Academic literature on the topic 'Al-Fe System'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Al-Fe System.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Al-Fe System"

1

Grieb, Bernd, and Ernst-Theo Henig. "The Ternary Al - Fe - Nd System / Das ternäre System Al-Fe-Nd." International Journal of Materials Research 82, no. 7 (July 1, 1991): 560–67. http://dx.doi.org/10.1515/ijmr-1991-820709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harmelin, Mireille. "Al-Cu-Fe System report." MSI Eureka 90 (1990): 10.34542.2.33. http://dx.doi.org/10.7121/msi-eureka-10.34542.2.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Weiland, Erna, Dietrich Heger, and Helga Hildebrand. "Phasen im System Fe-B-Al-Ti / Phases in the Fe-B-Al-Ti system." Practical Metallography 36, no. 5 (May 1, 1998): 264–72. http://dx.doi.org/10.1515/pm-1998-360504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anglezio, J. C., C. Servant, and I. Ansara. "Contribution to the experimental and thermodynamic assessment of the AlCaFeSi system—I. AlCaFe, AlCaSi, AlFeSi and CaFeSi systems." Calphad 18, no. 3 (July 1994): 273–309. http://dx.doi.org/10.1016/0364-5916(94)90034-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mota, M. A., A. A. Coelho, J. M. Z. Bejarano, S. Gama, and R. Caram. "Fe–Al–Nb phase diagram investigation and directional growth of the (Fe, Al)2Nb–(Fe, Al, Nb)ss eutectic system." Journal of Alloys and Compounds 399, no. 1-2 (August 2005): 196–201. http://dx.doi.org/10.1016/j.jallcom.2005.03.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oleszak, D., and P. H. Shingu. "Mechanical alloying in the FeAl system." Materials Science and Engineering: A 181-182 (May 1994): 1217–21. http://dx.doi.org/10.1016/0921-5093(94)90834-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eleno, Luiz, Karin Frisk, and André Schneider. "Assessment of the Fe–Ni–Al system." Intermetallics 14, no. 10-11 (October 2006): 1276–90. http://dx.doi.org/10.1016/j.intermet.2005.11.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Palm, M., and J. Lacaze. "Assessment of the Al–Fe–Ti system." Intermetallics 14, no. 10-11 (October 2006): 1291–303. http://dx.doi.org/10.1016/j.intermet.2005.11.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balanetskii, Sergei O., Benjamin Grushko, Knut Urban, and Tamara Ya Velikanova. "Ternary Cubic Phases in the Al – Pd Al – Fe System." Powder Metallurgy and Metal Ceramics 43, no. 7/8 (July 2004): 396–405. http://dx.doi.org/10.1023/b:pmmc.0000048134.97199.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kotova, N., N. Usenko, and N. Golovata. "FEATURES OF COMPONENT INTERACTION IN LIQUID ALLOYS OF TERNARY Al-Ge-3d-Me (Me = Mn, Fe, Ni, Cu) SYSTEMS." Bulletin of Taras Shevchenko National University of Kyiv. Chemistry, no. 1 (57) (2020): 34–40. http://dx.doi.org/10.17721/1728-2209.2020.1(57).9.

Full text
Abstract:
The features of the component interaction in liquid alloys of ternary Al-Ge-3d-Me systems (Me = Mn, Fe, Ni, Cu) are described. A joint analysis of the concentration dependences of the enthalpies of mixing of liquid alloys previously obtained by the authors via high-temperature calorimetry, and also of the phase diagrams of the constituent binary systems was carried out. The relationship between the enthalpy values and the type of short-range ordering in liquid alloys of the studied systems was established. The visual similarity of the topology of the projections of ΔmH isolines of the Al-Ge-Fe (Ni, Cu) liquid alloys and a completely different course of the isolines of the enthalpies of mixing for the liquid Al-Ge-Mn alloys are established. The changes in the absolute values of the ΔmHmin from system to system are observed. The enthalpies are approximately the same for the Al-Ge-Mn and Al-Ge-Fe systems (about -20 kJ⋅mol-1), they increase significantly from Al-Ge-Fe to Al-Ge-Ni (-50 kJ⋅mol-1), and then decrease substantially towards the Al-Ge-Cu system (-15 kJ⋅mol-1). For the Al-Ge-Mn (Fe, Ni, Cu) liquid alloys the lines of extreme interaction are located near the 3d-corner of the concentration triangle. These lines connect the compositions of the most stable intermetallic compounds in binary Al(Ge)-Mn(Fe, Ni, Cu) systems. It has been shown that the thermodynamic properties of Al-Ge-Fe (Ni, Cu) liquid alloys are mainly determined by the pair interaction of the components of the constituent binary Al-Fe(Ni, Cu) and Ge-Fe(Ni, Cu) systems, the influence of Al-Fe(Ni, Cu) systems being prevailed. For the Al-Ge-Mn system, the interaction of components in the Ge-Mn binary system gives the main contribution to the thermodynamic properties of the ternary system. The Al-Ge-Mn (Fe, Cu) systems are characterized by significantly lower absolute values of the heats of alloy formation compared to the Al-Ge-Ni one. The specified characteristics of component interaction in the ternary systems under consideration and different values of the enthalpies of mixing are determined by the peculiarities and regular changes of the electronic structure of 3d metals across the 3d series from Mn to Cu.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Al-Fe System"

1

Temizel, Guvenc. "Intermetallic Phase Formation At Fe-al Film Interefaces." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607589/index.pdf.

Full text
Abstract:
This thesis presents the formation mechanism of intermetallics formed at Fe-Al film interfaces. Al thin films with different initial film thicknesses were coated on low carbon steel substrates by physical vapor deposition (PVD). By annealing the system at different temperatures and for different time intervals, several intermetallic phases were observed. X-Ray, SEM and EDS studies showed that intermetallic phases FeAl2 and Fe2Al5 are most dominant phases which were observed and they formed sequentially on the contrary of intermetallics which formed synchronous in bulk materials.
APA, Harvard, Vancouver, ISO, and other styles
2

Silva, Antonio Augusto Araújo Pinto da. "Thermodynamic modeling and critical experiments on the Al-Fe-Nb system." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0148.

Full text
Abstract:
Les diagrammes d’équilibre sont le point de départ et la ligne directrice qui permet de prévoir et contrôler les phases pouvant se former au cours de différents processus industriels. Bien que l’étude expérimentale soit nécessaire pour les systèmes binaires et ternaires, elle est difficilement envisageable pour déterminer les diagrammes de phases des systèmes d’ordre supérieur sur de larges gammes de composition et de température. Afin de contourner ce problème, la méthode dite CALPHAD (CALculation of PHAse Diagram) a été développée. Son principe consiste à optimiser les paramètres des modèles thermodynamiques utilisés pour décrire l´énergie libre de Gibbs de chaque phase à partir d’informations expérimentales ou estimées (ab-initio). Le modèle appelé « Compound Energy Formalism » (CEF) est largement utilisé pour décrire les phases qui présentent plusieurs sous-réseaux. Ce modèle et ceux qui en dérivent permettent la modélisation d'une grande variété de composés. Les activités menées au cours de ce travail ont permis de développer une nouvelle approche du CEF (NACEF) basée sur une étude mathématique de ses paramètres thermodynamiques. Elle a conduit à une nouvelle formulation de la fonction d'énergie libre de Gibbs faisant intervenir de nouveaux paramètres indépendants. Cette nouvelle approche a été utilisée dans le cadre de ce travail afin de modéliser les phases intermétalliques binaires constituée de deux sous-réseaux présentant des défauts uniquement de type anti-sites (A,B)a(A,B)b. Le système Al-Fe-Nb sur lequel porte notre étude a été choisi en raison de son importance dans la fabrication de nombreuses familles d'alliages tels que les aciers, les alliages légers et plus récemment dans le développement de nouveaux matériaux réfractaires à base Nb pour des applications à hautes températures. Dans ce travail, de nouvelles modélisations des bordures binaires Al-Nb et Fe-Nb et pour la première fois du ternaire Al-Fe-Nb sont proposées en utilisant la NACEF et en s’appuyant sur les informations issues de la littérature ou obtenues dans cette étude
The equilibrium diagrams are the starting point and the guideline to predict and control the microstructure that will form during processing materials. Despite experiments being necessary in binaries and ternaries systems, it is difficult to experimentally determine phase diagrams of higher orders systems over wide ranges of compositions and temperature. The CALPHAD (CALculation of PHAse Diagrams) method was developed in order to solve this problem. The essence is to optimize the parameters of thermodynamic models that describe the Gibbs free energies of each phase aiming to reproduce the experimental and estimated (ab-initio) data. The compound energy formalism (CEF) is widely used in order to describe phases which present several sublattices. It allows the modeling of a large variety of phases and numerous methods have been developed to treat different situations. The activities in this work developed a new approach of the CEF (NACEF) based on a mathematic analysis of the parameters which leads to a new formulation of the Gibbs free energy function evolving new independent parameters in which new independent parameters are obtained to express the Gibbs free energy. This approach was used in this work to describe the intermetallic phases with two-sublattice in which the only defect type is anti-sites (A,B)a(A,B)b. The Al-Fe-Nb system was chosen due to its importance for the manufacturing process of several families of alloys currently used, e.g. steels, light alloys, and also for the development of new materials for high temperatures application. The binaries Al-Nb and Fe-Nb were reassessed and the Al-Fe-Nb system was assessed for the first time using literature information and new experimental data
Os diagramas de equilíbrio são o ponto de partida e a diretriz para prever e controlar a microestrutura ao final do processamento de um material. Apesar de experimentos serem necessários em sistemas binários e ternários, é muito difícil determinar experimentalmente diagramas de fase de sistemas de ordens superiores numa vasta amplitude de composições e temperatura. A fim de solucionar este problema, o método CALPHAD (CALculation of PHAse Diagrams) foi desenvolvido. A essência consiste em aperfeiçoar os parâmetros de modelos termodinâmicos que descrevem as energias livres de Gibbs de cada fase de modo a reproduzir as informações experimentais ou estimadas (ab-initio). O compound energy formalism (CEF) é amplamente utilizado para descrever fases que apresentam várias sub-redes. Ele permite a modelagem de uma grande variedade de fases e vários métodos têm sido desenvolvidos para o tratamento de diferentes situações. As atividades deste trabalho ajudaram a desenvolver uma nova abordagem para o CEF (NACEF) com base em um estudo matemático dos seus parâmetros termodinâmicos que levou a uma nova formulação para função da energia livre de Gibbs envolvendo novos parâmetros independentes. Esta nova abordagem tem sido utilizado como parte do presente trabalho para modelar fases intermetálicas binárias constituídas de sub-redes cujo único defeito é do tipo anti-sítio (A,B)a(A,B)b. O sistema Al-Fe-Nb foi escolhido devido a sua importância para o processo de fabricação de diversas famílias de ligas usadas atualmente, e.g. aços, ligas leves e, além disto, é um sistema importante para o desenvolvimento de materiais para aplicações em altas temperaturas. Neste trabalho os binários Al-Nb e Fe-Nb foram reavaliados e o sistema Al-Fe-Nb foi modelado pela primeira vez utilizando as informações da literatura e novos dados experimentais
APA, Harvard, Vancouver, ISO, and other styles
3

Zienert, Tilo [Verfasser], Andreas [Akademischer Betreuer] Leineweber, Andreas [Gutachter] Leineweber, Hans [Gutachter] Flandorfer, and Olga [Gutachter] Fabrichnaya. "Predicting heat capacity and experimental investigations in the Al-Fe and Al-Fe-Si systems as part of the CALPHAD-type assessment of the Al-Fe-Mg-Si system / Tilo Zienert ; Gutachter: Andreas Leineweber, Hans Flandorfer, Olga Fabrichnaya ; Betreuer: Andreas Leineweber." Freiberg : Technische Universität Bergakademie Freiberg, 2018. http://d-nb.info/1221070843/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zapico, Alvarez David. "Mechanisms and kinetics of the galvannealing reactions on Ti IF steels." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0019.

Full text
Abstract:
Les revêtements galvanisés alliés sont produits par immersion à chaud d’une bande d'acier dans un bain de zinc fondu à environ 460 °C, saturé en fer et contenant de faibles quantités d'aluminium (de 0,1 à 0,135% poids), suivie d’un traitement thermique (jusqu'à des températures voisines de 500-530 °C pendant environ 10 s) afin de déclencher les réactions d'alliation entre le fer et le zinc. La microstructure finale de ce type de revêtement est composée d'une succession de couches stratifiées de phases Fe-Zn et ses propriétés d'usage sont directement liées à la distribution de ces phases dans le revêtement. Les paramètres process à appliquer sur ligne industrielle doivent donc être optimisés pour obtenir la microstructure de revêtement souhaitée avec des coûts minimaux. Le développement d'un tel revêtement passe par différentes réactions complexes : la formation de la couche d'inhibition, la rupture de cette couche, la consommation du zinc liquide et l'enrichissement en fer du revêtement solide. Les cinétiques de ces réactions doivent être étudiées et modélisées séparément afin de contrôler avec précision l'évolution du revêtement au cours du cycle thermique. Dans ce travail, les deux premières réactions ont été étudiées dans le cas des aciers IF Ti. La cinétique de formation de la couche d'inhibition est extrêmement rapide et n’a par conséquent pas été étudiée. L'attention a été portée sur la nature de cette couche et sur les mécanismes responsables de sa formation. Il a été démontré que la couche d'inhibition formée dans des bains classiques pour la production de ces revêtements est composée d'une première couche très mince de Fe2Al5Znx (20-30 nm) sur la surface de l’acier et d’une seconde couche plus épaisse de δ (FeZn7) (environ 200 nm) au-dessus. Lorsque l'acier est immergé dans le bain de zinc, la dissolution du premier dans le second conduit à une sursaturation en fer à l'interface solide / liquide. Une très fine couche de Fe2Al5Znx métastable germe alors sur la surface de l'acier favorisée par des relations préférentielles d’épitaxie avec la ferrite. Par la suite, une couche de δ germe sur la couche de Fe2Al5Znx ce qui permet à la microstructure finale de devenir thermodynamiquement stable. L'effet de la teneur en aluminium du bain sur la nature de la couche d'inhibition a également été étudié. Quand la teneur en aluminium du bain diminue, la couche de Fe2Al5Znx devient discontinue car cette phase devient plus métastable et sa germination sur la surface de l'acier moins probable. Cette étape d’inhibition n'est que transitoire et un traitement thermique prolongé conduira à la rupture de la couche d'inhibition et au développement des réactions Fe-Zn. Le mécanisme de rupture, contrôlé par la diffusion du zinc dans les joints de grains de l'acier, peut être expliqué à l'aide du diagramme de phase ternaire Al-Fe-Zn et résumé en deux étapes : la disparition de la couche de Fe2Al5Znx à l'interface couche d’inhibition / acier résultant de l’enrichissement de cette interface en zinc, et la germination de la phase Г (Fe3Zn10) aux joints de grains de l'acier lorsque la concentration en zinc y devient suffisante. C’est cette germination qui va provoquer localement la rupture de la couche d’inhibition. La cinétique de cette réaction dépend fortement de la composition chimique de l'acier IF Ti et de la teneur en aluminium du bain. D'une part, il apparaît que l'effet de la composition chimique de l'acier sur la cinétique de rupture d'inhibition est contrôlé par la compétition entre deux phénomènes opposés : la vitesse de diffusion du zinc dans les joints de grains de l'acier et la capacité de l'acier à y accumuler les atomes de zinc. D'autre part, la diminution de la teneur en aluminium du bain favorise la discontinuité de la couche de Fe2Al5Znx, ce qui accélère la rupture de la couche d'inhibition car le zinc est supposé diffuser plus rapidement dans δ que dans Fe2Al5Znx
Hot-Dip GalvAnnealed (HDGA) coatings are produced by the immersion of the steel strip into an iron-saturated liquid zinc bath at around 460 °C containing small amounts of aluminium (from 0.1 to 0.135 wt.%, normally) and its subsequent heating (up to temperatures around 500-530 °C for about 10 s, typically) in order to trigger the alloying reactions between iron and zinc. The final microstructure of this kind of coatings is composed of a sequence of stratified Fe-Zn phase layers and its in-use properties are directly related to the phase distribution within the coating. The process parameters to be performed in industrial lines must therefore be optimized in order to obtain a successful coating microstructure with the minimum costs. The development of such a coating passes through different and complex reactions: the inhibition layer formation, the inhibition layer breakdown, the liquid zinc consumption and the iron enrichment of the solid coating. The kinetics accounting for these reactions must be studied and modelled separately in order to accurately control the evolution of the coating along the heat treatment performed in the industrial line. In the present work, the two first reactions were investigated in the case of Ti IF steel grades. The kinetics of the inhibition layer formation is extremely fast and has therefore not been investigated in detail. Concerning this reaction, the focus was given to the nature of this inhibition layer and to the mechanisms accounting for its formation. It has been found that the inhibition layer formed in typical baths for galvannealed coatings production is composed of a very thin layer of the Fe2Al5Znx phase (20-30 nm) on the steel surface and a thicker layer of the δ (FeZn7) phase (around 200 nm) on its top. As the steel strip enters the zinc bath, iron dissolution from the former into the latter leads to an iron supersaturation at the solid / liquid interface. As a result, a very thin layer of metastable Fe2Al5Znx nucleates on the steel surface favoured by preferential epitaxial relationships with ferrite. Subsequently, δ nucleates on the Fe2Al5Znx layer allowing the final microstructure of the inhibition layer to become thermodynamically stable. The effect of the bath aluminium content on the nature of this inhibiting structure has also been studied. As the bath aluminium content is lowered, the Fe2Al5Znx layer becomes discontinuous: the lower the bath aluminium content is, the higher the metastability of Fe2Al5Znx is and the less probable its nucleation on the steel surface is. The inhibition state is only transient and continued heat treatment will lead to the inhibition layer breakdown and the development of the further Fe-Zn alloying reactions. The breakdown mechanism, controlled by the diffusion of zinc towards the steel grain boundaries, can be explained using the Al-Fe-Zn ternary phase diagram and summarized in two steps: the disappearance of the Fe2Al5Znx layer at the inhibition layer / steel interface as a result of the enrichment of this interface in zinc, and the local nucleation of the Г (Fe3Zn10) phase at the steel grain boundaries, breaking the inhibition layer off, when the zinc concentration at these locations becomes high enough. The kinetics accounting for this reaction strongly depends on the Ti IF steel chemical composition and the bath aluminium content. On the one hand, it has been found that the effect of the steel chemical composition on the inhibition layer breakdown kinetics would be ruled by the competition between two opposite phenomena: the rate of zinc diffusion at the steel grain boundaries and the ability of the steel to accumulate the zinc atoms at these locations On the other hand, decreasing the bath aluminium content favours the discontinuity of Fe2Al5Znx, which accelerates the inhibition layer breakdown as zinc is expected to diffuse faster through δ than through Fe2Al5Znx
APA, Harvard, Vancouver, ISO, and other styles
5

Tang, Fei. "The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles." Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/835313-syGDu9/webviewable/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tomar, Vikas. "Atomistic modeling of the AL and Fe₂O₃ material system using classical molecular dynamics." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7502.

Full text
Abstract:
In the current research, a framework based on classical molecular dynamics (MD) is developed for computational mechanical analyses of complex nanoscale materials. The material system of focus is a combination of fcc-Al and and #945;-Fe₂O₃. The framework includes the development of an interatomic potential, a scalable parallel MD code, nanocrystalline composite structures, and methodologies for the quasistatic and dynamic strength analyses. The interatomic potential includes an embedded atom method (EAM) cluster functional, a Morse type pair function, and a second order electrostatic interaction function. The framework is applied to analyze the nanoscale mechanical behavior of the Al+Fe₂O₃ material system in two different settings. First, quasistatic strength analyses of nanocrystalline composites with average grain sizes varying from 3.9 nm to 7.2 nm are carried out. Second, shock wave propagation analyses are carried out in single crystalline Al, Fe₂O₃, and one of their interfaces. The quasistatic strength analyses reveal that the deformation mechanisms in the analyzed nanocrystalline structures are affected by a combination of factors including high fraction of grain boundary atoms and electrostatic forces. The slopes as well as the direct or inverse nature of observed Hall-Petch (H-P) relationships are strongly dependent upon the volume fraction of the Fe₂O₃ phase in the composites. The compressive strengths of single phase nanocrystalline structures are two to three times the tensile strengths owing to the differences in the movement of atoms in grain boundaries during compressive and tensile deformations. Analyses of shock wave propagation in single crystalline systems reveal that the shock wave velocity (US) and the particle velocity (UP) relationships as well as the type and the extent of shock-induced deformation in single crystals are strongly correlated with the choice of crystallographic orientation for the shock wave propagation. Analyses of shock wave propagation through an interface between Al and Fe2O3 point to a possible threshold UP value beyond which a shock-induced structural transformation that is reactive in nature in a region surrounding the interface may be taking place. Overall, the framework and the analyses establish an important computational approach for investigating the mechanical behavior of complex nanostructures at the atomic length- and time-scales.
APA, Harvard, Vancouver, ISO, and other styles
7

von, Schweinichen Petrico [Verfasser]. "Erstarrungsverhalten und Erstarrungsbeeinflussung von Stählen im System Fe-Mn-C(-Al) / Petrico von Schweinichen." Aachen : Shaker, 2015. http://d-nb.info/1069044288/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chatterjee, Saikat. "Critical evaluation and thermodynamic modeling of phase equilibria in the Fe-Ca-Mg-Mn-Al-Si-O system." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119746.

Full text
Abstract:
The knowledge of phase equilibria and thermodynamic properties of liquid and solid oxides can help us better understand metallurgical, ceramic or geological processes. The main aim of the present study is the critical evaluation and thermodynamic optimization of solid and liquid (MnO-Al2O3 based) oxides which are of interest to the steelmaking and ferro-Mn industries. These newly developed databases coupled with the previous databases can be used along with any software for Gibbs energy minimization to predict the phase relationships and the thermodynamic properties of any relevant system. Usually, thermodynamic databases can save both cost and time, which, otherwise would have been spent to optimize the existing process and develop any new process. The production of steels with higher amounts of manganese and aluminum has gained considerable importance in the recent past. Steels with high concentration of manganese and aluminum like TWIP steel and TRIP steel have exceptional properties which classify them as special steels; needless to say the various range of applications they can cater to. Ferromanganese, which contains a large amount of manganese, is also a very useful product required in the production of high manganese steels. The production of these alloys results in the generation of slags which are rich in MnO and Al2O3. Hence, knowledge of the phase relations between these two components is of utmost importance in order to maximize the efficiency of the production process. Only a very good knowledge of Gibbs energy of all the phases present in the binary system MnO-Al2O3 can allow us to predict the correct equilibrium conditions during the production process. The critical evaluation and thermodynamic optimization of all the available phase diagram data and thermodynamic properties of the system Mn-Al-O have been carried out in the first part of the present work. Thermodynamic modeling for different phases such as slag, spinel (cubic and tetragonal) and bixbyite has been performed using Modified Quasichemical Model, Compound Energy Formalism and random mixing model, respectively. The sublattice structure of solid solution phases were properly taken into account in the thermodynamic modeling and their thermodynamic properties and structural data were reproduced using the physically meaningful model parameters. All the reliable experimental data of the Mn-Al-O system were reproduced within error limits from room temperature to above the liquidus temperatures at all compositions and oxygen partial pressure ranging from metal saturation to air. The present MnAl2O4-Mn3O4 spinel solutions can be integrated with all the other spinel solutions developed earlier to obtain an extensive spinel solution database. This database along with the software for Gibbs energy minimization can be utilized to perform various calculations and predict the phase relations at any given condition. In the next part of the present work, the binary MnO-Al2O3 system was extended to the higher order systems like MnO-Al2O3-SiO2, CaO-MnO-Al2O3, FeO-MnO-Al2O3, MgO-MnO-Al2O3 and CaO-MnO-Al2O3-SiO2. Other calculations related to inclusion engineering in steelmaking were also carried out. This was done to check the accuracy of the database developed for the binary MnO-Al2O3 system. The database of model parameters can be used with thermodynamic software like Factsage for thermodynamic modeling of various industrial and natural processes. Calculations pertaining to prediction of thermodynamic properties of phases, cation distribution in spinel solutions, phase equilibria at any temperature, composition and oxygen partial pressure where no experimental data are available can also be performed.
La connaissance des équilibres de phase et des propriétés thermodynamiques des oxydes solides et liquides peut aider à mieux comprendre les processus métallurgiques, céramiques et géologiques. Le but de cette étude est l'évaluation critique et l'optimisation thermodynamique des oxydes solides et liquides impliquant MnO-Al2O3 qui sont utiles pour les industries de l'acier et du ferromanganèse. Les bases de données développées, couplées avec d'anciennes bases de données, peuvent être utilisées avec n'importe quel logiciel de minimisation de l'énergie de Gibbs pour prédire les équilibres de phase et les propriétés thermodynamiques de tout système. Souvent, les bases de données permettent de sauver temps et argent qui, autrement, auraient pu être utilisés pour optimiser des processus existant ou en développer de nouveaux. La production d'aciers à teneur élevé en Mn et Al a acquis une importance considérable. Les aciers à teneur élevé en Mn et Al, comme les aciers TWIP et TRIP, ont des propriétés exceptionnelles qui les classifient comme aciers spéciaux; inutile de mentionner toutes les applications auxquels ils peuvent répondre. Le ferromanganèse, qui contient de grandes quantités de Mn, est aussi un produit très utile dans la production d'aciers à haute teneur en Mn. La production de tels aciers génère des scories riches en MnO et Al2O3. Par conséquent, la connaissance des relations de phases entre ces deux composés est d'une importance capitale pour maximiser l'efficacité de la production. Seule une bonne connaissance de l'énergie de Gibbs de toutes les phases du système MnO-Al2O3 peut nous permettre de prédire les conditions d'équilibre lors de la production. L'évaluation critique et l'optimisation de toutes les données disponibles de diagrammes de phase et de propriétés thermodynamiques du système Mn-Al-O ont été réalisées dans la première partie de ce travail. La modélisation thermodynamique des différentes phases telles que le laitier, le spinelle (cubique et tétragonal) et la bixbyite a été effectuée, respectivement, à l'aide du Modèle Quasichimique Modifié, du Formalisme de l'Énergie des Composés et du modèle de mélange aléatoire. La structure du sous-réseau des solutions solides fut correctement prise en compte dans la modélisation et les propriétés thermodynamiques et données structurales furent reproduites en utilisant des paramètres ayant une signification physique. Toutes les données expérimentales fiables du système Mn-Al-O ont été reproduites à l'intérieur des limites d'erreur de la température ambiante jusqu'au-dessus du liquidus pour toutes les compositions et à des pressions partielles d'oxygène allant de la saturation en métal jusqu'à l'air. Les solutions de spinelle MnAl2O4-Mn3O4 peuvent être intégrées à toutes les autres solutions de spinelle développées antérieurement pour obtenir une base de données étendue pour le spinelle. Celle-ci, combinée à un logiciel de minimisation de l'énergie de Gibbs, peut être utilisée pour effectuer divers calculs et prédire les relations de phase dans n'importe quelles conditions données. Dans la seconde partie de ce travail, le système MnO-Al2O3 a été ajouté aux systèmes d'ordre supérieur tels que MnO-Al2O3-SiO2, CaO-MnO-Al2O3, FeO-MnO-Al2O3, MgO-MnO-Al2O3 et CaO-MnO-Al2O3-SiO2. Des calculs liés à l'ingénierie des inclusions impliquées dans la fabrication de l'acier ont également été réalisées. Ceci a été fait pour vérifier l'exactitude de la base de données du système MnO-Al2O3. Les paramètres du modèle peuvent être utilisés avec un logiciel comme FactSage pour la modélisation de divers procédés industriels et naturels. Les calculs relatifs à la prédiction des propriétés thermodynamiques des phases, la distribution des cations dans les solutions spinelle et les équilibres entre phases à n'importe quelle température, composition et pression partielle d'oxygène où aucune donné expérimentale n'existe, peuvent également être effectuées.
APA, Harvard, Vancouver, ISO, and other styles
9

Rank, Maximilian [Verfasser], and H. J. [Akademischer Betreuer] Seifert. "Thermodynamisch-kinetische Untersuchungen im Al–Cr–Fe System für ODS-Stahl-Analysen / Maximilian Rank ; Betreuer: H. J. Seifert." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1208296841/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Lei. "Controlling interfacial reaction in aluminium to steel dissimilar metal welding." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/controlling-interfacial-reaction-in-aluminium-to-steel-dissimilar-metal-welding(721d3009-de49-434c-bd81-b01ff5973706).html.

Full text
Abstract:
Two different aluminium alloys, AA6111 (Al-Mg-Si) and AA7055 (Al-Mg-Zn), were chosen as the aluminium alloys to be welded with DC04, and two welding methods (USW and FSSW) were selected to prepare the welds. Selected pre-welded joints were then annealed at T=400 - 570oC for different times. Kinetics growth data was collected from the microstructure results, and the growth behaviour of the IMC layer was found to fit the parabolic growth law. A grain growth model was built to predict the grain size as a function of annealing time. A double-IMC phase diffusion model was applied, together with grain growth model, to predict the thickness of each phase as a function of annealing time in the diffusion process during heat treatment. In both material combinations and with both welding processes a similar sequence of IMC phase formation was observed during the solid state welding. η-Fe2Al5 was found to be the first IMC phase to nucleate. The IMC islands then spread to form a continuous layer in both material combinations. With longer welding times a second IMC phase, θ-FeAl3, was seen to develop on the aluminium side of the joints. Higher fracture energy was received in the DC04-AA6111 joints than in the DC04-AA7055 joints. Two reasons were claimed according to the microstructure in the two joints. The thicker IMC layers were observed in the DC04-AA7055 joints either before or after heat treatment, due to the faster growth rate of the θ phase. In addition, pores were left in the aluminium side near the interface as a result of the low melting point of AA7055.The modelling results for both the diffusion model and grain growth model fitted very well with the data from the static heat treatment. Grain growth occurred in both phases in the heat treatment significantly, and was found to affect the calculated activation energy by the grain boundary diffusion. At lower temperatures in the phases with a smaller grain size, the grain boundary diffusion had a more significant influence on the growth rate of the IMC phases. The activation energies for the grain boundary diffusion and lattice diffusion were calculated as 240 kJ/mol and 120 kJ/mol for the η phase, and 220 kJ/mol and 110 kJ/mol for the θ phase, respectively. The model was invalid for the growth of the discontinuous IMC layers in USW process. The diffusion model only worked for 1-Dimensional growth of a continuous layer, which was the growth behaviour of the IMC layer during heat treatment. However, due to the highly transient conditions in USW process, the IMC phases were not continuous and uniform even after a welding time of 2 seconds. Therefore, the growth of the island shaped IMC particles in USW was difficult to be predicted, unless the nucleation stage was taken into consideration.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Al-Fe System"

1

Gilgien, Philippe. Calcul de cartes de microstructures de soldification pour le systeme Al-Fe-Si. sl: sn, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

MSIT Materials Science Interhn. Team. Selected Systems from Al-Cu-Fe to Al-Fe-Ti. Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

MSIT Materials Science International Team. Selected Systems from Al-Fe-V to Al-Ni-Zr (Numerical Data). Springer, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ternary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data: Iron Systems, Part 1: Selected Systems from Al-B-Fe to C-Co-Fe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hecht, Ulrike, Mark L. Weaver, and Sheng Guo, eds. Dual-phase Materials in the Medium and High Entropy Alloy Systems Al-Cr-Fe-Ni and Al-Co-Cr-Fe-Ni. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-225-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Al-Fe System"

1

Wang, Shusen, Zhu Li, Ziwei Qin, Shihua Wang, Xionggang Lu, and Chonghe Li. "Thermodynamic Modeling of Al-Fe-Cr Ternary System." In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, 443–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51493-2_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Restrepo, J., G. A. Pérez Alcázar, and J. M. González. "Magnetic Properties of the Highly Diluted Al-Fe Disordered System." In Springer Proceedings in Physics, 27–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60095-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaytbay, S. H., S. F. Moustafa, and W. M. Daoush. "Solid-State Reaction in Al-Fe Binary System Induced by Mechanical Alloying." In Defect and Diffusion Forum, 15–24. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-54-x.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marino, F., S. Gialanella, and R. Delorenzo. "Defect Recombination Phenomena in Melt-Spun Ordered Alloys of the Fe-Al System." In Ordering and Disordering in Alloys, 155–63. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2886-5_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Petruzzelli, D., L. Liberti, R. Passino, and G. Tiravanti. "Specific Resins for Metal Ion Separation. The Cr(III), Fe(III), Al(III) System." In Recent Developments in Ion Exchange, 265–75. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0777-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gromov, V. E., S. V. Konovalov, Yu F. Ivanov, and K. A. Osintsev. "Prediction of Phase Composition of Al-Co-Cr-Fe-Ni System High-Entropy Alloy." In Advanced Structured Materials, 63–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78364-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Jiang Ting, Peter Hodgson, Jing De Zhang, and Chun Hui Yang. "Residual Thermal Stresses in a Fe3Al/Al2O3 Gradient Coating System." In Frontiers in Materials Science and Technology, 71–74. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-475-8.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meng, Song He, Xing Hong Zhang, and Wei Feng Zhang. "Reaction Process of Al-TiO2-C-Ti-Fe Multiphase System during Combustion Synthesis." In Key Engineering Materials, 2340–43. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.2340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Partyka, E., and Rafał Kozubski. "Effect of Fe Addition on Ordering Kinetics in Ni3Al1-xFex System. Monte Carlo Simulation." In Defect and Diffusion Forum, 93–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-35-3.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Frąckowiak, J. E., Artur Hanc, Grzegorz Dercz, Lucjan Pająk, and Boleslaw Formanek. "Mössbauer and XRD Studies on Composite Powder with Phases from Fe-Al System Obtained by Mechanically Activated SHS Mehtod." In Solid State Phenomena, 185–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-40-x.185.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Al-Fe System"

1

Kotenkov, Pavel, Yurii Kontsevoi, Anna Mejlakh, Eduard Pastukhov, Alexey Shubin, Eduard Goyda, and Ivan Sipatov. "Antifriction coating of Cu-Fe-Al-Pb system for plain bearings." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

An, Vladimir, Nikolay Yavorovsky, Charles de Izarra, Ekaterina Ivchenko, and Sergei Zhuravkov. "Study of the formation of nanofibers in the Fe-Al system." In 2008 Third International Forum on Strategic Technologies (IFOST). IEEE, 2008. http://dx.doi.org/10.1109/ifost.2008.4602986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Y. T., X. Y. Li, D. Z. Li, Y. Y. Li, U. (Balu) Balachandran, Kathleen Amm, David Evans, et al. "PHASE DIAGRAM CALCULATION AND EXPERIMENT FOR FE-MN-AL SYSTEM AT DIFFERENT TEMPERATURE." In ADVANCES IN CRYOGENIC ENGINEERING MATERIALS: Transactions of the International Cryogenic Materials Conference - ICMC, Vol. 54. AIP, 2008. http://dx.doi.org/10.1063/1.2900336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Urban, P., F. G. Cuevas, J. M. Montes, and J. Cintas. "Solid state amorphization in the Al-Fe binary system during high energy milling." In 3RD INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS. AIP, 2013. http://dx.doi.org/10.1063/1.4849319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Medvedev, A. E., O. O. Baykeeva, E. B. Medvedev, and M. Yu Murashkin. "Influence of iron content on properties of Al-Fe system alloys after ECAP." In PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0071714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boulouma, A., A. Drici, A. Benaldjia, M. Guerioune, and D. Vrel. "The formation of (Al8Fe2Si, Al13Fe4) phases from Al-Fe-Si system by TE mode." In 4TH INTERNATIONAL CONGRESS IN ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE (APMAS 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4914214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Takigawa, Aki, Yuto Imura, Satomi Enju, and Akira Tsuchiyama. "Condensation Experiments of Mg-Si-Fe-Ni-Al-Ca-O-S Silicates in ITP System." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Borisova, A., Y. Borisov, M. Panko, L. Adeeva, M. Kolomytsev, A. Shakhraj, and V. Sladkova. "Peculiarities of Structure of Quasicrystalline Al-Cu-Fe System Coatings Produced By Thermal Spraying Methods." In ITSC2003, edited by Basil R. Marple and Christian Moreau. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.itsc2003p0713.

Full text
Abstract:
Abstract The effect of methods and conditions of thermal spraying on structure and phase composition of coatings of the Al-Cu-Fe system alloy powders has been investigated. It is shown that the maximum ø-phase content of the coatings can be produced by the method of air-gas plasma spraying. In this case the thermal spray coatings inherit the multi-phase nature of initial powders. Preheating of the substrate prior to spraying allows the ø-phase content of the coatings to be increased.
APA, Harvard, Vancouver, ISO, and other styles
9

Balogun, D., J. Huang, L. Bartlett, R. Gerald II, R. O'Malley, and M. Roman. "Peritectic Behavior Detection in the Fe-C-Mn-Al-Si Steel System Using Fiber Optic Temperature Mapping." In AISTech 2020. AIST, 2020. http://dx.doi.org/10.33313/380/087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tomar, Vikas, and Min Zhou. "Strength Analyses of FE2O3+Al Nanocomposites Using Classical Molecular Dynamics." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79282.

Full text
Abstract:
Classical molecular dynamics (CMD) simulation is an important technique for analyzing custom-designed nanostructured materials and nano-sized systems such as nanowires and nanobelts. This research focuses on analyzing the strength of Fe2O3+Al energetic nanocomposites using CMD. A generic potential form is used to describe the behavior of the Fe+Al+Fe2O3+Al2O3 system. The potential is able to describe bulk single crystal behavior of Fe, Al, Fe2O3, Al2O3 as well as interfacial transitions among them. The nanostructures analyzed include polycrystalline Aluminum, Fe2O3 as well as their composites with two different volume fractions (0.6/0.4 and 04/0.6). The polycrystalline structures are generated using voronoi tessellation. Quasi-static strength analyses are carried out using a massively parallel CMD code for both tension and compression. The analyses reveal that reverse Hall-Petch (H-P) effect is operative for polycrystalline Al under both tension and compression. However, for polycrystalline Fe2O3 reverse H-P effect is operative under tension only. Compression still shows direct H-P effect. This effect transcends into the strength of both composites at all grain sizes. In addition, we also observe tension-compression strength asymmetry in the all polycrystalline systems. This framework offers an important tool for nanoscale design of advanced nanocomposite materials.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Al-Fe System"

1

Tang, Fei. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/835313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Berman, R. G., L. Ya Aranovich, and D. G. Rancourt. Phase equilibrium constraints on the stability of biotite. Part 2: Fe-Al biotite in the system K2O-FeO-Al2O3-SiO2-H2O. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/205209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brenan, J. M., K. Woods, J. E. Mungall, and R. Weston. Origin of chromitites in the Esker Intrusive Complex, Ring of Fire Intrusive Suite, as revealed by chromite trace element chemistry and simple crystallization models. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328981.

Full text
Abstract:
To better constrain the origin of the chromitites associated with the Esker Intrusive Complex (EIC) of the Ring of Fire Intrusive Suite (RoFIS), a total of 50 chromite-bearing samples from the Black Thor, Big Daddy, Blackbird, and Black Label chromite deposits have been analysed for major and trace elements. The samples represent three textural groups, as defined by the relative abundance of cumulate silicate phases and chromite. To provide deposit-specific partition coefficients for modeling, we also report on the results of laboratory experiments to measure olivine- and chromite-melt partitioning of V and Ga, which are two elements readily detectable in the chromites analysed. Comparison of the Cr/Cr+Al and Fe/Fe+Mg of the EIC chromites and compositions from previous experimental studies indicates overlap in Cr/Cr+Al between the natural samples and experiments done at >1400oC, but significant offset of the natural samples to higher Fe/Fe+Mg. This is interpreted to be the result of subsolidus Fe-Mg exchange between chromite and the silicate matrix. However, little change in Cr/Cr+Al from magmatic values, owing to the lack of an exchangeable reservoir for these elements. A comparison of the composition of the EIC chromites and a subset of samples from other tectonic settings reveals a strong similarity to chromites from the similarly-aged Munro Township komatiites. Partition coefficients for V and Ga are consistent with past results in that both elements are compatible in chromite (DV = 2-4; DGa ~ 3), and incompatible in olivine (DV = 0.01-0.14; DGa ~ 0.02), with values for V increasing with decreasing fO2. Simple fractional crystallization models that use these partition coefficients are developed that monitor the change in element behaviour based on the relative proportions of olivine to chromite in the crystallizing assemblage; from 'normal' cotectic proportions involving predominantly olivine, to chromite-only crystallization. Comparison of models to the natural chromite V-Ga array suggests that the overall positive correlation between these two elements is consistent with chromite formed from a Munro Township-like komatiitic magma crystallizing olivine and chromite in 'normal' cotectic proportions, with no evidence of the strong depletion in these elements expected for chromite-only crystallization. The V-Ga array can be explained if the initial magma responsible for chromite formation is slightly reduced with respect to the FMQ oxygen buffer (~FMQ- 0.5), and has assimilated up to ~20% of wall-rock banded iron formation or granodiorite. Despite the evidence for contamination, results indicate that the EIC chromitites crystallized from 'normal' cotectic proportions of olivine to chromite, and therefore no specific causative link is made between contamination and chromitite formation. Instead, the development of near- monomineralic chromite layers likely involves the preferential removal of olivine relative to chromite by physical segregation during magma flow. As suggested for some other chromitite-forming systems, the specific fluid dynamic regime during magma emplacement may therefore be responsible for crystal sorting and chromite accumulation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography