Academic literature on the topic 'ALANINE:GLYOXYLATE AMINOTRANSFERASE'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ALANINE:GLYOXYLATE AMINOTRANSFERASE.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "ALANINE:GLYOXYLATE AMINOTRANSFERASE"

1

Orzechowski, S., J. Socha-Hanc, and A. Paszkowski. "Alanine aminotransferase and glycine aminotransferase from maize (Zea mays L.) leaves." Acta Biochimica Polonica 46, no. 2 (1999): 447–57. http://dx.doi.org/10.18388/abp.1999_4176.

Full text
Abstract:
Alanine aminotransferase (AlaAT, EC 2.6.1.2) and glycine aminotransferase (GlyAT, EC 2.6.1.4), two different enzymes catalyzing transamination reactions with L-alanine as the amino-acid substrate, were examined in maize in which alanine participates substantially in nitrogen transport. Preparative PAGE of a partially purified preparation of aminotransferases from maize leaves gave 6 fractions differing in electrophoretic mobility. The fastest migrating fraction I represents AlaAT specific for L-alanine as amino donor and 2-oxoglutarate as amino acceptor. The remaining fractions showed three am
APA, Harvard, Vancouver, ISO, and other styles
2

Han, Qian, Cihan Yang, Jun Lu, Yinai Zhang, and Jianyong Li. "Metabolism of Oxalate in Humans: A Potential Role Kynurenine Aminotransferase/Glutamine Transaminase/Cysteine Conjugate Betalyase Plays in Hyperoxaluria." Current Medicinal Chemistry 26, no. 26 (2019): 4944–63. http://dx.doi.org/10.2174/0929867326666190325095223.

Full text
Abstract:
Hyperoxaluria, excessive urinary oxalate excretion, is a significant health problem worldwide. Disrupted oxalate metabolism has been implicated in hyperoxaluria and accordingly, an enzymatic disturbance in oxalate biosynthesis can result in the primary hyperoxaluria. Alanine-glyoxylate aminotransferase-1 and glyoxylate reductase, the enzymes involving glyoxylate (precursor for oxalate) metabolism, have been related to primary hyperoxalurias. Some studies suggest that other enzymes such as glycolate oxidase and alanine-glyoxylate aminotransferase-2 might be associated with primary hyperoxaluria
APA, Harvard, Vancouver, ISO, and other styles
3

Pey, Angel L., Armando Albert, and Eduardo Salido. "Protein Homeostasis Defects of Alanine-Glyoxylate Aminotransferase: New Therapeutic Strategies in Primary Hyperoxaluria Type I." BioMed Research International 2013 (2013): 1–15. http://dx.doi.org/10.1155/2013/687658.

Full text
Abstract:
Alanine-glyoxylate aminotransferase catalyzes the transamination between L-alanine and glyoxylate to produce pyruvate and glycine using pyridoxal 5′-phosphate (PLP) as cofactor. Human alanine-glyoxylate aminotransferase is a peroxisomal enzyme expressed in the hepatocytes, the main site of glyoxylate detoxification. Its deficit causes primary hyperoxaluria type I, a rare but severe inborn error of metabolism. Single amino acid changes are the main type of mutation causing this disease, and considerable effort has been dedicated to the understanding of the molecular consequences of such missens
APA, Harvard, Vancouver, ISO, and other styles
4

Donini, Stefano, Manuela Ferrari, Chiara Fedeli, et al. "Recombinant production of eight human cytosolic aminotransferases and assessment of their potential involvement in glyoxylate metabolism." Biochemical Journal 422, no. 2 (2009): 265–72. http://dx.doi.org/10.1042/bj20090748.

Full text
Abstract:
PH1 (primary hyperoxaluria type 1) is a severe inborn disorder of glyoxylate metabolism caused by a functional deficiency of the peroxisomal enzyme AGXT (alanine-glyoxylate aminotransferase), which converts glyoxylate into glycine using L-alanine as the amino-group donor. Even though pre-genomic studies indicate that other human transaminases can convert glyoxylate into glycine, in PH1 patients these enzymes are apparently unable to compensate for the lack of AGXT, perhaps due to their limited levels of expression, their localization in an inappropriate cell compartment or the scarcity of the
APA, Harvard, Vancouver, ISO, and other styles
5

Sakuraba, Haruhiko. "Studies on Avian Peroxisomal Alanine : Glyoxylate Aminotransferase." Journal of the Kyushu Dental Society 45, no. 3 (1991): 390–408. http://dx.doi.org/10.2504/kds.45.390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Takada, Y., and T. Noguchi. "Characteristics of alanine: glyoxylate aminotransferase from Saccharomyces cerevisiae, a regulatory enzyme in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates." Biochemical Journal 231, no. 1 (1985): 157–63. http://dx.doi.org/10.1042/bj2310157.

Full text
Abstract:
Alanine: glyoxylate aminotransferase (EC 2.6.1.44), which is involved in the glyoxylate pathway of glycine and serine biosynthesis from tricarboxylic acid-cycle intermediates in Saccharomyces cerevisiae, was highly purified and characterized. The enzyme had Mr about 80 000, with two identical subunits. It was highly specific for L-alanine and glyoxylate and contained pyridoxal 5′-phosphate as cofactor. The apparent Km values were 2.1 mM and 0.7 mM for L-alanine and glyoxylate respectively. The activity was low (10 nmol/min per mg of protein) with glucose as sole carbon source, but was remarkab
APA, Harvard, Vancouver, ISO, and other styles
7

夏, 敬明. "Introduction and Research Progress of Alanine-Glyoxylate Aminotransferase." Open Journal of Nature Science 06, no. 05 (2018): 409–15. http://dx.doi.org/10.12677/ojns.2018.65053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rumsby, G., T. Weir, and C. T. Samuell. "A Semiautomated Alanine: Glyoxylate Aminotransferase Assay for the Tissue Diagnosis of Primary Hyperoxaluria Type 1." Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 34, no. 4 (1997): 400–404. http://dx.doi.org/10.1177/000456329703400411.

Full text
Abstract:
We have developed a sensitive assay for the measurement of alanine:glyoxylate aminotransferase (EC 2.6.1.44) activity in human liver. The assay is partly automated, and takes into consideration the sensitivity of the reaction to pH and to glyoxylate concentration. It is less subject to interference from other enzymes utilizing glyoxylate and to chemical interference from glyoxylate itself and can therefore be used without correction for cross-over by glutamate:glyoxylate aminotransferase (EC 2.6.1.4). The assay allows clear discrimination between normal and affected livers and is sufficiently
APA, Harvard, Vancouver, ISO, and other styles
9

COOPER, Arthur J. L., Boris F. KRASNIKOV, Etsuo OKUNO та Thomas M. JEITNER. "l-Alanine–glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate β-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?" Biochemical Journal 376, № 1 (2003): 169–78. http://dx.doi.org/10.1042/bj20030988.

Full text
Abstract:
Several halogenated alkenes are metabolized in part to cysteine S-conjugates, which are mitochondrial toxicants of kidney and, to a lesser extent, other organs. Toxicity is due to cysteine S-conjugate β-lyases, which convert the cysteine S-conjugate into pyruvate, ammonia and a reactive sulphur-containing fragment. A section of the human population is exposed to halogenated alkenes. To understand the health effects of such exposure, it is important to identify cysteine S-conjugate β-lyases that contribute to mitochondrial damage. Mitochondrial aspartate aminotransferase [Cooper, Bruschi, Iriar
APA, Harvard, Vancouver, ISO, and other styles
10

Kontani, Yasuhide, Masae Kaneko, Mariko Kikugawa, Shigeko Fujimoto, and Nanaya Tamaki. "Identity of D-3-aminoisobutyrate-pyruvate aminotransferase with alanine-glyoxylate aminotransferase 2." Biochimica et Biophysica Acta (BBA) - General Subjects 1156, no. 2 (1993): 161–66. http://dx.doi.org/10.1016/0304-4165(93)90131-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!