Journal articles on the topic 'Aleatoric uncertainty'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Aleatoric uncertainty.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Pamungkas, Yayi Wira. "Penggunaan Aturan Ular Tangga dalam Musik Aleatorik Berbasis Serialisme Integral." Journal of Music Science, Technology, and Industry 3, no. 2 (2020): 201–22. http://dx.doi.org/10.31091/jomsti.v3i2.1157.
Full textBerry, Lucas, and David Meger. "Normalizing Flow Ensembles for Rich Aleatoric and Epistemic Uncertainty Modeling." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 6806–14. http://dx.doi.org/10.1609/aaai.v37i6.25834.
Full textZhang, Wang, Ziwen Martin Ma, Subhro Das, et al. "One Step Closer to Unbiased Aleatoric Uncertainty Estimation." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 15 (2024): 16857–64. http://dx.doi.org/10.1609/aaai.v38i15.29627.
Full textLaves, Max-Heinrich, Sontje Ihler, Jacob F. Fast, Lüder A. Kahrs, and Tobias Ortmaier. "Recalibration of Aleatoric and EpistemicRegression Uncertainty in Medical Imaging." Machine Learning for Biomedical Imaging 1, MIDL 2020 (2021): 1–26. http://dx.doi.org/10.59275/j.melba.2021-a6fd.
Full textBadings, Thom, Licio Romao, Alessandro Abate, and Nils Jansen. "Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic Dynamical Models with Epistemic Uncertainty." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 12 (2023): 14701–10. http://dx.doi.org/10.1609/aaai.v37i12.26718.
Full textLi, Tianyi, Zhengyuan Chen, Zhen Zhang, et al. "Predicting Stress–Strain Curve with Confidence: Balance Between Data Minimization and Uncertainty Quantification by a Dual Bayesian Model." Polymers 17, no. 4 (2025): 550. https://doi.org/10.3390/polym17040550.
Full textYu, Xuanlong, Gianni Franchi, Jindong Gu, and Emanuel Aldea. "Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 7 (2024): 6835–43. http://dx.doi.org/10.1609/aaai.v38i7.28508.
Full textMeinert, Nis, Jakob Gawlikowski, and Alexander Lavin. "The Unreasonable Effectiveness of Deep Evidential Regression." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 8 (2023): 9134–42. http://dx.doi.org/10.1609/aaai.v37i8.26096.
Full textItkina, Masha. "Perception Beyond Sensors Under Uncertainty." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 18 (2021): 15716–17. http://dx.doi.org/10.1609/aaai.v35i18.17855.
Full textMehltretter, M. "JOINT ESTIMATION OF DEPTH AND ITS UNCERTAINTY FROM STEREO IMAGES USING BAYESIAN DEEP LEARNING." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2022 (May 17, 2022): 69–78. http://dx.doi.org/10.5194/isprs-annals-v-2-2022-69-2022.
Full textKrapf, Thomas, Michael Hagn, Paul Miethaner, Alexander Schiller, Lucas Luttner, and Bernd Heinrich. "Piecewise Linear Transformation – Propagating Aleatoric Uncertainty in Neural Networks." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 18 (2024): 20456–64. http://dx.doi.org/10.1609/aaai.v38i18.30029.
Full textHong, Ming, Jianzhuang Liu, Cuihua Li, and Yanyun Qu. "Uncertainty-Driven Dehazing Network." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 1 (2022): 906–13. http://dx.doi.org/10.1609/aaai.v36i1.19973.
Full textZhong, Z., and M. Mehltretter. "MIXED PROBABILITY MODELS FOR ALEATORIC UNCERTAINTY ESTIMATION IN THE CONTEXT OF DENSE STEREO MATCHING." ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-2-2021 (June 17, 2021): 17–26. http://dx.doi.org/10.5194/isprs-annals-v-2-2021-17-2021.
Full textPham, Nam, and Sergey Fomel. "Uncertainty and interpretability analysis of encoder-decoder architecture for channel detection." GEOPHYSICS 86, no. 4 (2021): O49—O58. http://dx.doi.org/10.1190/geo2020-0409.1.
Full textWiessner, Paul, Grigor Bezirganyan, Sana Sellami, Richard Chbeir, and Hans-Joachim Bungartz. "Uncertainty-Aware Time Series Anomaly Detection." Future Internet 16, no. 11 (2024): 403. http://dx.doi.org/10.3390/fi16110403.
Full textChowdhary, Kamaljit, and Paul Dupuis. "Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification." ESAIM: Mathematical Modelling and Numerical Analysis 47, no. 3 (2013): 635–62. http://dx.doi.org/10.1051/m2an/2012038.
Full textSenge, Robin, Stefan Bösner, Krzysztof Dembczyński, et al. "Reliable classification: Learning classifiers that distinguish aleatoric and epistemic uncertainty." Information Sciences 255 (January 2014): 16–29. http://dx.doi.org/10.1016/j.ins.2013.07.030.
Full textHüllermeier, Eyke, and Willem Waegeman. "Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods." Machine Learning 110, no. 3 (2021): 457–506. http://dx.doi.org/10.1007/s10994-021-05946-3.
Full textGhasemi-Naraghi, Zeinab, Ahmad Nickabadi, and Reza Safabakhsh. "LogSE: An Uncertainty-Based Multi-Task Loss Function for Learning Two Regression Tasks." JUCS - Journal of Universal Computer Science 28, no. 2 (2022): 141–59. http://dx.doi.org/10.3897/jucs.70549.
Full textGhasemi-Naraghi, Zeinab, Ahmad Nickabadi, and Reza Safabakhsh. "LogSE: An Uncertainty-Based Multi-Task Loss Function for Learning Two Regression Tasks." JUCS - Journal of Universal Computer Science 28, no. (2) (2022): 141–59. https://doi.org/10.3897/jucs.70549.
Full textReddy, Soma Datta, and Sunitha Palissery. "Uncertainty-Aware Seismic Signal Discrimination using Bayesian Convolutional Neural Networks." International Journal on Cybernetics & Informatics 13, no. 5 (2024): 207–18. http://dx.doi.org/10.5121/ijci.2024.130513.
Full textKhanzhina, N. E. "Bayesian losses for homoscedastic aleatoric uncertainty modeling in pollen image detection." Scientific and Technical Journal of Information Technologies, Mechanics and Optics 21, no. 4 (2021): 535–44. http://dx.doi.org/10.17586/2226-1494-2021-21-4-535-544.
Full textCheng, Lu. "Demystifying Algorithmic Fairness in an Uncertain World." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 20 (2024): 22662. http://dx.doi.org/10.1609/aaai.v38i20.30278.
Full textNezhadettehad, Alireza, Arkady Zaslavsky, Abdur Rakib, and Seng W. Loke. "Uncertainty-Aware Parking Prediction Using Bayesian Neural Networks." Sensors 25, no. 11 (2025): 3463. https://doi.org/10.3390/s25113463.
Full textFeng, Runhai, Dario Grana, and Niels Balling. "Uncertainty quantification in fault detection using convolutional neural networks." GEOPHYSICS 86, no. 3 (2021): M41—M48. http://dx.doi.org/10.1190/geo2020-0424.1.
Full textRajbhandari, E., N. L. Gibson, and C. R. Woodside. "Quantifying uncertainty with stochastic collocation in the kinematic magentohydrodynamic framework." Journal of Physics: Conference Series 2207, no. 1 (2022): 012007. http://dx.doi.org/10.1088/1742-6596/2207/1/012007.
Full textHeringhaus, Monika E., Yi Zhang, André Zimmermann, and Lars Mikelsons. "Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference." Sensors 22, no. 14 (2022): 5408. http://dx.doi.org/10.3390/s22145408.
Full textLyu, Yufeng, Zhenyu Liu, Xiang Peng, Jianrong Tan, and Chan Qiu. "Unified Reliability Measure Method Considering Uncertainties of Input Variables and Their Distribution Parameters." Applied Sciences 11, no. 5 (2021): 2265. http://dx.doi.org/10.3390/app11052265.
Full textGurevich, Pavel, and Hannes Stuke. "Pairing an arbitrary regressor with an artificial neural network estimating aleatoric uncertainty." Neurocomputing 350 (July 2019): 291–306. http://dx.doi.org/10.1016/j.neucom.2019.03.031.
Full textWeiss, Matthias, Stephan Staudacher, Jürgen Mathes, Duilio Becchio, and Christian Keller. "Uncertainty Quantification for Full-Flight Data Based Engine Fault Detection with Neural Networks." Machines 10, no. 10 (2022): 846. http://dx.doi.org/10.3390/machines10100846.
Full textAndrianomena, Sambatra, and Sultan Hassan. "Predictive uncertainty on astrophysics recovery from multifield cosmology." Journal of Cosmology and Astroparticle Physics 2023, no. 06 (2023): 051. http://dx.doi.org/10.1088/1475-7516/2023/06/051.
Full textHuang, Yingsong, Bing Bai, Shengwei Zhao, Kun Bai, and Fei Wang. "Uncertainty-Aware Learning against Label Noise on Imbalanced Datasets." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 6 (2022): 6960–69. http://dx.doi.org/10.1609/aaai.v36i6.20654.
Full textVassaux, Maxime, Shunzhou Wan, Wouter Edeling, and Peter V. Coveney. "Ensembles Are Required to Handle Aleatoric and Parametric Uncertainty in Molecular Dynamics Simulation." Journal of Chemical Theory and Computation 17, no. 8 (2021): 5187–97. http://dx.doi.org/10.1021/acs.jctc.1c00526.
Full textMehltretter, Max, and Christian Heipke. "Aleatoric uncertainty estimation for dense stereo matching via CNN-based cost volume analysis." ISPRS Journal of Photogrammetry and Remote Sensing 171 (January 2021): 63–75. http://dx.doi.org/10.1016/j.isprsjprs.2020.11.003.
Full textGranados-Ortiz, F. J., and J. Ortega-Casanova. "Quantifying & analysing mixed aleatoric and structural uncertainty in complex turbulent flow simulations." International Journal of Mechanical Sciences 188 (December 2020): 105953. http://dx.doi.org/10.1016/j.ijmecsci.2020.105953.
Full textLi, Hua, and Kejiang Zhang. "Development of a fuzzy-stochastic nonlinear model to incorporate aleatoric and epistemic uncertainty." Journal of Contaminant Hydrology 111, no. 1-4 (2010): 1–12. http://dx.doi.org/10.1016/j.jconhyd.2009.10.004.
Full textSreeharan, Sreelakshmi, Hui Wang, Keigo Hirakawa, and Beiwen Li. "Aleatoric uncertainty quantification in digital fringe projection systems at a per-pixel basis." Optics and Lasers in Engineering 180 (September 2024): 108315. http://dx.doi.org/10.1016/j.optlaseng.2024.108315.
Full textAloisio, Angelo, Yuri De Santis, Dag Pasquale Pasca, Massimo Fragiacomo, and Roberto Tomasi. "Aleatoric and epistemic uncertainty in the overstrength of CLT-to-CLT screwed connections." Engineering Structures 304 (April 2024): 117575. http://dx.doi.org/10.1016/j.engstruct.2024.117575.
Full textAgrawal, Atul, and Phaedon-Stelios Koutsourelakis. "A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty." Journal of Computational Physics 508 (July 2024): 112982. http://dx.doi.org/10.1016/j.jcp.2024.112982.
Full textHarnist, Bent, Seppo Pulkkinen, and Terhi Mäkinen. "DEUCE v1.0: a neural network for probabilistic precipitation nowcasting with aleatoric and epistemic uncertainties." Geoscientific Model Development 17, no. 9 (2024): 3839–66. http://dx.doi.org/10.5194/gmd-17-3839-2024.
Full textPaseka, Stanislav, and Daniel Marton. "The Impact of the Uncertain Input Data of Multi-Purpose Reservoir Volumes under Hydrological Extremes." Water 13, no. 10 (2021): 1389. http://dx.doi.org/10.3390/w13101389.
Full textKausik, Ravinath, Augustin Prado, Vasileios-Marios Gkortsas, Lalitha Venkataramanan, Harish Datir, and Yngve Bolstad Johansen. "Dual Neural Network Architecture for Determining Permeability and Associated Uncertainty." Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description 62, no. 1 (2021): 122–34. http://dx.doi.org/10.30632/pjv62n1-2021a8.
Full textWu, S., M. Heitzler, and L. Hurni. "A CLOSER LOOK AT SEGMENTATION UNCERTAINTY OF SCANNED HISTORICAL MAPS." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2022 (June 1, 2022): 189–94. http://dx.doi.org/10.5194/isprs-archives-xliii-b4-2022-189-2022.
Full textKuzucu, Selim, Jiaee Cheong, Hatice Gunes, and Sinan Kalkan. "Uncertainty as a Fairness Measure." Journal of Artificial Intelligence Research 81 (October 13, 2024): 307–35. http://dx.doi.org/10.1613/jair.1.16041.
Full textBrake, M. R. "The role of epistemic uncertainty of contact models in the design and optimization of mechanical systems with aleatoric uncertainty." Nonlinear Dynamics 77, no. 3 (2014): 899–922. http://dx.doi.org/10.1007/s11071-014-1350-0.
Full textAlharbi, Mohammed, and Hassan A. Karimi. "Context-Aware Sensor Uncertainty Estimation for Autonomous Vehicles." Vehicles 3, no. 4 (2021): 721–35. http://dx.doi.org/10.3390/vehicles3040042.
Full textDavey, Timothy. "Incoherence: A Generalized Measure of Complexity to Quantify Ensemble Divergence in Multi-Trial Experiments and Simulations." Entropy 26, no. 8 (2024): 683. http://dx.doi.org/10.3390/e26080683.
Full textBusk, Jonas, Peter Bjørn Jørgensen, Arghya Bhowmik, Mikkel N. Schmidt, Ole Winther, and Tejs Vegge. "Calibrated uncertainty for molecular property prediction using ensembles of message passing neural networks." Machine Learning: Science and Technology 3, no. 1 (2021): 015012. http://dx.doi.org/10.1088/2632-2153/ac3eb3.
Full textWang, Guotai, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and Tom Vercauteren. "Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks." Neurocomputing 338 (April 2019): 34–45. http://dx.doi.org/10.1016/j.neucom.2019.01.103.
Full textPenn, Matthew J., Daniel J. Laydon, Joseph Penn, et al. "Intrinsic randomness in epidemic modelling beyond statistical uncertainty." Communications Physics 6, no. 1 (2023). http://dx.doi.org/10.1038/s42005-023-01265-2.
Full text