Academic literature on the topic 'Airfoil profiles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Airfoil profiles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Airfoil profiles"
Zhang, Qiang, and Phillip M. Ligrani. "Wake Turbulence Structure Downstream of a Cambered Airfoil in Transonic Flow: Effects of Surface Roughness and Freestream Turbulence Intensity." International Journal of Rotating Machinery 2006 (2006): 1–12. http://dx.doi.org/10.1155/ijrm/2006/60234.
Full textXudong, Wang, Wang Licun, and Xia Hongjun. "An Integrated Method for Designing Airfoils Shapes." Mathematical Problems in Engineering 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/838674.
Full textKumar, P. Madhan, and Abdus Samad. "Effect of Blade Profiles on the performance of Bidirectional Wave Energy Turbine." MATEC Web of Conferences 172 (2018): 06002. http://dx.doi.org/10.1051/matecconf/201817206002.
Full textXie, Yonghui, Kun Lu, Di Zhang, and Gongnan Xie. "Computational Analysis of Propulsion Performance of Modified Pitching Motion Airfoils in Laminar Flow." Mathematical Problems in Engineering 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/420436.
Full textDuz, Hasan, and Serkan Yildiz. "Numerical Performance Analyses of Different Airfoils for Use in Wind Turbines." International Journal of Renewable Energy Development 7, no. 2 (July 10, 2018): 151–57. http://dx.doi.org/10.14710/ijred.7.2.151-157.
Full textSonoda, Toyotaka, and Heinz-Adolf Schreiber. "Aerodynamic Characteristics of Supercritical Outlet Guide Vanes at Low Reynolds Number Conditions." Journal of Turbomachinery 129, no. 4 (August 19, 2006): 694–704. http://dx.doi.org/10.1115/1.2720868.
Full textSeralathan, Sivamani, T. Micha Premkumar, S. Thangavel, and G. P. Pradeep. "Numerical Studies on the Effect of Cambered Airfoil Blades on Self-Starting of Vertical Axis Wind Turbine Part 2: NACA 0018 and NACA 63415." Applied Mechanics and Materials 787 (August 2015): 245–49. http://dx.doi.org/10.4028/www.scientific.net/amm.787.245.
Full textChen, Jin, Jiang Tao Cheng, and Wen Zhong Shen. "Research on Design Methods and Aerodynamics Performance of CQU-DTU-B21 Airfoil." Advanced Materials Research 455-456 (January 2012): 1486–90. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.1486.
Full textBostan, Viorel, Marin Guţu, and Valeriu Odainâi. "Aerodynamic efficiency enhancement for asymmetric profiles." MATEC Web of Conferences 178 (2018): 06022. http://dx.doi.org/10.1051/matecconf/201817806022.
Full textLee, H., and S. H. Kang. "Flow Characteristics of Transitional Boundary Layers on an Airfoil in Wakes." Journal of Fluids Engineering 122, no. 3 (February 14, 2000): 522–32. http://dx.doi.org/10.1115/1.1287592.
Full textDissertations / Theses on the topic "Airfoil profiles"
Ahmed, Irfan [Verfasser]. "Development of Form-Adaptive Airfoil Profiles for Wind Turbine Application / Irfan Ahmed." Kassel : Kassel University Press, 2017. http://d-nb.info/1143155335/34.
Full textAllan, William D. E. "An experimental study of flow about an airfoil with slotted flap and spoiler using Joukowsky profiles." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/28363.
Full textApplied Science, Faculty of
Mechanical Engineering, Department of
Graduate
Lobato, Hugo Manuael Pinto. "An investigation into coordinate measuring machine task specific measurement uncertainty and automated conformance assessment of airfoil leading edge profiles." Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3439/.
Full textJunior, Joseph Youssif Saab. "Trailing-edge noise: development and application of a noise prediction tool for the assessment and design of wind turbine airfoils." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-14032017-140101/.
Full textEste trabalho descreve a pesquisa de elementos iniciais, o projeto, a implantação e a aplicação de uma ferramenta de predição de ruído de bordo de fuga, no desenvolvimento de aerofólios mais silenciosos para turbinas eólicas de grande porte. O objetivo imediato da ferramenta é permitir a comparação de desempenho acústico relativo entre aerofólios no início do ciclo de projeto de novas pás e rotores de turbinas eólicas. O objetivo mais amplo é possibilitar o projeto de turbinas eólicas mais silenciosas, mas de desempenho aerodinâmico preservado, pela indústria da Energia Eólica. A consecução desses objetivos demandou o desenvolvimento de uma ferramenta que reunisse, simultaneamente, resolução comparativa, eficiência computacional e interface amigável, devido à natureza iterativa do projeto preliminar de um novo rotor. A ferramenta foi integrada a um ambiente avançado de projeto e análise de turbinas eólicas, de código aberto, que pode ser livremente baixado na Web. Durante a pesquisa foi realizada uma ampla revisão dos modelos existentes para predição de ruído de bordo de fuga, com a seleção do modelo semi-empírico BPM, que foi modificado para lidar com geometrias genéricas. A precisão intrínseca do modelo original foi avaliada, assim como sua sensibilidade ao parâmetro de escala de turbulência transversal, com restrições sendo impostas a esse parâmetro em decorrência da análise. Esse critério permitiu a comparação de resultados de cálculo provenientes de método CFD-RANS e de método híbrido (XFLR5) de solução da camada limite turbulenta, com a escolha do último. Após a seleção de todos os elementos do método e especificação do código, uma parceria foi estabelecida entre a Poli-USP e a TU-Berlin, que permitiu a adição de um novo módulo de ruído de bordo de fuga, denominado \"PNoise\", ao ambiente de projeto e análise integrado de turbinas eólicas \"QBlade\". Após a adição, as rotinas de cálculo foram criteriosamente verificadas e, em seguida, aplicadas ao desenvolvimento de aerofólios mais silenciosos, com bons resultados acústicos e aerodinâmicos relativos a uma geometria de referência. Esse desenvolvimento ilustrou a capacidade da ferramenta de cumprir a missão para a qual foi inicialmente projetada, qual seja, permitir à Indústria desenvolver pás mais silenciosas que irão colaborar com o avanço da energia eólica através da limitação do seu impacto ambiental.
Olsson, Niklas, and Christian Selberg. "Numerical simulation and experimental validation of a manufactured wing profile." Thesis, Högskolan Väst, Avdelningen för Industriell ekonomi, Elektro- och Maskinteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-14287.
Full textGrim, Robert. "Aerodynamická optimalizace vysokovýkonného padákového kluzáku." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-241112.
Full textGulla, Duncan. "Ausgewählte statistische Betrachtungen im Flugzeugentwurf: Superkritische Profile und Fahrwerk." Aircraft Design and Systems Group (AERO), Department of Automotive and Aeronautical Engineering, Hamburg University of Applied Sciences, 2019. http://d-nb.info/1180601696.
Full textYakhina, Gyuzel. "Experimental study of the tonal trailing-edge noise generated by low-reynolds number airfoils and comparison with numerical simulations." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC008/document.
Full textThe tonal trailing-edge noise generated by transitional airfoils is a topic of interest because of its wide area of applications. One of them is the Unmanned Air Vehicles operated at low Reynolds numbers which are widely used in our everyday life and have a lot of perspectives in future. The tonal noise reduction will increase the survivability and effectiveness of the devices in military field. Moreover it will enlarge the range of civil use and minimize noise pollution. The effective noise reduction is needed and therefore the complete understanding of the tonal noise generation process is necessary. Despite the fact that investigation of the trailing-edge noise was started since the seventies there are still a lot of details which should be explained. The present work is dedicated to the experimental and analytical investigation of the tonal noise and is a part of the collaboration project between Ecole Centrale de Lyon and Embry-Riddle Aerospace University. The aim is to conduct an exhaustive experimental characterization of the acoustic and aerodynamic parameters of the trailing-edge noise and to produce a data base which can be used for further numerical simulations conducted at Embry-Riddle Aerospace University. A symmetric NACA-0012 airfoil and a slightly cambered SD7003 airfoil at moderate angles of attack (varied from -10° à 10°) were tested in an open-jet anechoic wind tunnel of Ecole Centrale de Lyon at moderate Reynolds numbers (0.6x105 < Rec < 2.6x105). Measurements of the wall pressure and far-field acoustic pressure in different configurations allowed to observe the ladder-type structure of the noise signature, to determine which side produced tones and to distinguish the role of the acoustic feedback loop. Additional post-processing techniques such as time-frequency analysis showed the existence of several regimes (switching regime between two tones, one-tone regime and multiple-tones regime) of noise emission. The bicoherence analysis showed that there are non-linear relationships between tones. The investigation of the role of the separation area by hot-wire anemometry and flow visualization techniques showed that the separation bubble is a necessary but not a suficient condition for the noise generation. Moreover the location of the bubble is also important and should be close enough to the trailing edge. Furthermore the linear stability analysis of accompanying numerical simulation results showed that the Tollmien-Schlichting waves transform to the Kelvin-Helmholtz waves at the separation area. An analytical prediction of the tone levels in the far-field was done using Amiet's model based on the assumption of perfectly correlated sources along the span. The wall-pressure measurements close to the trailing edge were used as an input data. The comparisons of the predicted levels and measured ones showed a good agreement. After analysis of all results the following description of the tonal noise mechanism is proposed. At some initial point of the airfoil the Tollmien-Schlichting instabilities start. They are traveling downstream and continued to Kelvin-Helmholtz waves along the shear-layer of the separation bubble. These waves reach the trailing edge, scatter from it as acoustic waves, which move upstream. The acoustic waves amplify the boundary layer instabilities at some frequencies for which the phases of both motions match and creates the feedback loop needed to sustain the process
Krmela, Luděk. "Aerodyanmický návrh a výpočet kluzáku "Twin Shark"." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229321.
Full textDvořák, Petr. "Optimalizace štěrbinové vztlakové klapky letounu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228790.
Full textBooks on the topic "Airfoil profiles"
Lye, J. D. Recent developments in augmentor-wing aerofoil sections. [Downsview, Ont.]: De Havilland Aircraft Company of Canada, 1987.
Find full textBousman, William G. Airfoil dynamic stall and rotorcraft maneuverability. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 2000.
Find full textAllison, Dennis O. Assessment of dual-point drag reduction for an executive-jet modified airfoil section. Hampton, Virginia: National Aeronautics and Space Administration, Langly Research Center, 1996.
Find full textHahne, David E. Full-scale semispan tests of a business-jet wing with a natural laminar flow airfoil. Hampton, Va: Langley Research Center, 1991.
Find full textScott, James R. Compressible flows with periodic vortical disturbances around lifting airfoils. [Cleveland, Ohio: Lewis Research Center, 1991.
Find full textJohnson, William G. Pressure distributions from high Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Find full textJohnson, William G. Pressure distributions from high Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Find full textApplin, Zachary T. Pressure distributions from subsonic tests of a NACA 0012 semispan wing model. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Find full textApplin, Zachary T. Pressure distributions from subsonic tests of a NACA 0012 semispan wing model. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Find full textShearin, John G. Acoustic effects on profile drag of a laminar flow airfoil. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1987.
Find full textBook chapters on the topic "Airfoil profiles"
Khaimovich, I. N. "Computer-Aided Design of Die Tooling for Large Parts of Airfoil Profiles." In Proceedings of the 4th International Conference on Industrial Engineering, 1547–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95630-5_165.
Full textBaeza, Antonio, Pep Mulet, and David Zorío. "High Order Extrapolation Techniques for WENO Finite-Difference Schemes Applied to NACA Airfoil Profiles." In Progress in Industrial Mathematics at ECMI 2016, 47–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63082-3_6.
Full textBahri, Harshit, Kaushalendra Kumar Singh, and Harvendra Singh. "CFD Study of Two-Dimensional Profile Geometry of an Airfoil." In Computational and Experimental Methods in Mechanical Engineering, 177–87. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2857-3_19.
Full textConference papers on the topic "Airfoil profiles"
Jiang, H. B., Y. R. Li, and Z. Q. Cheng. "Methods of Constructing Analytic Functions to Generate Airfoil Profiles." In 2015 International Conference on Electrical, Automation and Mechanical Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/eame-15.2015.60.
Full textMcGinley, Catherine, John Anders, and Frank Spaid. "Measurements of Reynolds stress profiles on a high-lift airfoil." In 16th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-2620.
Full textBianchini, Alessandro, Francesco Balduzzi, Giovanni Ferrara, and Lorenzo Ferrari. "Aerodynamics of Darrieus Wind Turbines Airfoils During Start-Up." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57679.
Full textSonoda, Toyotaka, and Heinz-Adolf Schreiber. "Aerodynamic Characteristics of Supercritical Outlet Guide Vanes at Low Reynolds Number Conditions." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90882.
Full textSoltani, M. R., and M. Mahmoudi. "Experimental Investigation of Velocity Profiles in the Wake of an Oscillating Airfoil." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37440.
Full textIlott, J., A. Asghar, W. D. E. Allan, and R. Woodason. "Further Investigation of the Influence of Real-World Blade Profile Variation on the Aerodynamic Performance of Transonic Nozzle Guide Vanes." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-46558.
Full textEdwards, R., A. Asghar, R. Woodason, M. LaViolette, K. Goni Boulama, and W. Allan. "Numerical Investigation of the Influence of Real World Blade Profile Variations on the Aerodynamic Performance of Transonic Nozzle Guide Vanes." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23461.
Full textBianchini, Alessandro, Francesco Balduzzi, John M. Rainbird, Joaquim Peiro, J. Michael R. Graham, Giovanni Ferrara, and Lorenzo Ferrari. "An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines: Part 1 — Flow Curvature Effects." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42284.
Full textSadeghi, Hamed, and Mahmoud Mani. "Unsteady Flow Field in the Wake of an Airfoil." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78189.
Full textAlfayyadh, Ekhlas M., Sadeq H. Bakhy, and Yasir M. Shkara. "A New Multi-Objective Evolutionary Algorithm for Optimizing the Aerodynamic Design of HAWT Rotor." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20355.
Full text