Academic literature on the topic 'Aircraft structure'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aircraft structure.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aircraft structure"

1

Wang, X., H. Yu, and D. Feng. "Pose estimation in runway end safety area using geometry structure features." Aeronautical Journal 120, no. 1226 (April 2016): 675–91. http://dx.doi.org/10.1017/aer.2016.16.

Full text
Abstract:
ABSTRACTA novel image-based method is presented in this paper to estimate the poses of commercial aircrafts in a runway end safety area. Based on the fact that similar poses of an aircraft will have similar geometry structures, this method first extracts features to describe the structure of an aircraft's fuselage and aerofoil by RANdom Sample Consensus algorithm (RANSAC), and then uses the central moments to obtain the aircrafts’ pose information. Based on the proposed pose information, a two-step feature matching strategy is further designed to identify an aircraft's particular pose. In order to validate the accuracy of the pose estimation and the effectiveness of the proposed algorithm, we construct a pose database of two common aircrafts in Asia. The experiments show that the designed low-dimension features can accurately capture the aircraft's pose information and the proposed algorithm can achieve satisfied matching accuracy.
APA, Harvard, Vancouver, ISO, and other styles
2

Yao, Man. "Water Impact Analysis for Aircraft over Sea." Applied Mechanics and Materials 341-342 (July 2013): 563–66. http://dx.doi.org/10.4028/www.scientific.net/amm.341-342.563.

Full text
Abstract:
The modern aircrafts flying height is strictly limited by the conditions on the sea. Terrible conditions may lead overturning or dropping into the water to the aircraft. Whats more, the structure of the aircraft may be broken by water-impact force. The affection of the water impact must be considered to promise the safety of the aircraft. This paper focuses on the water impact to a typical symmetrical aircraft flying above sea. The water impact force related to the trajectory angle and equivalent pitch angle is researched based on the water impact force model of a two-dimensional wedge. In addition, concerning with the limitation of the aircrafts overload, the water-contact condition is proposed to avert attitude overturning and structure broken of the aircraft.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, ying-lei, zong-jie Cao, and Zi-li Wang. "Topological Optimization of Aircraft Frame Structures with the Variable Density Method." MATEC Web of Conferences 198 (2018): 05008. http://dx.doi.org/10.1051/matecconf/201819805008.

Full text
Abstract:
In this paper, a variable density topological optimization method is derived on the basis of Lagrange function, and the RAMP interpolation model is selected to optimize the frame structure of aircrafts with variable density method. For an example, the ordinary frame structure of the domestic planes is taken to illustrate validity of the presented method. The numerical model of the aircraft frames is obtained. The optimal design analysis of the model structural distribution and the weight loss requirement of the aircraft frame structures are realized. In conclusion, the structural distribution law of the topology optimization is summarized according to the topology optimization structures.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Lin Lin, and Zhi Wen Wu. "Civil Unmanned Aircraft System Maintenance Structure." Advanced Materials Research 734-737 (August 2013): 2742–45. http://dx.doi.org/10.4028/www.scientific.net/amr.734-737.2742.

Full text
Abstract:
Three maintenance structures of avionics were investigated in the article, including centralized intermediated repair concept, three-level maintenance structure, and the two-level maintenance structure. Both the advantages and disadvantages of these three maintenance structures were fully discussed, especially the potential in civil UAS maintenance. The investigation result shows that the two-level maintenance structure is the best choice for the civil unmanned aircraft maintenance at present. Key technologies of the two-level maintenance structure used for civil UAS were also discussed in this article. The advisements were given in these discussions.
APA, Harvard, Vancouver, ISO, and other styles
5

Maricic, N. "Influence of structural backlash and friction in command system on the aircraft flutter." Theoretical and Applied Mechanics 31, no. 3-4 (2004): 317–44. http://dx.doi.org/10.2298/tam0404317m.

Full text
Abstract:
Experience has shown that aircraft structures are generally affected by structural nonlinearities. The focus in this paper is concentrated on backlash and friction described in hysteresis loop of the classical aircraft command systems and their influence on flutter of aircraft. Based on AGARD No. 665 in paper is done nonlinear flutter velocity analysis in function of backlash and friction in the classical command system of aircraft. Unsteady aerodynamic forces are calculated based on well known Doublet- Lattice Method (DLM). Structural input data are taken from AGARD No. 665. Flutter eigenvalues are obtained by modified k-method. The flutter model of nonlinear aircraft structure is developed on base of harmonic linearization. The aim of paper is to achieve useful and relatively reliable tool for critical observations on different recommendations given in the various airworthiness regulations for nonlinear characteristics of hysteresis loops in the classical command systems of aircrafts. .
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jun, Wei Yang, and Yang Pei. "Vulnerability Assessment for Fire and Explosion Suppression Measures of Aircraft Fuel System." Advanced Materials Research 510 (April 2012): 64–69. http://dx.doi.org/10.4028/www.scientific.net/amr.510.64.

Full text
Abstract:
Fuel system is the most vulnerable system on fixed wing aircraft. When penetrated by threat propagators, it is liable to be damaged by combustion and explosion. Thus, fire/explosion suppression for fuel system are important measures to improve the aircrafts survivability. In this paper, the whole aircraft vulnerability model which consists of aircraft configuration, structure, and systems is constructed by CATIA software, the basic steps for vulnerability quantitative computation are descried, and the computing formulas of three kill modes are presented. The vulnerability of one aircraft before and after adopting fire/explosion suppression measures are analyzed. The results show that fire/explosion suppression measures can effectively decrease the aircrafts vulnerable area and kill probability.
APA, Harvard, Vancouver, ISO, and other styles
7

IMAMURA, Tsugio. "Light metal for aircraft structure." Journal of Japan Institute of Light Metals 41, no. 9 (1991): 623–34. http://dx.doi.org/10.2464/jilm.41.623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

YOSHIDA, Osamu. "Bonded structure application for aircraft." Journal of the Japan Welding Society 60, no. 3 (1991): 212–18. http://dx.doi.org/10.2207/qjjws1943.60.212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

He, Y., C. Li, T. Zhang, J. Liu, C. Gao, B. Hou, and L. Wu. "Service fatigue life and service calendar life limits of aircraft structure: aircraft structural life envelope." Aeronautical Journal 120, no. 1233 (September 19, 2016): 1746–62. http://dx.doi.org/10.1017/aer.2016.93.

Full text
Abstract:
ABSTRACTThe service life of aircraft structure includes the fatigue life and calendar life. The Aircraft Structural Life Envelop (ASLE) is a safe and reliable life scope of aircraft structures in service. The specific steps to establish the ASLE are developed, and a residual life prediction method for aircraft structure under service environments is established by combining the ASLE with the Miner theory. Furthermore, a service life extension method of aircraft structure is proposed based on a scope extension of the ASLE, including methods based on reliability analysis and structural repair. Finally, an application example of the ASLE is presented.
APA, Harvard, Vancouver, ISO, and other styles
10

Purnomo, Muhamad Jalu. "ANALISIS STATIK KEKUATAN STRUKTUR FITTING PADA LANDING GEAR PADA PESAWAT N-219." Angkasa: Jurnal Ilmiah Bidang Teknologi 7, no. 2 (September 13, 2017): 105. http://dx.doi.org/10.28989/angkasa.v7i2.154.

Full text
Abstract:
Aircraft structures to be made stronger in order to be able to withstand the force received. The forces acting on the structure can cause deformation and result in structural failure. All components o f the structure o f the aircraft is an important part and it requires a good working resilience to maintain the security (safety). One important component of the aircraft that must be considered is the structure of the landing gear fittings. Fitting is contained in the structure that functions held their landing gear load received all the landing gear and as an intermediary for the landing gear and airframe structure of the aircraft. Because Landing Gear is one important component in the structure of the aircraft. Strength landing gear fittings will be calculated at the time of landing, the burden derived from the speed of the aircraft landing and aircraft load.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aircraft structure"

1

Svalstedt, Mats, and Sofia Swedberg. "Commercial Aircraft Wing Structure : - Design of a Carbon Fiber Composite Structure." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276702.

Full text
Abstract:
This project explores the classical wing structure of an commercial aircraft for an all carbon fiber reinforced polymer unmanned aerial vehicle(UAV). It is part of a collaborative work consisting of several groups researching different parts of the aircraft. The objective of this report is to present the design of the inner wing structure for a greener, more efficient scaled 2:1 version of the Skywalker X8. In order to make the aircraft as efficient as possible, the structure needs to be lightweight. The loads were first approximated using XFLR5 and a first design made. The design was then tested using finite element analysis (FEA) in the programme Ansys Static Structural. The material that was tested was carbon fiber/epoxy prepreg. The final design of the wing weighs 3.815 kg, and consists of one spar and a skin thickness of 1 mm. The weight of the whole aircraft, including the propulsion system and a sharklet at both wingtips researched by other groups, is 20.262 kg. The lift-to-drag ratio was also calculated, and the most efficient angle of attack was concluded to be around 2-3°.
Detta projekt utforskar den klassiska vingstrukturen av ett kommersiellt flygplan för en obemannad luftfarkost gjord helt i kolfiberarmerad polymer. Det är en del av ett samarbete som består av flera projektgrupper som forskar på olika delar av flygplanet. Målet med projektet är att designa den inre vingstrukturen för en miljövänligare, mer effektiv uppskalad 2:1 version av drönaren Skywalker X8. För att göra flygplanet så effektiv som möjligt så behöver den vara lättviktig. Lasterna var först uppskattade via XFLR5 och en första design gjordes. Designen testades sedan med finita elementmetoden (FEM) i programmet Ansys Static Structural. Materialet som testades var kolfiber/epoxi prepreg. Den slutgiltiga vingdesignen väger 3.815 kg, och består av en bom och en tjocklek på 1 mm av vingskalet. Totala vikten av flygplanet, inklusive framdrivningssystemet samt virveldämpare på båda vingspetsarna som är framtagna av andra grupper, är 20.262 kg. Glidtalet beräknades även, och är som mest effektiv runt 2-3°.
APA, Harvard, Vancouver, ISO, and other styles
2

Eustace, Paul Alan. "Structural mass of innovative concept aircraft." Thesis, Loughborough University, 2001. https://dspace.lboro.ac.uk/2134/7361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bingham, Christopher Malcolm. "Application of variable structure control methods to actuator nonlinearities in aerospace systems." Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spurgeon, S. K. "An assessment of robustness of flight control systems based on variable structure techniques." Thesis, University of York, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dalton, Roger Patrick. "Propagation of LAMB waves in metallic aircraft fuselage structure." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Faddy, James Malcolm Pullin Dale Ian. "Flow structure in a model of aircraft trailing vortices /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05272005-163801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reytier, Thomas. "Modelling fatigue spectra of aircraft structure under gust loads." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1614/.

Full text
Abstract:
Cette thèse est consacrée à l'analyse de fatigue et de tolérance aux dommages des structures d'avions soumis aux rafales de vent. L'analyse de fatigue et de tolérance aux dommages est un enjeu essentiel dans la conception des structures d'avions. Elle permet de définir un programme d'inspection de la structure afin d'assurer sa sécurité tout au long de la vie de l'avion. La première partie passe en revue l'état de l'art dans les différents domaines impliqués dans le processus global d'analyse de fatigue des structures d'avions soumis aux rafales de vent: la modélisation de la turbulence atmosphérique, le calcul des charges et des contraintes à l'aide d'analyses par éléments finis, la construction du spectre de fatigue et enfin, l'analyse de fatigue et de tolérance aux dommages. La deuxième partie présente le processus complet actuellement implémenté au sein d'Airbus. Les points forts et les points faibles de ce processus sont d'identifiés et permettent de dégager des axes d'amélioration. A partir du modèle de turbulence continue basé sur la densité spectrale de puissance (DSP) de Von Karman, les contraintes calculées sont insérées selon des statistiques établies par des mesures envol dans le spectre de fatigue pour former une séquence de cycles de contraintes. Les données d'entrée pour l'analyse de fatigue et tolérance aux dommages sont obtenues à partir de la définition des différents profils de mission, des valeurs de contraintes unitaires, de la réponse dynamique de la structure et des statistiques de turbulence. Dans la troisième partie, une nouvelle méthodologie est présentée afin d'obtenir des séquences temporelles des contraintes dues à la turbulence de manière précise et efficace. Cette méthode s'appuie sur de nouveaux résultats permettant de générer des signaux temporels corrélés à partir des DSP. Tout d'abord, les DSP des différentes composantes des contraintes sont directement obtenues à l'aide d'une analyse par éléments finis à partir de la DSP de Von Karman. Puis, les séquences temporelles corrélées de ces contraintes sont générées et sont ensuite distribuées dans le spectre de fatigue selon la loi statistique de l'intensité de la turbulence atmosphérique. Ce nouveau processus permet d'améliorer le calcul des contraintes et la génération du spectre de fatigue. Il remplace les statistiques de turbulence par des statistiques de franchissement de niveaux de contraintes raisonnablement conservatives définies par une formule analytique. De plus, le temps de livraison des données d'entrée pour l'analyse de fatigue et tolérance aux dommages est significativement réduit. Les résultats présentés, issus de l'analyse de fatigue et de tolérance aux dommages, permettent de souligner la qualité des améliorations apportées à la fois en termes de précision et de durée du processus
This thesis is dedicated to the fatigue and damage tolerance analysis of the aircraft structures under gust loads. The fatigue and damage tolerance analysis is a significant issue in the aircraft structure design. It aims at defining the inspection program of the aircraft structure in order to ensure its safety through its entire life. The first part reviews the state-of-the-art in the various involved topics for the global process for fatigue analysis of aircraft structure under gust loads: the atmospheric turbulence modelling, the load and stress computation by a finite element analysis, the generation of the fatigue spectrum and at the end, the fatigue and damage tolerance analysis. The second part presents the whole process currently implemented at Airbus. The main strengths and weaknesses are pointed out and this en-ables the identification of several improvement axes. From the continuous turbulence model based on the Von Karman Power Spectral Density(PSD), the computed stresses are included according to statistics established from in-flight measurements in the fatigue spectrum in order to build a stress cycle sequence. The input data for the fatigue and damage tolerance analysis are obtained from the definition of the various fatigue mission profiles, the unitary stress values, the dynamic response of the structure and the turbulence statistics. In the third part,a new methodology is presented in order to obtaine efficiently and accurately the temporal stress sequences due to the atmospheric turbulence. This method relies on new results enabling the generation of correlated time signals from the PSD functions. First, the PSD of the various stress components are directly obtained from the Von Karman PSD via a finite element analysis. Then, the correlated temporal stress sequences are generated and distributed in the fatigue spectrum according to the turbulence intensity statistical law. This new process enables the improvement of the stress computation and the fatigue spectrum generation. It replaces the turbulence statistics by stress exceedance statistics which are defined by an analytical formula in a reasonably conservative way. In addition, the lead time to build the input data for the fatigue and damage tolerance analysis is significantly reduced. Results from the fatigue and damage tolerance analysis are presented in order to highlight the quality of the improved processes both in terms of accuracy and lead time
APA, Harvard, Vancouver, ISO, and other styles
8

Sonelius, Ulrika. "FISST - Fully Integrated Shell Structure : OPTIMIZATION OF AN AIRCRAFT FUSELAGE." Thesis, KTH, Lättkonstruktioner, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-164286.

Full text
Abstract:
In order to reduce the costs of aircraft, the weight of the fuselage has to be reduced. This master thesis, collaboration between the Royal Institute of Technology and Airbus Group, aims to optimize a new aircraft fuselage under development. This new fuselage design, called FISST, consists of a sandwich panel to stiffen the structure instead of the stringers used in baseline fuselage. Apart from the goal of reducing the weight, the new design also has advantages during maintenance and repairing. During this project the FISST-concept has been optimized, by modeling using the Finite Element Method, in order to fulfill given requirements. The design has been evaluated for buckling, strains and displacements. Furthermore modeling methods have been validated in order to ensure that the results are accurate enough. This report shows that the FISST-concept fulfills the given requirements better than the baseline.
APA, Harvard, Vancouver, ISO, and other styles
9

Goksel, Lorens Sarim. "Fatigue and damage tolerance assessment of aircraft structure under uncertainty." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49124.

Full text
Abstract:
This thesis presents a new modeling framework and application methodology for the study of aircraft structures. The framework provides a ‘cradle-to-grave’ approach to structural analysis of a component, where structural integrity encompasses all phases of its lifespan. The methodology examines the holistic structural design of aircraft components by integrating fatigue and damage tolerance methodologies. It accomplishes this by marrying the load inputs from a fatigue analysis for new design, into a risk analysis for an existing design. The risk analysis incorporates the variability found from literature, including recorded defects, loadings, and material strength properties. The methodology is verified via formal conceptualization of the structures, which are demonstrated on an actual hydraulic accumulator and an engine nacelle inlet. The hydraulic accumulator is examined for structural integrity utilizing different base materials undergoing variable amplitude loading. Integrity is accomplished through a risk analysis by means of fault tree analysis. The engine nacelle inlet uses the damage tolerance philosophy for a sonic fatigue condition undergoing both constant amplitude loading and a theoretical flight design case. Residual strength changes are examined throughout crack growth, where structural integrity is accomplished through a risk analysis of component strength versus probability of failure. Both methodologies can be applied to nearly any structural application, not necessarily limited to aerospace.
APA, Harvard, Vancouver, ISO, and other styles
10

Bigand, Audrey. "Damage assessment on aircraft composite structure due to lightning constraints." Thesis, Toulouse, ISAE, 2020. http://www.theses.fr/2020ESAE0027.

Full text
Abstract:
L’utilisation des matériaux composites dans l’industrie aéronautique s’étant largement étendue, ledimensionnement de ces structures et de leur protection vis-à-vis de la foudre est devenu un enjeu majeur. Ilest important de pouvoir développer des outils prédictifs permettant d’obtenir une conception de structurerépondant aux critères de certification avec des temps et coûts de conception maitrisés. L’interaction de lafoudre avec une structure composite est un phénomène multiphysique complexe, avec une difficulté ajoutéepar la présence d’une protection métallique en surface et d’une couche de peinture. Dans ce contexte, cetteétude a visé à développer la compréhension par rapport aux forces générées par la foudre et d’en évaluer sesconséquences quant à l’endommagement du composite. Dans cet objectif, le phénomène a d’abord étédécomposé pour en étudier ses différentes parties et définir l’impact des interactions. Dans un premier temps,l’arc libre a été comparé au pied d’arc en interaction avec différents substrats permettant de définir un modèlede vaporisation de la protection foudre. Dans un second temps, la surpression générée par l’explosion de laprotection en surface lors de la vaporisation a été évaluée pour définir des profils de pression spatio-temporels.Dans un troisième temps, une caractérisation mécanique de la peinture a été développée afin de quantifier soneffet de confinement sur l’explosion de surface. A chaque étape, une théorie a été développée et analysée viades modèles numériques et des essais. Enfin, ces trois différentes briques ont été rassemblées dans un modèlemécanique simulant l’impact foudre sur une structure composite afin d’en prédire l’endommagement. De plus,une loi utilisateur a été développée pour appliquer ce chargement complexe ainsi qu’une loid’endommagement. Ces modèles sont comparés aux résultats d’essai foudre en laboratoire afin d’endéterminer les limites de validité et leur capacité à prédire l'endommagement
As composite materials are now widely used in the aeronautical industry, the sizing of these structures andtheir protection against lightning has become a major issue. It is important to develop predictive tools to obtaina structure concept that meets certification requirements with a controlled time and cost during the designphase. The interaction of lightning with a composite structure is a complex multi-physics phenomenon, with afurther difficulty due to the presence of a metallic protection on the surface and a layer of paint. In this context,this study aimed to develop an understanding of the forces generated by lightning and to assess itsconsequences in terms of damage to the composite. To this end, the phenomenon was first broken down tostudy its different components and define the impact of their interactions. In a first step, the free arc wascompared to the arc root in interaction with different substrates to define a vaporisation model of the lightningprotection. In a second step, the overpressure generated by the explosion of the surface protection duringvaporisation was evaluated to define spatio-temporal pressure profiles. In a third step, a mechanicalcharacterization of the paint was developed in order to quantify its confinement effect on the surface explosion.At each stage, a theory was developed and analysed via numerical models and tests. Finally, these threedifferent bricks are brought together in a mechanical model simulating the lightning impact on a compositestructure in order to predict the damage. In addition, a user subroutine has been developed to apply thiscomplex loading as well as a damage law. These models are compared with lightning laboratory test results todetermine their validity limits and their ability to predict the damage
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Aircraft structure"

1

Wood, Robert. Aircraft observations of boundary layer structure. Manchester: UMIST, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

McGarvey, Niall Sean. The impact of quality assurance on structural analysis within aircraft structure. [s.l: The Author], 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Unruh, James F. Structure-borne noise estimates for the PTA aircraft. Hampton, Va: Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ventresca, Rudolph. Organizational structure for Air National Guard tactical aircraft maintenance. Maxwell Air Force Base, Ala: Air University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ventresca, Rudolph. Organizational structure for Air National Guard tactical aircraft maintenance. Maxwell Air Force Base, Ala: Air University Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bohne, Alan R. Storm precipitation and wind structure during aircraft strike lightning events. Hanscom AFB, MA: Atmospheric Sciences Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jorgensen, Charles C. Direct adaptive aircraft control using dynamic cell structure neural networks. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

North Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Addendum to design manual for impact damage tolerant aircraft structure. S.l: s.n, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

The U.S. combat aircraft industry, 1909-2000: Structure, competition, innovation. Santa Monica, CA: RAND, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

R, Bohne Alan. Storm precipitation and wind structure during aircraft strike lightning events. Hanscom AFB, MA: Atmospheric Sciences Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Aircraft structure"

1

Schmidt, Daniel, Andreas Kolbe, Robert Kaps, Peter Wierach, Stefan Linke, Stefan Steeger, Friedrich von Dungern, Juergen Tauchner, Christoph Breu, and Ben Newman. "Development of a Door Surround Structure with Integrated Structural Health Monitoring System." In Smart Intelligent Aircraft Structures (SARISTU), 935–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22413-8_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Flórez, Sonia, and Jorge Gayoso. "Enhancement of Primary Structure Robustness by Improved Damage Tolerance." In Smart Intelligent Aircraft Structures (SARISTU), 763–75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22413-8_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barut, Silvere. "Sensitive Coating Solutions to Lower BVID Threshold on Composite Structure." In Smart Intelligent Aircraft Structures (SARISTU), 745–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22413-8_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Breen, Daniel. "Enhancement of Infused CFRP Primary Structure Mechanical Properties Using Interleaving Thermoplastic Veils." In Smart Intelligent Aircraft Structures (SARISTU), 777–90. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22413-8_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iakovlev, Serguei. "Semi-Analytical Modeling of Non-stationary Fluid-Structure Interaction." In Flexible Engineering Toward Green Aircraft, 95–109. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36514-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Altkvist, Christina, Jonas Wahlbäck, Juergen Tauchner, and Christoph Breu. "Design and Manufacturing of WP135 Side Panel for Validation of Electrical Structure Network (ESN) Technologies." In Smart Intelligent Aircraft Structures (SARISTU), 1021–39. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22413-8_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mardanpour, Pezhman, and Dewey H. Hodges. "Passive Morphing of Solar Powered Flying Wing Aircraft." In Fluid-Structure-Sound Interactions and Control, 351–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martinez-Pascual, A., Marco Evangelos Biancolini, and J. Ortega-Casanova. "Fluid Structure Modelling of Ground Excited Vibrations by Mesh Morphing and Modal Superposition." In Flexible Engineering Toward Green Aircraft, 111–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36514-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iqbal, M. A., P. Bhargava, S. Rai, and M. R. Sadique. "Response of Nuclear Containment Structure to Aircraft Crash." In Topics in Modal Analysis II, Volume 6, 525–35. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2419-2_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Becker, J., F. Weiss, and O. Sensburg. "Compatibility Aspects of Active Control Technologies with Aircraft Structure Design." In Structural Control, 48–63. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3525-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aircraft structure"

1

McCarthy, Dennis K., Lisa M. Chiu, and Mark E. Robeson. "Blast Attenuating Aircraft Structure." In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-0955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huntington, D., and C. Lyrintzis. "Random vibration in aircraft landing gear." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stecklein, Gregory, and James Mundy. "Aerodynamic loading on a failed aircraft structure." In 36th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-1417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Appa, K., J. Argyris, and G. Guruswamy. "Aircraft dynamics and loads computations using CFD methods." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1342.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paul, Donald, Thomas Hess, and Edward Kautz. "The evolution of U.S. military aircraft structures technology." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

EKVALL, J., and D. CHELLMAN. "Ingot metallurgy aluminum - Lithium alloys for aircraft structure." In 27th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-890.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Orisamolu, I. "Probabilistic assessment of multiple site damage in aircraft structures." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Srinivas, Venkat, and Inderjit Chopra. "Formulation of a comprehensive aeroelastic analysis for tiltrotor aircraft." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rais-Rohani, M., and E. Dean. "Toward manufacturing and cost considerations in multidisciplinary aircraft design." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Szabo, S., I. Vajdova, E. Jencova, B. Mikula, S. Szabo, D. Blasko, A. Tobisova, and L. Melnikova. "Flammability of Aircraft Structure Materials." In 2019 New Trends in Aviation Development (NTAD). IEEE, 2019. http://dx.doi.org/10.1109/ntad.2019.8875595.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Aircraft structure"

1

Carico, Dean, and Singli Garcia-Otero. Tilt Rotor Aircraft Modeling Using a Generic Simulation Structure,. Fort Belvoir, VA: Defense Technical Information Center, December 1995. http://dx.doi.org/10.21236/ada305253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heymsfield, Ernie, and Jeb Tingle. State of the practice in pavement structural design/analysis codes relevant to airfield pavement design. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40542.

Full text
Abstract:
An airfield pavement structure is designed to support aircraft live loads for a specified pavement design life. Computer codes are available to assist the engineer in designing an airfield pavement structure. Pavement structural design is generally a function of five criteria: the pavement structural configuration, materials, the applied loading, ambient conditions, and how pavement failure is defined. The two typical types of pavement structures, rigid and flexible, provide load support in fundamentally different ways and develop different stress distributions at the pavement – base interface. Airfield pavement structural design is unique due to the large concentrated dynamic loads that a pavement structure endures to support aircraft movements. Aircraft live loads that accompany aircraft movements are characterized in terms of the load magnitude, load area (tire-pavement contact surface), aircraft speed, movement frequency, landing gear configuration, and wheel coverage. The typical methods used for pavement structural design can be categorized into three approaches: empirical methods, analytical (closed-form) solutions, and numerical (finite element analysis) approaches. This article examines computational approaches used for airfield pavement structural design to summarize the state-of-the-practice and to identify opportunities for future advancements. United States and non-U.S. airfield pavement structural codes are reviewed in this article considering their computational methodology and intrinsic qualities.
APA, Harvard, Vancouver, ISO, and other styles
3

Sutin, Alexander. Quantitative Nondestructive Evaluation and Reliability Assessment of the Aging Aircraft Structure Components. Fort Belvoir, VA: Defense Technical Information Center, April 2000. http://dx.doi.org/10.21236/ada377667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reiter, Thomas E. USAF Aircraft Maintenance Organizational Structure: Where We've Been, Where We Are, What's the Future. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada202701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Crawford, III, and Thomas M. Aircraft Regeneration: A Key Force Structure Concept for Transition into the Twenty-First Century. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada249443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brausch, John, and Larry Butkus. Investigation and Root Cause Analysis Guideline for Undetected Cracking Incidents in Safety-of-Flight Aircraft Structure. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada470673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Walker, William C. A Method For Determining The Radially-Averaged Effective Impact Area For An Aircraft Crash Into A Structure. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1427607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Glaser, R. Probabilistic model, analysis and computer code for take-off and landing related aircraft crashes into a structure. Office of Scientific and Technical Information (OSTI), February 1996. http://dx.doi.org/10.2172/230627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bane, Jr, and John M. Three-dimensional Structure and Evolution of Propagating Disturbances in the Marine Layer Off the U.S. West Coast: Analysis of 1996 Aircraft Observation. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bane, Jr, and John M. Three-Dimensional Structure and Evolution of Propagating Disturbances in the Marine Layer of the US West Coast: Analysis of 1996 Aircraft Observations. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada631292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography