Academic literature on the topic 'Alcoholic fermentation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alcoholic fermentation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Alcoholic fermentation"

1

Casalta, Erick, Carla Sabatier, Giovana Girardi-Piva, Gabriel Dournes, Aurélie Roland, and Jean-Roch Mouret. "Impact of phytosterol addition on fermentation progress and volatile compounds synthesis during alcoholic fermentation in synthetic and natural grape musts." OENO One 57, no. 3 (2023): 41–52. http://dx.doi.org/10.20870/oeno-one.2023.57.3.7479.

Full text
Abstract:
Lipid nutrition is an important factor for yeast during alcoholic fermentation. Although recent research reports have revisited the role of sterols during alcoholic fermentation, our knowledge of lipids assimilation and volatile compound biogenesis remains partial. This study aimed to find out more about the impact of grape must phytosterol content on fermentative kinetics, nitrogen assimilation by yeast and fermentative aroma synthesis. To that end, experimental fermentations were performed in synthetic and Chardonnay musts supplemented with different phytosterol concentrations (0, 1, 3 and 5 mg/L). Sterols addition significantly increased the maximum CO2 production rate while reducing fermentation duration. This can be explained by higher nitrogen assimilation by yeast due to sterols, which leads to higher yeast growth and better viability at the end of the fermentation process. Regarding the aromatic profile, sterol addition also significantly increased acetate esters, ethyl esters, fusel alcohols and medium-chain fatty acids production. These new advances highlight the major role of phytosterols in fermentation control and wine aroma profile.
APA, Harvard, Vancouver, ISO, and other styles
2

Van Dijken, Johannes P., Eduard Van Den Bosch, John J. Hermans, Lennart Rodrigues De Miranda, and W. Alexander Scheffers. "Alcoholic fermentation by ‘non-fermentative’ yeasts." Yeast 2, no. 2 (1986): 123–27. http://dx.doi.org/10.1002/yea.320020208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cerri, Maria Luísa, Tatiane Aparecida Gomes, Matheus de Melo Carraro, et al. "Assessing the Impact of Simultaneous Co-Fermentation on Malolactic Bioconversion and the Quality of Cider Made with Low-Acidity Apples." Fermentation 9, no. 12 (2023): 1017. http://dx.doi.org/10.3390/fermentation9121017.

Full text
Abstract:
This study investigated the synergistic effects of combining Saccharomyces cerevisiae and Oenococcus oeni during the alcoholic fermentation of a low-acidity cider. The initial population of indigenous wild lactic acid bacteria (LAB) in the apple must was 104 CFU/mL. Alcoholic fermentations were carried out without (Cider I) and with (Cider II) the O. oeni inoculation at 105 CFU/mL. As S. cerevisiae grows, a declining trend was observed in indigenous and inoculated LAB populations. While the wild LAB exhibited higher sensitivity than O. oeni, they were not eliminated during alcoholic fermentation. The addition of O. oeni impacted the growth and metabolic activity of S. cerevisiae. The bioconversion of malic acid into lactic acid predominantly occurred during the growth phase (43–66%) and stationary phase (4–27%). The resurgence of O. oeni following alcoholic fermentation significantly impacted the production of volatile compounds. After 20 days of fermentation, Cider II displayed a twofold increase in these compounds, resulting in a more favorable sensory profile according to evaluators. Consequently, malolactic fermentation (MLF) coincided with alcoholic fermentation, leading to a reduction in malic acid content. Furthermore, post alcoholic fermentation, MLF positively enhanced the aromatic quality of low-acid cider made from apples with low acidity.
APA, Harvard, Vancouver, ISO, and other styles
4

Monte Alegre, Ranulfo, Maurício Rigo, and Inés Joekes. "Ethanol fermentation of a diluted molasses medium by Saccharomyces cerevisiae immobilized on chrysotile." Brazilian Archives of Biology and Technology 46, no. 4 (2003): 751–57. http://dx.doi.org/10.1590/s1516-89132003000400031.

Full text
Abstract:
In this work, the catalytic role of chrysotile support on the acceleration of alcoholic fermentation under non-aseptic conditions by Saccharomyces cerevisiae was investigated. The fermentation medium employed consisted only of diluted sugar-cane molasses. In the batch fermentations process with immobilized yeasts, the initial rate of CO2 production increased roughly 27 % during the first 30 minutes, compared to systems containing no chrysotile. A study of continuous alcoholic fermentation with chrysotile in the reactor bed showed a higher ethanol production rate at the different dilution rates investigated compared to similar fermentations without chrysotile.
APA, Harvard, Vancouver, ISO, and other styles
5

Cardoso, C. A. F., and E. Kurtenbach. "What is alcoholic fermentation? A study about the alcoholic fermentation conception through the history." Revista de Ensino de Bioquímica 2, no. 2 (2004): 9. http://dx.doi.org/10.16923/reb.v2i2.141.

Full text
Abstract:
This work shows the historical development of the alcoholic fermentation conception, based on expe-rimental results obtained from European scientists, from Renascence to the beginning of 20th century(1930). From this, ve concepts were identied for the phenomenon: putrefactive, spiritual, chemical,biological and biochemical. The current conception of alcoholic fermentation was also evaluated. Forthis proposal, three groups of teachers were interviewed through the question? What is alcoholicfermentation? The P group (pilot, n=12) made of professionals that teach on secondary and highschools, group A composed of PhDs from the Center of Technology Education - NUTES (n=9) andgroup B from Department of Medical Biochemistry (called group B, n=41) both of Federal Universityof Rio de Janeiro, respectively. Key words associated with the fermentative process were identiedidentify in the interviewees answers. The group A components mentioned only six key words andpointed out the alcoholic fermentation products. Dierently, subjects from P and B groups cited ahigher number and also more unusual key words (n = 9 and 12, respectively). We also analyzedtheir answers throughout fermentative descriptive words (sugar, alcohol, carbon dioxide, anaerobic,yeast and ATP). These words were established after an evaluation of alcoholic fermentation conceptstated in the Biology/Biochemistry books most adopted in high schools and Universities. Our analysisshowed that group A used only three descriptive words (sugar, alcohol and yeast) while componentsof group B used all the selected descriptive words. However, only one interviewee used all the sixwords together. From this analysis, we proposed that the chemical concept of alcoholic fermentationprevailed on the other concepts found on the historical research (spiritual, putrefactive, biological ebiochemical).
APA, Harvard, Vancouver, ISO, and other styles
6

Ribeiro, Carlos Alberto França, and Jorge Horii. "Negative H2S character and flocculation as yeast strain markers for inoculum recovery." Scientia Agricola 61, no. 3 (2004): 292–97. http://dx.doi.org/10.1590/s0103-90162004000300009.

Full text
Abstract:
Routine identification of yeast behavior is essential to measure the control of the alcohol production process and to maintain product quality standards. This work utilized the non-hydrogen sulfide production and flocculation traits as characteristic strain markers for the evaluation of cell recycling during the alcoholic fermentation process for production of sugarcane alcohol. This study evaluated the behavior of a recombinant yeast bank made by protoplast fusion, for strain screening purposes; strain fermentative kinetics in comparison to commercial baker yeast; viability and recovery of the selected strain on differential media, after five consecutive fermentation batches; and the recovery of the selected strain from fermentation with mixed strain cultures. The strain selected for the H2S negative character kept its viability during successive recyclings, with contamination levels not detected by the method of analysis. It also presented a kinetic behavior similar to that of baker yeast, either in single or mixed culture fermentations, opening new possibilities for further work on quality control of cell recycling in the alcoholic fermentation process.
APA, Harvard, Vancouver, ISO, and other styles
7

Hasalliu, Rozeta. "EVALUATION OF LACTIC ACID BACTERIA GROWTH DURING AUTOCHTHONOUS ALBANIAN KALLMET WINE PRODUCTION WITH SPONTANEOUS AND INOCULATED FERMENTATIONS." CBU International Conference Proceedings 5 (September 24, 2017): 1199–203. http://dx.doi.org/10.12955/cbup.v5.1096.

Full text
Abstract:
The grape used in wine making has many wild microorganisms like lactic acid bacteria, yeast, acetic acid bacteria. During the alcoholic fermentation, the evaluation of these microorganisms depends on their activity. There is an interaction between yeast and lactic acid bacteria during this period of wine making. In this study, we have made wine from the autochthonous Albanian grape Kallmet variety using the spontaneous fermentation and inoculated fermentation with the yeast Saccharomyces bayannus. Yeasts carry out the alcohol fermentation, and lactic acid bacteria make malolactic fermentation in wine. With this fermentation, lactic acid bacteria convert malic acid to lactic acid, reducing the acidity of the wine and create a microbiological stability. During the alcoholic fermentation, the evaluation of lactic acid bacteria is not required. The aim of our study is to evaluate the first quantity of lactic acid bacteria to Kallmet grape, their performance during the two fermentations, spontaneous and inoculated fermentations.
APA, Harvard, Vancouver, ISO, and other styles
8

Roca-Mesa, Helena, Sonia Sendra, Albert Mas, Gemma Beltran, and María-Jesús Torija. "Nitrogen Preferences during Alcoholic Fermentation of Different Non-Saccharomyces Yeasts of Oenological Interest." Microorganisms 8, no. 2 (2020): 157. http://dx.doi.org/10.3390/microorganisms8020157.

Full text
Abstract:
Non-Saccharomyces yeasts have long been considered spoilage microorganisms. Currently, oenological interest in those species is increasing, mostly due to their positive contribution to wine quality. In this work, the fermentative capacity and nitrogen consumption of several non-Saccharomyces wine yeast (Torulaspora delbrueckii, Lachancea thermotolerans, Starmerella bacillaris, Hanseniaspora uvarum, and Metschnikowia pulcherrima) were analyzed. For this purpose, synthetic must with three different nitrogen compositions was used: a mixture of amino acids and ammonium, only organic or inorganic nitrogen. The fermentation kinetics, nitrogen consumption, and yeast growth were measured over time. Our results showed that the good fermentative strains, T. delbrueckii and L. thermotolerans, had high similarities with Saccharomyces cerevisiae in terms of growth, fermentation profile, and nitrogen assimilation preferences, although L. thermotolerans presented an impaired behavior when only amino acids or ammonia were used, being strain-specific. M. pulcherrima was the non-Saccharomyces strain least affected by the nitrogen composition of the medium. The other two poor fermentative strains, H. uvarum and S. bacillaris, behaved similarly regarding amino acid uptake, which occurred earlier than that of the good fermentative species in the absence of ammonia. The results obtained in single non-Saccharomyces fermentations highlighted the importance of controlling nitrogen requirements of the wine yeasts, mainly in sequential fermentations, in order to manage a proper nitrogen supplementation, when needed.
APA, Harvard, Vancouver, ISO, and other styles
9

Ruiz-Rodríguez, Ana, Miguel Palma, and Carmelo G. Barroso. "Influence of Temperature during Pre-Fermentative Maceration and Alcoholic Fermentation on the Phenolic Composition of ‘Cabernet Sauvignon’ Wines." Foods 10, no. 5 (2021): 1053. http://dx.doi.org/10.3390/foods10051053.

Full text
Abstract:
This study presents the effects of different working temperatures on the transfer of compounds during the pre-fermentative and fermentative stages of the wine making process with ‘Cabernet Sauvignon’ grapes. Two different procedures have been evaluated. Firstly, the pre-fermentative maceration of the crushed grapes at two different temperatures (20 °C and 10 °C). Then, the alcoholic fermentation under two different sets of conditions, the fermentation at a constant temperature of 20 °C and the fermentation under a positive temperature gradient from 10 to 20 °C. According to the experimental results, the phenolic contents (total phenolics, total anthocyanins, and total tannins) were mainly conditioned by the fermentation temperature, however the pre-fermentative conditions also affected the content levels of these compounds. Furthermore, the use of a fermentation temperature gradient improved the organoleptic characteristics of the wines. However, the color was not as stable as that of wines produced through fermentation at a higher constant temperature. Consequently, the implementation of a temperature gradient during the alcoholic fermentation process is recommended and a longer period at high temperature over the last phase of the process would be desirable to obtain aromatic wines with the desirable color stability.
APA, Harvard, Vancouver, ISO, and other styles
10

Franc, Čuš, and Schroers Polona Zabukovec and Hans-Josef. "Indigenous yeasts perform alcoholic fermentation and produce aroma compounds in wine." Czech Journal of Food Sciences 35, No. 4 (2017): 329–45. http://dx.doi.org/10.17221/398/2016-cjfs.

Full text
Abstract:
The spontaneous alcoholic fermentations of Moscato Bianco and Welschriesling must were carried out to retrieve indigenous yeasts. We confirmed that those fermentations, conducted with non-Saccharomyces and indigenous Saccharomyces cerevisiae yeasts, can generate high amounts of aroma compounds in wines. Consequently, two of the S. cerevisiae isolates were randomly chosen and further examined in Welschriesling and Sauvignon Blanc must for their ability and efficiency in performing alcoholic fermentation. Alcoholic fermentation with a commercial yeast strain was carried out for comparison. Indigenous isolates showed acceptable fermentation ability and efficiency. Moreover, Sauvignon Blanc produced with indigenous isolates contained significantly higher amounts of 3-mercaptohexyl acetate, linalool, geraniol and 2-phenylethanol and a significantly lower amount of 3-mercaptohexan-1-ol. Differences in Welschriesling wine were less striking but in this case indigenous isolates produced lower amounts of 3-mercaptohexan-1-ol and α-terpineol. Taken together, our results confirm that a suitable aromatic profile of wine can be produced with indigenous S. cerevisiae strains.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography