Abstract:
On 30 September 2017, an Air France Airbus A380-800 suffered a failure of its fourth engine while over Greenland. This failure resulted in the loss of the engine fan hub, fan blades and surrounding structure. An initial search recovered 30 pieces of light debris, but the primary part of interest, a ~220 kg titanium fan hub, was not recovered because it had a different fall trajectory than the light debris, impacted into the ice-sheet's snow surface, and was quickly covered by drifting snow. Here we describe the methods used for the detection of the fan hub and details of the field campaigns. The search area included two crevasse fields of at least 50 snow-covered crevasses 1 to ~30 m wide with similar snow bridge thicknesses. After 21 months and six campaigns, using airborne synthetic aperture radar, ground-penetrating radar, transient electromagnetics and an autonomous vehicle to survey the crevasse fields, the fan hub was found within ~1 m of a crevasse at a depth of ~3.3 to 4 m and was excavated with shovels, chain saws, an electric winch, sleds and a gasoline heater, by workers using fall-arrest systems.
APA, Harvard, Vancouver, ISO, and other styles
20

Peischl, S., J. P. Walker, C. Rüdiger, N. Ye, Y. H. Kerr, E. Kim, R. Bandara, and M. Allahmoradi. "The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment." Hydrology and Earth System Sciences 16, no. 6 (June 22, 2012): 1697–708. http://dx.doi.org/10.5194/hess-16-1697-2012.

Full text
Abstract:
Abstract. Following the launch of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission on 2 November 2009, SMOS soil moisture products need to be rigorously validated at the satellite's approximately 45 km scale and disaggregation techniques for producing maps with finer resolutions tested. The Australian Airborne Cal/val Experiments for SMOS (AACES) provide the basis for one of the most comprehensive assessments of SMOS data world-wide by covering a range of topographic, climatic and land surface variability within an approximately 500 × 100 km2 study area, located in South-East Australia. The AACES calibration and validation activities consisted of two extensive field experiments which were undertaken across the Murrumbidgee River catchment during the Australian summer and winter season of 2010, respectively. The datasets include airborne L-band brightness temperature, thermal infrared and multi-spectral observations at 1 km resolution, as well as extensive ground measurements of near-surface soil moisture and ancillary data, such as soil temperature, soil texture, surface roughness, vegetation water content, dew amount, leaf area index and spectral characteristics of the vegetation. This paper explains the design and data collection strategy of the airborne and ground component of the two AACES campaigns and presents a preliminary analysis of the field measurements including the application and performance of the SMOS core retrieval model on the diverse land surface conditions captured by the experiments. The data described in this paper are publicly available from the website: http://www.moisturemap.monash.edu.au/aaces.
APA, Harvard, Vancouver, ISO, and other styles
21

Peischl, S., J. P. Walker, C. Rüdiger, N. Ye, Y. H. Kerr, E. Kim, R. Bandara, and M. Allahmoradi. "The AACES field experiments: SMOS calibration and validation across the Murrumbidgee River catchment." Hydrology and Earth System Sciences Discussions 9, no. 3 (March 2, 2012): 2763–95. http://dx.doi.org/10.5194/hessd-9-2763-2012.

Full text
Abstract:
Abstract. Following the launch of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission on 2 November 2009, SMOS products need to be rigorously validated at the satellite's approximately 45 km scale, and disaggregation techniques for maps with finer resolutions tested. The Australian Airborne Cal/val Experiments for SMOS (AACES) provide the basis for one of the most comprehensive assessments of SMOS data world-wide by covering a range of topographic, climatic and land surface variability within an approximately 500 × 100 km2 study area, located in South-East Australia. The AACES calibration and validation activities consisted of two extensive field experiments which were undertaken across the Murrumbidgee River catchment during the Australian summer and winter season of 2010, respectively. The data sets include airborne L-band brightness temperature, thermal infrared and multi-spectral observations at 1 km resolution, as well as extensive ground measurements of near-surface soil moisture and ancillary data, such as soil temperature, soil texture, surface roughness, vegetation water content, dew amount, leaf area index and spectral characteristics of the vegetation. This paper explains the design and data collection strategy of the airborne and ground component of the two AACES campaigns and presents a preliminary analysis of the field measurements including the application and performance of the SMOS core retrieval model on the diverse land surface conditions captured by the experiments. The data described in this paper are publicly available from the website: http://www.moisturemap.monash.edu.au/aaces.
APA, Harvard, Vancouver, ISO, and other styles
22

Buchholz, Bernhard, and Volker Ebert. "Absolute, pressure-dependent validation of a calibration-free, airborne laser hygrometer transfer standard (SEALDH-II) from 5 to 1200 ppmv using a metrological humidity generator." Atmospheric Measurement Techniques 11, no. 1 (January 23, 2018): 459–71. http://dx.doi.org/10.5194/amt-11-459-2018.

Full text
Abstract:
Abstract. Highly accurate water vapor measurements are indispensable for understanding a variety of scientific questions as well as industrial processes. While in metrology water vapor concentrations can be defined, generated, and measured with relative uncertainties in the single percentage range, field-deployable airborne instruments deviate even under quasistatic laboratory conditions up to 10–20 %. The novel SEALDH-II hygrometer, a calibration-free, tuneable diode laser spectrometer, bridges this gap by implementing a new holistic concept to achieve higher accuracy levels in the field. We present in this paper the absolute validation of SEALDH-II at a traceable humidity generator during 23 days of permanent operation at 15 different H2O mole fraction levels between 5 and 1200 ppmv. At each mole fraction level, we studied the pressure dependence at six different gas pressures between 65 and 950 hPa. Further, we describe the setup for this metrological validation, the challenges to overcome when assessing water vapor measurements on a high accuracy level, and the comparison results. With this validation, SEALDH-II is the first airborne, metrologically validated humidity transfer standard which links several scientific airborne and laboratory measurement campaigns to the international metrological water vapor scale.
APA, Harvard, Vancouver, ISO, and other styles
23

Su, Z., W. J. Timmermans, C. van der Tol, R. Dost, R. Bianchi, J. A. Gómez, A. House, et al. "EAGLE 2006 – Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns over grassland and forest." Hydrology and Earth System Sciences 13, no. 6 (June 18, 2009): 833–45. http://dx.doi.org/10.5194/hess-13-833-2009.

Full text
Abstract:
Abstract. EAGLE2006 – an intensive field campaign for the advances in land surface hydrometeorological processes – was carried out in the Netherlands from 8th to 18th June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments – an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC) and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA) campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006). However, one important objective of the EAGLE2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and provides an overview of the airborne and field campaign dataset. This dataset is available for scientific investigations and can be accessed on the ESA Principal Investigator Portal http://eopi.esa.int/.
APA, Harvard, Vancouver, ISO, and other styles
24

Bian, H., P. Colarco, M. Chin, G. Chen, A. R. Douglass, J. M. Rodriguez, Q. Liang, et al. "Investigation of source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign." Atmospheric Chemistry and Physics Discussions 12, no. 4 (April 5, 2012): 8823–55. http://dx.doi.org/10.5194/acpd-12-8823-2012.

Full text
Abstract:
Abstract. We present analysis of simulations using the NASA GEOS-5 chemistry and transport model to quantify contributions from different continents to the Western Arctic pollution, to investigate pollution sources and to identify transport pathways. We compare DC-8 airborne measurements of CO, SO2, BC and SO4 from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaigns (spring and summer, 2008) and observations from the AIRS instrument on NASA's Aqua satellite to demonstrate the strengths and limitations of our simulations and to support this application of the model. Comparisons of measurements along the flight tracks with regional averages show that the along-track measurements are representative of the region in April but not in July. Our simulations show that most Arctic pollutants are due to Asian anthropogenic emissions during April. Boreal biomass burning emissions and Asian anthropogenic emissions are of similar importance in July. European sources make little contribution to pollution in the campaign domain during either period. The most prevalent transport pathway of the tracers is from Asia to the Arctic in both April and July, with the transport efficiency stronger in spring than in summer.
APA, Harvard, Vancouver, ISO, and other styles
25

Mc Naughton, C. S., A. D. Clarke, S. Freitag, V. N. Kapustin, Y. Kondo, N. Moteki, L. Sahu, et al. "Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns." Atmospheric Chemistry and Physics Discussions 11, no. 1 (January 19, 2011): 1543–94. http://dx.doi.org/10.5194/acpd-11-1543-2011.

Full text
Abstract:
Abstract. In the spring of 2008 NASA and NOAA funded the ARCTAS and ARCPAC field campaigns as contributions to POLARCAT, a core IPY activity. During the campaigns the NASA DC-8, P-3B and NOAA WP-3D aircraft conducted over 150 h of in-situ sampling between 0.1 and 12 km throughout the Western Arctic north of 55° N (i.e. Alaska to Greenland). All aircraft were equipped with multiple wavelength measurements of aerosol optics, trace gas and aerosol chemistry measurements, as well as direct measurements of black carbon mass and the aerosol size distribution. Late April of 2008 proved to be exceptional in terms of Asian biomass burning emissions transported to the Western Arctic. Though these smoke plumes account for only 11–14% of the samples within the Western Arctic domain, they account for 43–47% of the total burden of black carbon. Light absorbing carbon from urban/industrial activities and biomass burning together account for 93–98% of total light absorption in the middle troposphere. Light absorption by mineral dust accounts for the remaining absorption in the middle troposphere, but up to 14% near the surface and in the upper troposphere below the tropopause. Stratifying the data to reduce the influence of dust allows us to determine mass absorption efficiencies for black carbon of 11.2±0.8, 9.5±0.6 and 7.4±0.7 m2 g−1 at 470, 530 and 660 nm wavelengths. These estimates are consistent with 35–80% enhancements in 530 nm absorption due to clear or slightly absorbing coatings of pure black carbon particulate. Assuming a 1/λ wavelength dependence for BC absorption, and assuming that refractory aerosol (420 °C, τ = 0.1 s) in low-dust samples is dominated by brown carbon, we derive mass absorption efficiencies for brown carbon of 0.83±0.15 and 0.27±0.08 m2 g−1 at 470 and 530 nm wavelengths. Estimates for the mass absorption efficiencies of Asian Dust are 0.034 m2 g−1 and 0.017 m2 g−1. However the values are highly uncertain due to the limitations imposed by PSAP instrument noise. In-situ ARCTAS/ARCPAC measurements during the IPY provide valuable constraints for absorbing aerosol over the Western Arctic, species which are currently poorly simulated over a region that is critically under-sampled.
APA, Harvard, Vancouver, ISO, and other styles
26

McNaughton, C. S., A. D. Clarke, S. Freitag, V. N. Kapustin, Y. Kondo, N. Moteki, L. Sahu, et al. "Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns." Atmospheric Chemistry and Physics 11, no. 15 (August 1, 2011): 7561–82. http://dx.doi.org/10.5194/acp-11-7561-2011.

Full text
Abstract:
Abstract. In the spring of 2008 NASA and NOAA funded the ARCTAS and ARCPAC field campaigns as contributions to POLARCAT, a core IPY activity. During the campaigns the NASA DC-8, P-3B and NOAA WP-3D aircraft conducted over 160 h of in-situ sampling between 0.1 and 12 km throughout the Western Arctic north of 55° N (i.e. Alaska to Greenland). All aircraft were equipped with multiple wavelength measurements of aerosol optics, trace gas and aerosol chemistry measurements, as well as direct measurements of the aerosol size distributions and black carbon mass. Late April of 2008 proved to be exceptional in terms of Asian biomass burning emissions transported to the Western Arctic. Though these smoke plumes account for only 11–14 % of the samples within the Western Arctic domain, they account for 42–47 % of the total burden of black carbon. Dust was also commonly observed but only contributes to 4–12 % and 3–8 % of total light absorption at 470 and 530 nm wavelengths above 6 km. Below 6 km, light absorption by carbonaceous aerosol derived from urban/industrial and biomass burning emissions account for 97–99 % of total light absorption by aerosol. Stratifying the data to reduce the influence of dust allows us to determine mass absorption efficiencies for black carbon of 11.2±0.8, 9.5±0.6 and 7.4±0.7 m2 g−1 at 470, 530 and 660 nm wavelengths. These estimates are consistent with 35–80 % enhancements in 530 nm absorption due to clear or slightly absorbing coatings of pure black carbon particulate. Assuming a 1/λ wavelength dependence for BC absorption, and assuming that refractory aerosol (420 °C, τ = 0.1 s) in low-dust samples is dominated by brown carbon, we derive mass absorption efficiencies for brown carbon of 0.83±0.15 and 0.27±0.08 m2 g−1 at 470 and 530 nm wavelengths. Estimates for the mass absorption efficiencies of Asian dust are 0.034 m2 g−1 and 0.017 m2 g−1. However the absorption efficiency estimates for dust are highly uncertain due to the limitations imposed by PSAP instrument noise. In-situ ARCTAS/ARCPAC measurements during the IPY provide valuable constraints for absorbing aerosol over the Western Arctic, species which are currently poorly simulated over a region that is critically under-sampled.
APA, Harvard, Vancouver, ISO, and other styles
27

Newman, Stuart M., Paul D. Green, Igor V. Ptashnik, Tom D. Gardiner, Marc D. Coleman, Robert A. McPheat, and Kevin M. Smith. "Airborne and satellite remote sensing of the mid-infrared water vapour continuum." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1968 (June 13, 2012): 2611–36. http://dx.doi.org/10.1098/rsta.2011.0223.

Full text
Abstract:
Remote sensing of the atmosphere from space plays an increasingly important role in weather forecasting. Exploiting observations from the latest generation of weather satellites relies on an accurate knowledge of fundamental spectroscopy, including the water vapour continuum absorption. Field campaigns involving the Facility for Airborne Atmospheric Measurements research aircraft have collected a comprehensive dataset, comprising remotely sensed infrared radiance observations collocated with accurate measurements of the temperature and humidity structure of the atmosphere. These field measurements have been used to validate the strength of the infrared water vapour continuum in comparison with the latest laboratory measurements. The recent substantial changes to self-continuum coefficients in the widely used MT_CKD (Mlawer–Tobin–Clough–Kneizys–Davies) model between 2400 and 3200 cm −1 are shown to be appropriate and in agreement with field measurements. Results for the foreign continuum in the 1300–2000 cm −1 band suggest a weak temperature dependence that is not currently included in atmospheric models. A one-dimensional variational retrieval experiment is performed that shows a small positive benefit from using new laboratory-derived continuum coefficients for humidity retrievals.
APA, Harvard, Vancouver, ISO, and other styles
28

Knobelspiesse, Kirk, Henrique M. J. Barbosa, Christine Bradley, Carol Bruegge, Brian Cairns, Gao Chen, Jacek Chowdhary, et al. "The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) airborne field campaign." Earth System Science Data 12, no. 3 (September 14, 2020): 2183–208. http://dx.doi.org/10.5194/essd-12-2183-2020.

Full text
Abstract:
Abstract. In the fall of 2017, an airborne field campaign was conducted from the NASA Armstrong Flight Research Center in Palmdale, California, to advance the remote sensing of aerosols and clouds with multi-angle polarimeters (MAP) and lidars. The Aerosol Characterization from Polarimeter and Lidar (ACEPOL) campaign was jointly sponsored by NASA and the Netherlands Institute for Space Research (SRON). Six instruments were deployed on the ER-2 high-altitude aircraft. Four were MAPs: the Airborne Hyper Angular Rainbow Polarimeter (AirHARP), the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), the Airborne Spectrometer for Planetary EXploration (SPEX airborne), and the Research Scanning Polarimeter (RSP). The remainder were lidars, including the Cloud Physics Lidar (CPL) and the High Spectral Resolution Lidar 2 (HSRL-2). The southern California base of ACEPOL enabled observation of a wide variety of scene types, including urban, desert, forest, coastal ocean, and agricultural areas, with clear, cloudy, polluted, and pristine atmospheric conditions. Flights were performed in coordination with satellite overpasses and ground-based observations, including the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI), sun photometers, and a surface reflectance spectrometer. ACEPOL is a resource for remote sensing communities as they prepare for the next generation of spaceborne MAP and lidar missions. Data are appropriate for algorithm development and testing, instrument intercomparison, and investigations of active and passive instrument data fusion. They are freely available to the public. The DOI for the primary database is https://doi.org/10.5067/SUBORBITAL/ACEPOL2017/DATA001 (ACEPOL Science Team, 2017), while for AirMSPI it is https://doi.org/10.5067/AIRCRAFT/AIRMSPI/ACEPOL/RADIANCE/ELLIPSOID_V006 and https://doi.org/10.5067/AIRCRAFT/AIRMSPI/ACEPOL/RADIANCE/TERRAIN_V006 (ACEPOL AirMSPI 75 Science Team, 2017a, b). GroundMSPI data are at https://doi.org/10.5067/GROUND/GROUNDMSPI/ACEPOL/RADIANCE_v009 (GroundMSPI Science Team, 2017). Table 3 lists further details of these archives. This paper describes ACEPOL for potential data users and also provides an outline of requirements for future field missions with similar objectives.
APA, Harvard, Vancouver, ISO, and other styles
29

Su, Z., W. J. Timmermans, C. van der Tol, R. J. J. Dost, R. Bianchi, J. A. Gómez, A. House, et al. "EAGLE 2006 – multi-purpose, multi-angle and multi-sensor in-situ, airborne and space borne campaigns over grassland and forest." Hydrology and Earth System Sciences Discussions 6, no. 2 (March 6, 2009): 1797–841. http://dx.doi.org/10.5194/hessd-6-1797-2009.

Full text
Abstract:
Abstract. EAGLE2006 – an intensive field campaign for the advances in land surface hydrometeorological processes – was carried out in the Netherlands from 8 to 18 June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multi-angle and multi-sensor satellite data, several airborne instruments – an optical imaging sensor, an imaging microwave radiometer, and a flux airplane – were deployed and extensive ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC) and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely related to the objectives of other European Space Agency (ESA) campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006). However, one important objective of the EAGLE 2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C- and L-Band) and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and provides an overview of the airborne and field campaign dataset. This dataset is available for scientific investigations and can be accessed on the ESA Principal Investigator Portal http://eopi.esa.int.
APA, Harvard, Vancouver, ISO, and other styles
30

Kaufmann, Thomas, and Gilberto Fisch. "VALIDAÇÃO DO MODELO LES PALM POR MEIO DE DADOS DE RADIOSONDAGENS E DE AERONAVE COLETADOS DURANTE O EXPERIMENTO GOAMAZON." Ciência e Natura 38 (July 20, 2016): 34. http://dx.doi.org/10.5902/2179460x19831.

Full text
Abstract:
In the present study, the evolution of the convective boundary layer over heterogeneous surface simulated by PALM LES is validated with radiosounding and airborne data from GoAmazon field campaigns, held in Amazon Rainforest during the 2014 wet and dry seasons. It is shown that, in general case, the growth of the convective boundary layer simulated by PALM compares well with observational data. However, during the morning time, the convective boundary layer depth is underestimated, whereas it showed acceptable response to the decreasing of the surface forcings along the late afternoon.
APA, Harvard, Vancouver, ISO, and other styles
31

Hannula, Henna-Reetta, Juha Lemmetyinen, Anna Kontu, Chris Derksen, and Jouni Pulliainen. "Spatial and temporal variation of bulk snow properties in northern boreal and tundra environments based on extensive field measurements." Geoscientific Instrumentation, Methods and Data Systems 5, no. 2 (August 8, 2016): 347–63. http://dx.doi.org/10.5194/gi-5-347-2016.

Full text
Abstract:
Abstract. An extensive in situ data set of snow depth, snow water equivalent (SWE), and snow density collected in support of the European Space Agency (ESA) SnowSAR-2 airborne campaigns in northern Finland during the winter of 2011–2012 is presented (ESA Earth Observation Campaigns data 2000–2016). The suitability of the in situ measurement protocol to provide an accurate reference for the simultaneous airborne SAR (synthetic aperture radar) data products over different land cover types was analysed in the context of spatial scale, sample spacing, and uncertainty. The analysis was executed by applying autocorrelation analysis and root mean square difference (RMSD) error estimations. The results showed overall higher variability for all the three bulk snow parameters over tundra, open bogs and lakes (due to wind processes); however, snow depth tended to vary over shorter distances in forests (due to snow–vegetation interactions). Sample spacing/sample size had a statistically significant effect on the mean snow depth over all land cover types. Analysis executed for 50, 100, and 200 m transects revealed that in most cases less than five samples were adequate to describe the snow depth mean with RMSD < 5 %, but for land cover with high overall variability an indication of increased sample size of 1.5–3 times larger was gained depending on the scale and the desired maximum RMSD. Errors for most of the land cover types reached ∼ 10 % if only three measurements were considered. The collected measurements, which are available via the ESA website upon registration, compose an exceptionally large manually collected snow data set in Scandinavian taiga and tundra environments. This information represents a valuable contribution to the snow research community and can be applied to various snow studies.
APA, Harvard, Vancouver, ISO, and other styles
32

Jung, Eunsil, Bruce A. Albrecht, Armin Sorooshian, Paquita Zuidema, and Haflidi H. Jonsson. "Precipitation susceptibility in marine stratocumulus and shallow cumulus from airborne measurements." Atmospheric Chemistry and Physics 16, no. 17 (September 14, 2016): 11395–413. http://dx.doi.org/10.5194/acp-16-11395-2016.

Full text
Abstract:
Abstract. Precipitation tends to decrease as aerosol concentration increases in warm marine boundary layer clouds at fixed liquid water path (LWP). The quantitative nature of this relationship is captured using the precipitation susceptibility (So) metric. Previously published works disagree on the qualitative behavior of So in marine low clouds: So decreases monotonically with increasing LWP or cloud depth (H) in stratocumulus clouds (Sc), while it increases and then decreases in shallow cumulus clouds (Cu). This study uses airborne measurements from four field campaigns on Cu and Sc with similar instrument packages and flight maneuvers to examine if and why So behavior varies as a function of cloud type. The findings show that So increases with H and then decreases in both Sc and Cu. Possible reasons for why these results differ from those in previous studies of Sc are discussed.
APA, Harvard, Vancouver, ISO, and other styles
33

Willatt, Rosemary, Seymour Laxon, Katharine Giles, Robert Cullen, Christian Haas, and Veit Helm. "Ku-band radar penetration into snow cover on Arctic sea ice using airborne data." Annals of Glaciology 52, no. 57 (2011): 197–205. http://dx.doi.org/10.3189/172756411795931589.

Full text
Abstract:
AbstractSatellite radar altimetry provides data to monitor winter Arctic sea-ice thickness variability on interannual, basin-wide scales. When using this technique an assumption is made that the peak of the radar return originates from the snow/ice interface. This has been shown to be true in the laboratory for cold, dry snow as is the case on Arctic sea ice during winter. However, this assumption has not been tested in the field. We use data from an airborne normal-incidence Ku-band radar altimeter and in situ field measurements, collected during the CryoSat Validation Experiment (CryoVEx) Bay of Bothnia, 2006 and 2008 field campaigns, to determine the dominant scattering surface for Arctic snow-covered sea ice. In 2006, when the snow temperatures were close to freezing, the dominant scattering surface in 25% of the radar returns appeared closer to the snow/ice interface than the air/snow interface. However, in 2008, when temperatures were lower, the dominant scattering surface appeared closer to the snow/ice interface than the air/snow interface in 80% of the returns.
APA, Harvard, Vancouver, ISO, and other styles
34

Alvarez, R. J., C. J. Senff, A. O. Langford, A. M. Weickmann, D. C. Law, J. L. Machol, D. A. Merritt, et al. "Development and Application of a Compact, Tunable, Solid-State Airborne Ozone Lidar System for Boundary Layer Profiling." Journal of Atmospheric and Oceanic Technology 28, no. 10 (October 1, 2011): 1258–72. http://dx.doi.org/10.1175/jtech-d-10-05044.1.

Full text
Abstract:
Abstract The National Oceanic and Atmospheric Administration/Earth System Research Laboratory/Chemical Sciences Division (NOAA/ESRL/CSD) has developed a versatile, airborne lidar system for measuring ozone and aerosols in the boundary layer and lower free troposphere. The Tunable Optical Profiler for Aerosol and Ozone (TOPAZ) lidar was deployed aboard a NOAA Twin Otter aircraft during the Texas Air Quality Study (TexAQS 2006) and the California Research at the Nexus of Air Quality and Climate Change (CalNex 2010) field campaigns. TOPAZ is capable of measuring ozone concentrations in the lower troposphere with uncertainties of several parts per billion by volume at 90-m vertical and 600-m horizontal resolution from an aircraft flying at 60 m s−1. The system also provides uncalibrated aerosol backscatter profiles at 18-m vertical and 600-m horizontal resolution. TOPAZ incorporates state-of-the-art technologies, including a cerium-doped lithium calcium aluminum fluoride (Ce:LiCAF) laser, to make it compact and lightweight with low power consumption. The tunable, three-wavelength UV laser source makes it possible to optimize the wavelengths for differing atmospheric conditions, reduce the interference from other atmospheric constituents, and implement advanced analysis techniques. This paper describes the TOPAZ lidar, its components and performance during testing and field operation, and the data analysis procedure, including a discussion of error sources. The performance characteristics are illustrated through a comparison between TOPAZ and an ozonesonde launched during the TexAQS 2006 field campaign. A more comprehensive set of comparisons with in situ measurements during TexAQS 2006 and an assessment of the TOPAZ accuracy and precision are presented in a companion paper.
APA, Harvard, Vancouver, ISO, and other styles
35

Palombo, Angelo, Simone Pascucci, Antonio Loperte, Antonio Lettino, Fabio Castaldi, Maria Rita Muolo, and Federico Santini. "Soil Moisture Retrieval by Integrating TASI-600 Airborne Thermal Data, WorldView 2 Satellite Data and Field Measurements: Petacciato Case Study." Sensors 19, no. 7 (March 28, 2019): 1515. http://dx.doi.org/10.3390/s19071515.

Full text
Abstract:
Soil moisture (SM) plays a fundamental role in the terrestrial water cycle and in agriculture, with key applications such as the monitoring of crop growing and hydrogeological management. In this study, a calibration procedure was applied to estimate SM based on the integration of in situ and airborne thermal remote sensing data. To this aim, on April 2018, two airborne campaigns were carried out with the TASI-600 multispectral thermal sensor on the Petacciato (Molise, Italy) area. Simultaneously, soil samples were collected in different agricultural fields of the study area to determine their moisture content and the granulometric composition. A WorldView 2 high-resolution visible-near infrared (VNIR) multispectral satellite image was acquired to calculate the albedo of the study area to be used together with the TASI images for the estimation of the apparent thermal inertia (ATI). Results show a good correlation (R2 = 0.62) between the estimated ATI and the SM of the soil samples measured in the laboratory. The proposed methodology has allowed us to obtain a SM map for bare and scarcely vegetated soils in a wide agricultural area in Italy which concerns cyclical hydrogeological instability phenomena.
APA, Harvard, Vancouver, ISO, and other styles
36

Stevens, Bjorn, Felix Ament, Sandrine Bony, Susanne Crewell, Florian Ewald, Silke Gross, Akio Hansen, et al. "A High-Altitude Long-Range Aircraft Configured as a Cloud Observatory: The NARVAL Expeditions." Bulletin of the American Meteorological Society 100, no. 6 (June 2019): 1061–77. http://dx.doi.org/10.1175/bams-d-18-0198.1.

Full text
Abstract:
AbstractA configuration of the High-Altitude Long-Range Research Aircraft (HALO) as a remote sensing cloud observatory is described, and its use is illustrated with results from the first and second Next-Generation Aircraft Remote Sensing for Validation (NARVAL) field studies. Measurements from the second NARVAL (NARVAL2) are used to highlight the ability of HALO, when configured in this fashion, to characterize not only the distribution of water condensate in the atmosphere, but also its impact on radiant energy transfer and the covarying large-scale meteorological conditions—including the large-scale velocity field and its vertical component. The NARVAL campaigns with HALO demonstrate the potential of airborne cloud observatories to address long-standing riddles in studies of the coupling between clouds and circulation and are helping to motivate a new generation of field studies.
APA, Harvard, Vancouver, ISO, and other styles
37

GUPTA, MUKESH, CAROLINA GABARRO, ANTONIO TURIEL, MARCOS PORTABELLA, and JUSTINO MARTINEZ. "On the retrieval of sea-ice thickness using SMOS polarization differences." Journal of Glaciology 65, no. 251 (May 14, 2019): 481–93. http://dx.doi.org/10.1017/jog.2019.26.

Full text
Abstract:
ABSTRACTArctic sea ice is going through a dramatic change in its extent and volume at an unprecedented rate. Sea-ice thickness (SIT) is a controlling geophysical variable that needs to be understood with greater accuracy. For the first time, a SIT-retrieval method that exclusively uses only airborne SIT data for training the empirical algorithm to retrieve SIT from Soil Moisture Ocean Salinity (SMOS) brightness temperature (TB) at different polarization is presented. A large amount of airborne SIT data has been used from various field campaigns in the Arctic conducted by different countries during 2011–15. The algorithm attempts to circumvent the issue related to discrimination between TB signatures of thin SIT versus low sea-ice concentration. The computed SIT has a rms error of 0.10 m, which seems reasonably good (as compared to the existing algorithms) for analysis at the used 25 km grid. This new SIT retrieval product is designed for direct operational application in ice prediction/climate models.
APA, Harvard, Vancouver, ISO, and other styles
38

Green, Paul D., Stuart M. Newman, Ralph J. Beeby, Jonathan E. Murray, Juliet C. Pickering, and John E. Harries. "Recent advances in measurement of the water vapour continuum in the far-infrared spectral region." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1968 (June 13, 2012): 2637–55. http://dx.doi.org/10.1098/rsta.2011.0263.

Full text
Abstract:
We present a new derivation of the foreign-broadened water vapour continuum in the far-infrared (far-IR) pure rotation band between 24 μm and 120 μm (85–420 cm −1 ) from field data collected in flight campaigns of the Continuum Absorption by Visible and IR radiation and Atmospheric Relevance (CAVIAR) project with Imperial College's Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) far-IR spectro-radiometer instrument onboard the Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft; and compare this new derivation with those recently published in the literature in this spectral band. This new dataset validates the current Mlawer–Tobin-Clough–Kneizys–Davies (MT-CKD) 2.5 model parametrization above 300 cm −1 , but indicates the need to strengthen the parametrization below 300 cm −1 , by up to 50 per cent at 100 cm −1 . Data recorded at a number of flight altitudes have allowed measurements within a wide range of column water vapour environments, greatly increasing the sensitivity of this analysis to the continuum strength.
APA, Harvard, Vancouver, ISO, and other styles
39

Sayer, Andrew M., N. Christina Hsu, Jaehwa Lee, Woogyung V. Kim, Sharon Burton, Marta A. Fenn, Richard A. Ferrare, et al. "Two decades observing smoke above clouds in the south-eastern Atlantic Ocean: Deep Blue algorithm updates and validation with ORACLES field campaign data." Atmospheric Measurement Techniques 12, no. 7 (July 4, 2019): 3595–627. http://dx.doi.org/10.5194/amt-12-3595-2019.

Full text
Abstract:
Abstract. This study presents and evaluates an updated algorithm for quantification of absorbing aerosols above clouds (AACs) from passive satellite measurements. The focus is biomass burning in the south-eastern Atlantic Ocean during the 2016 and 2017 ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) field campaign deployments. The algorithm retrieves the above-cloud aerosol optical depth (AOD) and underlying liquid cloud optical depth and is applied to measurements from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) from 1997 to 2017. Airborne NASA Ames Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) and NASA Langley High Spectral Resolution Lidar 2 (HSRL2) data collected during ORACLES provide important validation for spectral AOD for MODIS and VIIRS; as the SeaWiFS mission ended in 2010, it cannot be evaluated directly. The 4STAR and HSRL2 comparisons are complementary and reveal performance generally in line with uncertainty estimates provided by the optimal estimation retrieval framework used. At present the two MODIS-based data records seem the most reliable, although there are differences between the deployments, which may indicate that the available data are not yet sufficient to provide a robust regional validation. Spatiotemporal patterns in the data sets are similar, and the time series are very strongly correlated with each other (correlation coefficients from 0.95 to 0.99). Offsets between the satellite data sets are thought to be chiefly due to differences in absolute calibration between the sensors. The available validation data for this type of algorithm are limited to a small number of field campaigns, and it is strongly recommended that such airborne measurements continue to be made, both over the southern Atlantic Ocean and elsewhere.
APA, Harvard, Vancouver, ISO, and other styles
40

Vernier, J. P., T. D. Fairlie, T. Deshler, M. Venkat Ratnam, H. Gadhavi, B. S. Kumar, M. Natarajan, et al. "BATAL: The Balloon Measurement Campaigns of the Asian Tropopause Aerosol Layer." Bulletin of the American Meteorological Society 99, no. 5 (May 2018): 955–73. http://dx.doi.org/10.1175/bams-d-17-0014.1.

Full text
Abstract:
AbstractWe describe and show results from a series of field campaigns that used balloonborne instruments launched from India and Saudi Arabia during the summers 2014–17 to study the nature, formation, and impacts of the Asian Tropopause Aerosol Layer (ATAL). The campaign goals were to i) characterize the optical, physical, and chemical properties of the ATAL; ii) assess its impacts on water vapor and ozone; and iii) understand the role of convection in its formation. To address these objectives, we launched 68 balloons from four locations, one in Saudi Arabia and three in India, with payload weights ranging from 1.5 to 50 kg. We measured meteorological parameters; ozone; water vapor; and aerosol backscatter, concentration, volatility, and composition in the upper troposphere and lower stratosphere (UTLS) region. We found peaks in aerosol concentrations of up to 25 cm–3 for radii > 94 nm, associated with a scattering ratio at 940 nm of ∼1.9 near the cold-point tropopause. During medium-duration balloon flights near the tropopause, we collected aerosols and found, after offline ion chromatography analysis, the dominant presence of nitrate ions with a concentration of about 100 ng m–3. Deep convection was found to influence aerosol loadings 1 km above the cold-point tropopause. The Balloon Measurements of the Asian Tropopause Aerosol Layer (BATAL) project will continue for the next 3–4 years, and the results gathered will be used to formulate a future National Aeronautics and Space Administration–Indian Space Research Organisation (NASA–ISRO) airborne campaign with NASA high-altitude aircraft.
APA, Harvard, Vancouver, ISO, and other styles
41

Cai, Huaqing, Wen-Chau Lee, Michael M. Bell, Cory A. Wolff, Xiaowen Tang, and Frank Roux. "A Generalized Navigation Correction Method for Airborne Doppler Radar Data." Journal of Atmospheric and Oceanic Technology 35, no. 10 (October 2018): 1999–2017. http://dx.doi.org/10.1175/jtech-d-18-0028.1.

Full text
Abstract:
AbstractUncertainties in aircraft inertial navigation system and radar-pointing angles can have a large impact on the accuracy of airborne dual-Doppler analyses. The Testud et al. (THL) method has been routinely applied to data collected by airborne tail Doppler radars over flat and nonmoving terrain. The navigation correction method proposed in Georgis et al. (GRH) extended the THL method over complex terrain and moving ocean surfaces by using a variational formulation but its capability over ocean has yet to be tested. Recognizing the limitations of the THL method, Bosart et al. (BLW) proposed to derive ground speed, tilt, and drift errors by statistically comparing aircraft in situ wind with dual-Doppler wind at the flight level. When combined with the THL method, the BLW method can retrieve all navigation errors accurately; however, it can be applied only to flat surfaces, and it is rather difficult to automate. This paper presents a generalized navigation correction method (GNCM) based on the GRH method that will serve as a single algorithm for airborne tail Doppler radar navigation correction for all possible surface conditions. The GNCM includes all possible corrections in the cost function and implements a new closure assumption by taking advantage of an accurate aircraft ground speed derived from GPS technology. The GNCM is tested extensively using synthetic airborne Doppler radar data with known navigation errors and published datasets from previous field campaigns. Both tests show the GNCM is able to correct the navigation errors associated with airborne tail Doppler radar data with adequate accuracy.
APA, Harvard, Vancouver, ISO, and other styles
42

Behrendt, Andreas, Volker Wulfmeyer, Thorsten Schaberl, Hans-Stefan Bauer, Christoph Kiemle, Gerhard Ehret, Cyrille Flamant, et al. "Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part II: Airborne-to-Airborne Systems." Journal of Atmospheric and Oceanic Technology 24, no. 1 (January 1, 2007): 22–39. http://dx.doi.org/10.1175/jtech1925.1.

Full text
Abstract:
Abstract The dataset of the International H2O Project (IHOP_2002) gives the first opportunity for direct intercomparisons of airborne water vapor lidar systems and allows very important conclusions to be drawn for future field campaigns. Three airborne differential absorption lidar (DIAL) systems were operated simultaneously during some IHOP_2002 missions: the DIAL of Deutsches Zentrum für Luft- und Raumfahrt (DLR), the Lidar Atmospheric Sensing Experiment (LASE) of the National Aeronautics and Space Administration (NASA) Langley Research Center, and the Lidar Embarque pour l’etude des Aerosols et des Nuages de l’interaction Dynamique Rayonnement et du cycle de l’Eau (LEANDRE II) of the Centre National de la Recherche Scientifique (CNRS). Data of one formation flight with DLR DIAL and LEANDRE II were investigated, which consists of 54 independent profiles of the two instruments measured with 10-s temporal average. For the height range of 1.14–1.64 km above sea level, a bias of (−0.41 ± 0.16) g kg−1 or −7.9% ± 3.1% was found for DLR DIAL compared to LEANDRE II (LEANDRE II drier) as well as root-mean-square (RMS) deviations of (0.87 ± 0.18) g kg−1 or 16.9% ± 3.5%. With these results, relative bias values of −9.3%, −1.5%, +2.7%, and +8.1% result for LEANDRE II, DLR DIAL, the scanning Raman lidar (SRL), and LASE, respectively, using the mutual bias values determined in Part I for the latter three sensors. From the three possible profile-to-profile intercomparisons between DLR DIAL and LASE, one case cannot provide information on the system performances due to very large inhomogeneity of the atmospheric water vapor field, while one of the two remaining two cases showed a difference of −4.6% in the height range of 1.4–3.0 km and the other of −25% in 1.3–3.8 km (in both cases DLR DIAL was drier than LASE). The airborne-to-airborne comparisons showed that if airborne water vapor lidars are to be validated down to an accuracy of better than 5% in the lower troposphere, the atmospheric variability of water vapor has to be taken into account down to scales of less than a kilometer unless a sufficiently large number of intercomparison cases is available to derive statistically solid biases and RMS deviations. In conclusion, the overall biases between the water vapor data of all three airborne lidar systems operated during IHOP_2002 are smaller than 10% in the present stage of data evaluation, which confirms the previous estimates of the instrumental accuracies for all the systems.
APA, Harvard, Vancouver, ISO, and other styles
43

Fix, Andreas, Axel Amediek, Christian Büdenbender, Gerhard Ehret, Christoph Kiemle, Mathieu Quatrevalet, Martin Wirth, et al. "CH4 and CO2 IPDA Lidar Measurements During the Comet 2018 Airborne Field Campaign." EPJ Web of Conferences 237 (2020): 03005. http://dx.doi.org/10.1051/epjconf/202023703005.

Full text
Abstract:
Installed onboard the German research aircraft HALO, the integrated-path differential-absorption (IPDA) lidar CHARM-F measures weighted vertical columns of both greenhouse gases (GHG) below the aircraft and along its flight track, aiming at high accuracy and precision. Results will be shown from the deployment during the CoMet field campaign that was carried out in spring 2018, with its main focus on one of the major European hot spots in methane emissions: the Upper Silesian Coal Basin (USCB) in Poland. First analyses reveal a measurement precision of below 0.5% for 20-km averages and also low bias, which was assessed by comparison with in-situ instruments. The measurements flights were designed to capture individual CH4 and CO2 plumes from e.g. coal mine venting and coal-fired power plants, respectively, but also to measure large and regional scale GHG gradients and to provide comparisons with the Total Carbon Column Observing Network (TCCON). Many other different instruments, both airborne and ground-based, complemented the lidar measurements to provide a comprehensive dataset for model analyses. CHARM-F also acts as the airborne demonstrator for MERLIN, the “Methane Remote Lidar Mission”, conducted by the German and French space agencies, DLR and CNES, with launch foreseen in ~ 2024. In this context, the airborne lidar data are likewise important for mission support such as for e.g. algorithm development and improvement and, moreover, the CoMet mission was also an important step for MERLIN validation preparation.
APA, Harvard, Vancouver, ISO, and other styles
44

Iordache, Marian-Daniel, Vasco Mantas, Elsa Baltazar, Klaas Pauly, and Nicolas Lewyckyj. "A Machine Learning Approach to Detecting Pine Wilt Disease Using Airborne Spectral Imagery." Remote Sensing 12, no. 14 (July 15, 2020): 2280. http://dx.doi.org/10.3390/rs12142280.

Full text
Abstract:
Pine Wilt Disease is one of the most destructive pests affecting coniferous forests. After being infected by the harmful Bursaphelenchus xylophilus nematode, most trees die within one year. The complex spreading pattern of the disease and the tedious hard labor process of diagnosis involving field wood sampling followed by laboratory analysis call for alternative methods to detect and manage the infected areas. Remote sensing comes naturally into play owing to the possibility of covering relatively large areas and the ability to discriminate healthy from sick trees based on spectral characteristics. This paper presents the development of machine learning classification algorithms for the detection of Pine Wilt Disease in Pinus pinaster, performed in the framework of the European Commission’s Horizon 2020 project “Operational Forest Monitoring using Copernicus and UAV Hyperspectral Data” (FOCUS) in two provinces of central Portugal. Five flight campaigns have been carried out in two consecutive years in order to capture a multitemporal variation of disease distribution. Classification algorithms based on a Random Forest approach were separately designed for the acquired very-high-resolution multispectral and hyperspectral data, respectively. Both algorithms achieved overall accuracies higher than 0.91 in test data. Furthermore, our study shows that the early detection of decaying trees is feasible, even before symptoms are visible in the field.
APA, Harvard, Vancouver, ISO, and other styles
45

Scarino, A. J., M. D. Obland, J. D. Fast, S. P. Burton, R. A. Ferrare, C. A. Hostetler, L. K. Berg, et al. "Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES." Atmospheric Chemistry and Physics Discussions 13, no. 5 (May 23, 2013): 13721–72. http://dx.doi.org/10.5194/acpd-13-13721-2013.

Full text
Abstract:
Abstract. The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying characteristics of the planetary boundary layer (PBL). The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid in characterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML), which is a subset within the PBL. This work illustrates the temporal and spatial variability of the ML in the vicinity of Los Angeles and Sacramento, CA. ML heights derived from HSRL measurements are compared to PBL heights derived from radiosonde profiles, ML heights measured from ceilometers, and simulated PBL heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. Comparisons between the HSRL ML heights and the radiosonde profiles in Sacramento result in a correlation coefficient value (R) of 0.93 (root-mean-square (RMS) difference of 157 m and bias difference (HSRL – radiosonde) of 57 m). HSRL ML heights compare well with those from the ceilometer in the LA Basin with an R of 0.89 (RMS difference of 108 m and bias difference (HSRL – Ceilometer) of −9.7 m) for distances of up to 30 km between the B-200 flight track and the ceilometer site. Simulated PBL heights from WRF-Chem were compared with those obtained from all flights for each campaign, producing an R of 0.58 (RMS difference of 604 m and a bias difference (WRF-Chem – HSRL) of −157 m) for CalNex and 0.59 (RMS difference of 689 m and a bias difference (WRF-Chem – HSRL) of 220 m) for CARES. Aerosol backscatter simulations are also available from WRF-Chem and are compared to those from HSRL to examine differences among the methods used to derive ML heights.
APA, Harvard, Vancouver, ISO, and other styles
46

Bian, H., P. R. Colarco, M. Chin, G. Chen, J. M. Rodriguez, Q. Liang, D. Blake, et al. "Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign." Atmospheric Chemistry and Physics 13, no. 9 (May 7, 2013): 4707–21. http://dx.doi.org/10.5194/acp-13-4707-2013.

Full text
Abstract:
Abstract. We use the NASA GEOS-5 transport model with tagged tracers to investigate the contributions of different regional sources of CO and black carbon (BC) to their concentrations in the Western Arctic (i.e., 50–90° N and 190–320° E) in spring and summer 2008. The model is evaluated by comparing the results with airborne measurements of CO and BC from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaigns to demonstrate the strengths and limitations of our simulations. We also examine the reliability of tagged CO tracers in characterizing air mass origins using the measured fossil fuel tracer of dichloromethane and the biomass burning tracer of acetonitrile. Our tagged CO simulations suggest that most of the enhanced CO concentrations (above background level from CH4 production) observed during April originate from Asian anthropogenic emissions. Boreal biomass burning emissions and Asian anthropogenic emissions are of similar importance in July domain wise, although the biomass burning CO fraction is much larger in the area of the ARCTAS field experiments. The fraction of CO from Asian anthropogenic emissions is larger in spring than in summer. European sources make up no more than 10% of CO levels in the campaign domain during either period. Comparisons of CO concentrations along the flight tracks with regional averages from GEOS-5 show that the along-track measurements are representative of the concentrations within the large domain of the Western Arctic in April but not in July.
APA, Harvard, Vancouver, ISO, and other styles
47

Angheluță, L. M., R. Rădvan, A. I. Chelmuș, L. Ratoiu, I. M. Cortea, and L. Ghervase. "VIRTUAL ARCHAEODROME FOR THE ARCHAEOLOGICAL SITE FROM ULPIA TRAIANA SARMIZEGETUSA." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-5/W1 (May 16, 2017): 351–56. http://dx.doi.org/10.5194/isprs-archives-xlii-5-w1-351-2017.

Full text
Abstract:
This paper presents an ongoing work within a national project regarding the scientific investigation of one of the most important archaeological sites in Romania: Ulpia Traiana Sarmizegetusa. Although the project has many objectives, in this paper we will focus on the development work of a virtual archaeodrome for the archaeological park. In this regard several field campaigns were organized using the ART4ART mobile laboratory for in-situ non-invasive scientific data acquisition and an online instrument for data reporting and visualizing is currently under development. This work represents a case study of several archaeological assets comprising chronologically layered historical studies, high resolution 3D digital models, ground penetrating radar survey and airborne imaging: LIDAR, multispectral and aerial photogrammetry.
APA, Harvard, Vancouver, ISO, and other styles
48

Wang, Lihua, Michael J. Newchurch, Raul J. Alvarez II, Timothy A. Berkoff, Steven S. Brown, William Carrion, Russell J. De Young, et al. "Quantifying TOLNet ozone lidar accuracy during the 2014 DISCOVER-AQ and FRAPPÉ campaigns." Atmospheric Measurement Techniques 10, no. 10 (October 23, 2017): 3865–76. http://dx.doi.org/10.5194/amt-10-3865-2017.

Full text
Abstract:
Abstract. The Tropospheric Ozone Lidar Network (TOLNet) is a unique network of lidar systems that measure high-resolution atmospheric profiles of ozone. The accurate characterization of these lidars is necessary to determine the uniformity of the network calibration. From July to August 2014, three lidars, the TROPospheric OZone (TROPOZ) lidar, the Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar, and the Langley Mobile Ozone Lidar (LMOL), of TOLNet participated in the Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission and the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) to measure ozone variations from the boundary layer to the top of the troposphere. This study presents the analysis of the intercomparison between the TROPOZ, TOPAZ, and LMOL lidars, along with comparisons between the lidars and other in situ ozone instruments including ozonesondes and a P-3B airborne chemiluminescence sensor. The TOLNet lidars measured vertical ozone structures with an accuracy generally better than ±15 % within the troposphere. Larger differences occur at some individual altitudes in both the near-field and far-field range of the lidar systems, largely as expected. In terms of column average, the TOLNet lidars measured ozone with an accuracy better than ±5 % for both the intercomparison between the lidars and between the lidars and other instruments. These results indicate that these three TOLNet lidars are suitable for use in air quality, satellite validation, and ozone modeling efforts.
APA, Harvard, Vancouver, ISO, and other styles
49

Díaz-Delgado, Ricardo, Gábor Ónodi, György Kröel-Dulay, and Miklós Kertész. "Enhancement of Ecological Field Experimental Research by Means of UAV Multispectral Sensing." Drones 3, no. 1 (January 7, 2019): 7. http://dx.doi.org/10.3390/drones3010007.

Full text
Abstract:
Although many climate research experiments are providing valuable data, long-term measurements are not always affordable. In the last decades, several facilities have secured long-term experiments, but few studies have incorporated spatial and scale effects. Most of them have been implemented in experimental agricultural fields but none for ecological studies. Scale effects can be assessed using remote sensing images from space or airborne platforms. Unmanned aerial vehicles (UAVs) are contributing to an increased spatial resolution, as well as becoming the intermediate scale between ground measurements and satellite/airborne image data. In this paper we assess the applicability of UAV-borne multispectral images to provide complementary experimental data collected at point scale (field sampling) in a long-term rain manipulation experiment located at the Kiskun Long-Term Socio-Ecological Research (LTSER) site named ExDRain to assess the effects on grassland vegetation. Two multispectral sensors were compared at different scales, the Parrot Sequoia camera on board a UAV and the portable Cropscan spectroradiometer. The NDVI values were used to assess the effect of plastic roofs and a proportional reduction effect was found for Sequoia-derived NDVI values. Acceptable and significant positive relationships were found between both sensors at different scales, being stronger at Cropscan measurement scale. Differences found at plot scale might be due to heterogeneous responses to treatments. Spatial variability analysis pointed out a more homogeneous response for plots submitted to severe and moderate drought. More investigation is needed to address the possible effect of species abundance on NDVI at plot scale contributing to a more consistent representation of ground measurements. The feasibility of carrying out systematic UAV flights coincident or close to ground campaigns will certainly reveal the consistency of the observed spatial patterns in the long run.
APA, Harvard, Vancouver, ISO, and other styles
50

Zingerle, P., R. Pail, M. Scheinert, and T. Schaller. "Evaluation of terrestrial and airborne gravity data over Antarctica – a generic approach." Journal of Geodetic Science 9, no. 1 (January 1, 2019): 29–40. http://dx.doi.org/10.1515/jogs-2019-0004.

Full text
Abstract:
Abstract The AntGrav project, funded by the German Research Foundation (DFG) has the main objective to homogenize and optimize Antarctic gravity field information. Within this project an evaluation procedure is needed to inspect all different kind of gravity field surveys available in Antarctica. In this paper a suitable methodology is proposed. We present an approach for fast 3D gravity point data reduction in different spectral bands. This is achieved through pre-calculating a fine 3D mesh of synthesized gravity functionals over the entirety of the Antarctic continent, for which two different global models are used: the combined satellite model GOCO05s for the long-wavelength part, and the topographic model Earth2014 for the shorter wavelengths. To maximize the applicability separate meshes are calculated for different spectral bands in order to specifically reduce a certain band or a selected combination. All meshes are calculated for gravity anomalies as well as gravity disturbances. Utilizing these meshes, synthesized gravity data at arbitrary positions is computed by conventional 3D interpolation methods (e.g. linear, cubic or spline). It is shown that the applied approach can reach a worst-case interpolation error of less than 1 mGal. Evaluation results are presented for the AntGG grid and exemplary for the in-situ measurements of the AGAP and BAS-LAND campaigns. While general properties, large-scale errors and systematic effects can usually be detected, small-scale errors (e.g. of single points) are mostly untraceable due to the uncertainties within the topographic model.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography