Academic literature on the topic 'Al-Fe System'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Al-Fe System.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Al-Fe System"
Grieb, Bernd, and Ernst-Theo Henig. "The Ternary Al - Fe - Nd System / Das ternäre System Al-Fe-Nd." International Journal of Materials Research 82, no. 7 (July 1, 1991): 560–67. http://dx.doi.org/10.1515/ijmr-1991-820709.
Full textHarmelin, Mireille. "Al-Cu-Fe System report." MSI Eureka 90 (1990): 10.34542.2.33. http://dx.doi.org/10.7121/msi-eureka-10.34542.2.33.
Full textWeiland, Erna, Dietrich Heger, and Helga Hildebrand. "Phasen im System Fe-B-Al-Ti / Phases in the Fe-B-Al-Ti system." Practical Metallography 36, no. 5 (May 1, 1998): 264–72. http://dx.doi.org/10.1515/pm-1998-360504.
Full textAnglezio, J. C., C. Servant, and I. Ansara. "Contribution to the experimental and thermodynamic assessment of the AlCaFeSi system—I. AlCaFe, AlCaSi, AlFeSi and CaFeSi systems." Calphad 18, no. 3 (July 1994): 273–309. http://dx.doi.org/10.1016/0364-5916(94)90034-5.
Full textMota, M. A., A. A. Coelho, J. M. Z. Bejarano, S. Gama, and R. Caram. "Fe–Al–Nb phase diagram investigation and directional growth of the (Fe, Al)2Nb–(Fe, Al, Nb)ss eutectic system." Journal of Alloys and Compounds 399, no. 1-2 (August 2005): 196–201. http://dx.doi.org/10.1016/j.jallcom.2005.03.038.
Full textOleszak, D., and P. H. Shingu. "Mechanical alloying in the FeAl system." Materials Science and Engineering: A 181-182 (May 1994): 1217–21. http://dx.doi.org/10.1016/0921-5093(94)90834-6.
Full textEleno, Luiz, Karin Frisk, and André Schneider. "Assessment of the Fe–Ni–Al system." Intermetallics 14, no. 10-11 (October 2006): 1276–90. http://dx.doi.org/10.1016/j.intermet.2005.11.021.
Full textPalm, M., and J. Lacaze. "Assessment of the Al–Fe–Ti system." Intermetallics 14, no. 10-11 (October 2006): 1291–303. http://dx.doi.org/10.1016/j.intermet.2005.11.026.
Full textBalanetskii, Sergei O., Benjamin Grushko, Knut Urban, and Tamara Ya Velikanova. "Ternary Cubic Phases in the Al – Pd Al – Fe System." Powder Metallurgy and Metal Ceramics 43, no. 7/8 (July 2004): 396–405. http://dx.doi.org/10.1023/b:pmmc.0000048134.97199.49.
Full textKotova, N., N. Usenko, and N. Golovata. "FEATURES OF COMPONENT INTERACTION IN LIQUID ALLOYS OF TERNARY Al-Ge-3d-Me (Me = Mn, Fe, Ni, Cu) SYSTEMS." Bulletin of Taras Shevchenko National University of Kyiv. Chemistry, no. 1 (57) (2020): 34–40. http://dx.doi.org/10.17721/1728-2209.2020.1(57).9.
Full textDissertations / Theses on the topic "Al-Fe System"
Temizel, Guvenc. "Intermetallic Phase Formation At Fe-al Film Interefaces." Master's thesis, METU, 2006. http://etd.lib.metu.edu.tr/upload/12607589/index.pdf.
Full textSilva, Antonio Augusto Araújo Pinto da. "Thermodynamic modeling and critical experiments on the Al-Fe-Nb system." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0148.
Full textThe equilibrium diagrams are the starting point and the guideline to predict and control the microstructure that will form during processing materials. Despite experiments being necessary in binaries and ternaries systems, it is difficult to experimentally determine phase diagrams of higher orders systems over wide ranges of compositions and temperature. The CALPHAD (CALculation of PHAse Diagrams) method was developed in order to solve this problem. The essence is to optimize the parameters of thermodynamic models that describe the Gibbs free energies of each phase aiming to reproduce the experimental and estimated (ab-initio) data. The compound energy formalism (CEF) is widely used in order to describe phases which present several sublattices. It allows the modeling of a large variety of phases and numerous methods have been developed to treat different situations. The activities in this work developed a new approach of the CEF (NACEF) based on a mathematic analysis of the parameters which leads to a new formulation of the Gibbs free energy function evolving new independent parameters in which new independent parameters are obtained to express the Gibbs free energy. This approach was used in this work to describe the intermetallic phases with two-sublattice in which the only defect type is anti-sites (A,B)a(A,B)b. The Al-Fe-Nb system was chosen due to its importance for the manufacturing process of several families of alloys currently used, e.g. steels, light alloys, and also for the development of new materials for high temperatures application. The binaries Al-Nb and Fe-Nb were reassessed and the Al-Fe-Nb system was assessed for the first time using literature information and new experimental data
Os diagramas de equilíbrio são o ponto de partida e a diretriz para prever e controlar a microestrutura ao final do processamento de um material. Apesar de experimentos serem necessários em sistemas binários e ternários, é muito difícil determinar experimentalmente diagramas de fase de sistemas de ordens superiores numa vasta amplitude de composições e temperatura. A fim de solucionar este problema, o método CALPHAD (CALculation of PHAse Diagrams) foi desenvolvido. A essência consiste em aperfeiçoar os parâmetros de modelos termodinâmicos que descrevem as energias livres de Gibbs de cada fase de modo a reproduzir as informações experimentais ou estimadas (ab-initio). O compound energy formalism (CEF) é amplamente utilizado para descrever fases que apresentam várias sub-redes. Ele permite a modelagem de uma grande variedade de fases e vários métodos têm sido desenvolvidos para o tratamento de diferentes situações. As atividades deste trabalho ajudaram a desenvolver uma nova abordagem para o CEF (NACEF) com base em um estudo matemático dos seus parâmetros termodinâmicos que levou a uma nova formulação para função da energia livre de Gibbs envolvendo novos parâmetros independentes. Esta nova abordagem tem sido utilizado como parte do presente trabalho para modelar fases intermetálicas binárias constituídas de sub-redes cujo único defeito é do tipo anti-sítio (A,B)a(A,B)b. O sistema Al-Fe-Nb foi escolhido devido a sua importância para o processo de fabricação de diversas famílias de ligas usadas atualmente, e.g. aços, ligas leves e, além disto, é um sistema importante para o desenvolvimento de materiais para aplicações em altas temperaturas. Neste trabalho os binários Al-Nb e Fe-Nb foram reavaliados e o sistema Al-Fe-Nb foi modelado pela primeira vez utilizando as informações da literatura e novos dados experimentais
Zienert, Tilo [Verfasser], Andreas [Akademischer Betreuer] Leineweber, Andreas [Gutachter] Leineweber, Hans [Gutachter] Flandorfer, and Olga [Gutachter] Fabrichnaya. "Predicting heat capacity and experimental investigations in the Al-Fe and Al-Fe-Si systems as part of the CALPHAD-type assessment of the Al-Fe-Mg-Si system / Tilo Zienert ; Gutachter: Andreas Leineweber, Hans Flandorfer, Olga Fabrichnaya ; Betreuer: Andreas Leineweber." Freiberg : Technische Universität Bergakademie Freiberg, 2018. http://d-nb.info/1221070843/34.
Full textZapico, Alvarez David. "Mechanisms and kinetics of the galvannealing reactions on Ti IF steels." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0019.
Full textHot-Dip GalvAnnealed (HDGA) coatings are produced by the immersion of the steel strip into an iron-saturated liquid zinc bath at around 460 °C containing small amounts of aluminium (from 0.1 to 0.135 wt.%, normally) and its subsequent heating (up to temperatures around 500-530 °C for about 10 s, typically) in order to trigger the alloying reactions between iron and zinc. The final microstructure of this kind of coatings is composed of a sequence of stratified Fe-Zn phase layers and its in-use properties are directly related to the phase distribution within the coating. The process parameters to be performed in industrial lines must therefore be optimized in order to obtain a successful coating microstructure with the minimum costs. The development of such a coating passes through different and complex reactions: the inhibition layer formation, the inhibition layer breakdown, the liquid zinc consumption and the iron enrichment of the solid coating. The kinetics accounting for these reactions must be studied and modelled separately in order to accurately control the evolution of the coating along the heat treatment performed in the industrial line. In the present work, the two first reactions were investigated in the case of Ti IF steel grades. The kinetics of the inhibition layer formation is extremely fast and has therefore not been investigated in detail. Concerning this reaction, the focus was given to the nature of this inhibition layer and to the mechanisms accounting for its formation. It has been found that the inhibition layer formed in typical baths for galvannealed coatings production is composed of a very thin layer of the Fe2Al5Znx phase (20-30 nm) on the steel surface and a thicker layer of the δ (FeZn7) phase (around 200 nm) on its top. As the steel strip enters the zinc bath, iron dissolution from the former into the latter leads to an iron supersaturation at the solid / liquid interface. As a result, a very thin layer of metastable Fe2Al5Znx nucleates on the steel surface favoured by preferential epitaxial relationships with ferrite. Subsequently, δ nucleates on the Fe2Al5Znx layer allowing the final microstructure of the inhibition layer to become thermodynamically stable. The effect of the bath aluminium content on the nature of this inhibiting structure has also been studied. As the bath aluminium content is lowered, the Fe2Al5Znx layer becomes discontinuous: the lower the bath aluminium content is, the higher the metastability of Fe2Al5Znx is and the less probable its nucleation on the steel surface is. The inhibition state is only transient and continued heat treatment will lead to the inhibition layer breakdown and the development of the further Fe-Zn alloying reactions. The breakdown mechanism, controlled by the diffusion of zinc towards the steel grain boundaries, can be explained using the Al-Fe-Zn ternary phase diagram and summarized in two steps: the disappearance of the Fe2Al5Znx layer at the inhibition layer / steel interface as a result of the enrichment of this interface in zinc, and the local nucleation of the Г (Fe3Zn10) phase at the steel grain boundaries, breaking the inhibition layer off, when the zinc concentration at these locations becomes high enough. The kinetics accounting for this reaction strongly depends on the Ti IF steel chemical composition and the bath aluminium content. On the one hand, it has been found that the effect of the steel chemical composition on the inhibition layer breakdown kinetics would be ruled by the competition between two opposite phenomena: the rate of zinc diffusion at the steel grain boundaries and the ability of the steel to accumulate the zinc atoms at these locations On the other hand, decreasing the bath aluminium content favours the discontinuity of Fe2Al5Znx, which accelerates the inhibition layer breakdown as zinc is expected to diffuse faster through δ than through Fe2Al5Znx
Tang, Fei. "The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles." Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy. Office of Science ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/835313-syGDu9/webviewable/.
Full textTomar, Vikas. "Atomistic modeling of the AL and Fe₂O₃ material system using classical molecular dynamics." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7502.
Full textvon, Schweinichen Petrico [Verfasser]. "Erstarrungsverhalten und Erstarrungsbeeinflussung von Stählen im System Fe-Mn-C(-Al) / Petrico von Schweinichen." Aachen : Shaker, 2015. http://d-nb.info/1069044288/34.
Full textChatterjee, Saikat. "Critical evaluation and thermodynamic modeling of phase equilibria in the Fe-Ca-Mg-Mn-Al-Si-O system." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119746.
Full textLa connaissance des équilibres de phase et des propriétés thermodynamiques des oxydes solides et liquides peut aider à mieux comprendre les processus métallurgiques, céramiques et géologiques. Le but de cette étude est l'évaluation critique et l'optimisation thermodynamique des oxydes solides et liquides impliquant MnO-Al2O3 qui sont utiles pour les industries de l'acier et du ferromanganèse. Les bases de données développées, couplées avec d'anciennes bases de données, peuvent être utilisées avec n'importe quel logiciel de minimisation de l'énergie de Gibbs pour prédire les équilibres de phase et les propriétés thermodynamiques de tout système. Souvent, les bases de données permettent de sauver temps et argent qui, autrement, auraient pu être utilisés pour optimiser des processus existant ou en développer de nouveaux. La production d'aciers à teneur élevé en Mn et Al a acquis une importance considérable. Les aciers à teneur élevé en Mn et Al, comme les aciers TWIP et TRIP, ont des propriétés exceptionnelles qui les classifient comme aciers spéciaux; inutile de mentionner toutes les applications auxquels ils peuvent répondre. Le ferromanganèse, qui contient de grandes quantités de Mn, est aussi un produit très utile dans la production d'aciers à haute teneur en Mn. La production de tels aciers génère des scories riches en MnO et Al2O3. Par conséquent, la connaissance des relations de phases entre ces deux composés est d'une importance capitale pour maximiser l'efficacité de la production. Seule une bonne connaissance de l'énergie de Gibbs de toutes les phases du système MnO-Al2O3 peut nous permettre de prédire les conditions d'équilibre lors de la production. L'évaluation critique et l'optimisation de toutes les données disponibles de diagrammes de phase et de propriétés thermodynamiques du système Mn-Al-O ont été réalisées dans la première partie de ce travail. La modélisation thermodynamique des différentes phases telles que le laitier, le spinelle (cubique et tétragonal) et la bixbyite a été effectuée, respectivement, à l'aide du Modèle Quasichimique Modifié, du Formalisme de l'Énergie des Composés et du modèle de mélange aléatoire. La structure du sous-réseau des solutions solides fut correctement prise en compte dans la modélisation et les propriétés thermodynamiques et données structurales furent reproduites en utilisant des paramètres ayant une signification physique. Toutes les données expérimentales fiables du système Mn-Al-O ont été reproduites à l'intérieur des limites d'erreur de la température ambiante jusqu'au-dessus du liquidus pour toutes les compositions et à des pressions partielles d'oxygène allant de la saturation en métal jusqu'à l'air. Les solutions de spinelle MnAl2O4-Mn3O4 peuvent être intégrées à toutes les autres solutions de spinelle développées antérieurement pour obtenir une base de données étendue pour le spinelle. Celle-ci, combinée à un logiciel de minimisation de l'énergie de Gibbs, peut être utilisée pour effectuer divers calculs et prédire les relations de phase dans n'importe quelles conditions données. Dans la seconde partie de ce travail, le système MnO-Al2O3 a été ajouté aux systèmes d'ordre supérieur tels que MnO-Al2O3-SiO2, CaO-MnO-Al2O3, FeO-MnO-Al2O3, MgO-MnO-Al2O3 et CaO-MnO-Al2O3-SiO2. Des calculs liés à l'ingénierie des inclusions impliquées dans la fabrication de l'acier ont également été réalisées. Ceci a été fait pour vérifier l'exactitude de la base de données du système MnO-Al2O3. Les paramètres du modèle peuvent être utilisés avec un logiciel comme FactSage pour la modélisation de divers procédés industriels et naturels. Les calculs relatifs à la prédiction des propriétés thermodynamiques des phases, la distribution des cations dans les solutions spinelle et les équilibres entre phases à n'importe quelle température, composition et pression partielle d'oxygène où aucune donné expérimentale n'existe, peuvent également être effectuées.
Rank, Maximilian [Verfasser], and H. J. [Akademischer Betreuer] Seifert. "Thermodynamisch-kinetische Untersuchungen im Al–Cr–Fe System für ODS-Stahl-Analysen / Maximilian Rank ; Betreuer: H. J. Seifert." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1208296841/34.
Full textXu, Lei. "Controlling interfacial reaction in aluminium to steel dissimilar metal welding." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/controlling-interfacial-reaction-in-aluminium-to-steel-dissimilar-metal-welding(721d3009-de49-434c-bd81-b01ff5973706).html.
Full textBooks on the topic "Al-Fe System"
Gilgien, Philippe. Calcul de cartes de microstructures de soldification pour le systeme Al-Fe-Si. sl: sn, 1996.
Find full textMSIT Materials Science Interhn. Team. Selected Systems from Al-Cu-Fe to Al-Fe-Ti. Springer, 2005.
Find full textMSIT Materials Science International Team. Selected Systems from Al-Fe-V to Al-Ni-Zr (Numerical Data). Springer, 2005.
Find full textTernary Alloy Systems, Phase Diagrams, Crystallographic and Thermodynamic Data: Iron Systems, Part 1: Selected Systems from Al-B-Fe to C-Co-Fe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
Find full textHecht, Ulrike, Mark L. Weaver, and Sheng Guo, eds. Dual-phase Materials in the Medium and High Entropy Alloy Systems Al-Cr-Fe-Ni and Al-Co-Cr-Fe-Ni. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-225-0.
Full textBook chapters on the topic "Al-Fe System"
Wang, Shusen, Zhu Li, Ziwei Qin, Shihua Wang, Xionggang Lu, and Chonghe Li. "Thermodynamic Modeling of Al-Fe-Cr Ternary System." In TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, 443–54. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51493-2_42.
Full textRestrepo, J., G. A. Pérez Alcázar, and J. M. González. "Magnetic Properties of the Highly Diluted Al-Fe Disordered System." In Springer Proceedings in Physics, 27–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60095-1_4.
Full textKaytbay, S. H., S. F. Moustafa, and W. M. Daoush. "Solid-State Reaction in Al-Fe Binary System Induced by Mechanical Alloying." In Defect and Diffusion Forum, 15–24. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-54-x.15.
Full textMarino, F., S. Gialanella, and R. Delorenzo. "Defect Recombination Phenomena in Melt-Spun Ordered Alloys of the Fe-Al System." In Ordering and Disordering in Alloys, 155–63. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2886-5_16.
Full textPetruzzelli, D., L. Liberti, R. Passino, and G. Tiravanti. "Specific Resins for Metal Ion Separation. The Cr(III), Fe(III), Al(III) System." In Recent Developments in Ion Exchange, 265–75. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0777-5_25.
Full textGromov, V. E., S. V. Konovalov, Yu F. Ivanov, and K. A. Osintsev. "Prediction of Phase Composition of Al-Co-Cr-Fe-Ni System High-Entropy Alloy." In Advanced Structured Materials, 63–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78364-8_5.
Full textWang, Jiang Ting, Peter Hodgson, Jing De Zhang, and Chun Hui Yang. "Residual Thermal Stresses in a Fe3Al/Al2O3 Gradient Coating System." In Frontiers in Materials Science and Technology, 71–74. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-475-8.71.
Full textMeng, Song He, Xing Hong Zhang, and Wei Feng Zhang. "Reaction Process of Al-TiO2-C-Ti-Fe Multiphase System during Combustion Synthesis." In Key Engineering Materials, 2340–43. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.2340.
Full textPartyka, E., and Rafał Kozubski. "Effect of Fe Addition on Ordering Kinetics in Ni3Al1-xFex System. Monte Carlo Simulation." In Defect and Diffusion Forum, 93–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-35-3.93.
Full textFrąckowiak, J. E., Artur Hanc, Grzegorz Dercz, Lucjan Pająk, and Boleslaw Formanek. "Mössbauer and XRD Studies on Composite Powder with Phases from Fe-Al System Obtained by Mechanically Activated SHS Mehtod." In Solid State Phenomena, 185–88. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-40-x.185.
Full textConference papers on the topic "Al-Fe System"
Kotenkov, Pavel, Yurii Kontsevoi, Anna Mejlakh, Eduard Pastukhov, Alexey Shubin, Eduard Goyda, and Ivan Sipatov. "Antifriction coating of Cu-Fe-Al-Pb system for plain bearings." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002985.
Full textAn, Vladimir, Nikolay Yavorovsky, Charles de Izarra, Ekaterina Ivchenko, and Sergei Zhuravkov. "Study of the formation of nanofibers in the Fe-Al system." In 2008 Third International Forum on Strategic Technologies (IFOST). IEEE, 2008. http://dx.doi.org/10.1109/ifost.2008.4602986.
Full textZhang, Y. T., X. Y. Li, D. Z. Li, Y. Y. Li, U. (Balu) Balachandran, Kathleen Amm, David Evans, et al. "PHASE DIAGRAM CALCULATION AND EXPERIMENT FOR FE-MN-AL SYSTEM AT DIFFERENT TEMPERATURE." In ADVANCES IN CRYOGENIC ENGINEERING MATERIALS: Transactions of the International Cryogenic Materials Conference - ICMC, Vol. 54. AIP, 2008. http://dx.doi.org/10.1063/1.2900336.
Full textUrban, P., F. G. Cuevas, J. M. Montes, and J. Cintas. "Solid state amorphization in the Al-Fe binary system during high energy milling." In 3RD INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS. AIP, 2013. http://dx.doi.org/10.1063/1.4849319.
Full textMedvedev, A. E., O. O. Baykeeva, E. B. Medvedev, and M. Yu Murashkin. "Influence of iron content on properties of Al-Fe system alloys after ECAP." In PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0071714.
Full textBoulouma, A., A. Drici, A. Benaldjia, M. Guerioune, and D. Vrel. "The formation of (Al8Fe2Si, Al13Fe4) phases from Al-Fe-Si system by TE mode." In 4TH INTERNATIONAL CONGRESS IN ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE (APMAS 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4914214.
Full textTakigawa, Aki, Yuto Imura, Satomi Enju, and Akira Tsuchiyama. "Condensation Experiments of Mg-Si-Fe-Ni-Al-Ca-O-S Silicates in ITP System." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2538.
Full textBorisova, A., Y. Borisov, M. Panko, L. Adeeva, M. Kolomytsev, A. Shakhraj, and V. Sladkova. "Peculiarities of Structure of Quasicrystalline Al-Cu-Fe System Coatings Produced By Thermal Spraying Methods." In ITSC2003, edited by Basil R. Marple and Christian Moreau. ASM International, 2003. http://dx.doi.org/10.31399/asm.cp.itsc2003p0713.
Full textBalogun, D., J. Huang, L. Bartlett, R. Gerald II, R. O'Malley, and M. Roman. "Peritectic Behavior Detection in the Fe-C-Mn-Al-Si Steel System Using Fiber Optic Temperature Mapping." In AISTech 2020. AIST, 2020. http://dx.doi.org/10.33313/380/087.
Full textTomar, Vikas, and Min Zhou. "Strength Analyses of FE2O3+Al Nanocomposites Using Classical Molecular Dynamics." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-79282.
Full textReports on the topic "Al-Fe System"
Tang, Fei. The Microstructure-Processing-Property Relationships in an Al Matrix Composite System Reinforced by Al-Cu-Fe Alloy Particles. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/835313.
Full textBerman, R. G., L. Ya Aranovich, and D. G. Rancourt. Phase equilibrium constraints on the stability of biotite. Part 2: Fe-Al biotite in the system K2O-FeO-Al2O3-SiO2-H2O. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/205209.
Full textBrenan, J. M., K. Woods, J. E. Mungall, and R. Weston. Origin of chromitites in the Esker Intrusive Complex, Ring of Fire Intrusive Suite, as revealed by chromite trace element chemistry and simple crystallization models. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328981.
Full text