To see the other types of publications on this topic, follow the link: AlGaInAs.

Journal articles on the topic 'AlGaInAs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'AlGaInAs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hillmer, H., A. Pöcker, F. Steinhagen, H. Burkhard, R. Lösch, and W. Schlapp. "MBE grown strain-compensated AlGaInAs/AlGaInAs/InP MQW laser structures." Electronics Letters 31, no. 16 (August 3, 1995): 1346–48. http://dx.doi.org/10.1049/el:19950902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Yue, Yongyi Chen, Ligong Zhang, Yugang Zeng, Cheng Qiu, Lei Liang, Yuxin Lei, et al. "Carrier Dynamic Investigations of AlGaInAs Quantum Well Revealed by Temperature-Dependent Time-Resolved Photoluminescence." Materials 13, no. 19 (September 23, 2020): 4227. http://dx.doi.org/10.3390/ma13194227.

Full text
Abstract:
AlGaInAs quantum well (QW) lasers have great potential in the application fields of optical communications and eye-safety lidars, owing to the advantages of good gain performance. A large amount of experimental evidence indicated that carrier dynamic affects the resonant frequency and modulation response performance of QW lasers. However, the mechanism of carrier dynamic in AlGaInAs QW structure is still ambiguous for complicated artificial multilayers. In this paper, the carrier dynamic of AlGaInAs QW structure was investigated by temperature-dependent time-resolved photoluminescence (TRPL) in the range of 14 to 300 K. Two relaxation times (a fast component and a slow one) have a major impact on the PL emission spectra of the AlGaInAs QW below 200 K. The carriers prefer a fast decay channel in the low temperature regime, whereas the slow one a higher temperature. An unconventional temperature dependence of carrier relaxation is observed in both decay processes. The carriers’ lifetime decreases with the temperature increasing till 45 K and then increases with temperature up to 250 K. It is quite different from that in the bulk semiconductor. The mechanism of temperature-dependent carrier relaxation at temperatures above 45 K is a combination of dark state occupation and a nonradiative recombination process.
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Lianhui, Guanghan Fan, and Yaoyong Meng. "Study of the long-wavelength optic phonons in AlGaInP and AlGaInAs." Microelectronics Journal 35, no. 2 (February 2004): 125–30. http://dx.doi.org/10.1016/j.mejo.2003.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Storozhenko, I., and M. Kaydash. "AlGaInAs graded-dap Gunn diode." RADIOFIZIKA I ELEKTRONIKA 21, no. 3 (September 26, 2016): 52–57. http://dx.doi.org/10.15407/rej2016.03.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yongzhen Huang, Yongzhen Huang, Jiandong Lin Jiandong Lin, Qifeng Yao Qifeng Yao, Xiaomeng Lv Xiaomeng Lv, Yuede Yang Yuede Yang, Jinlong Xiao Jinlong Xiao, and Yun Du Yun Du. "AlGaInAs/InP coupled-circular microlasers." Chinese Optics Letters 10, no. 9 (2012): 091404–91406. http://dx.doi.org/10.3788/col201210.091404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Ming-Yuan, Po-Hsun Lei, Chia-Lung Tsai, Chih-Wei Hu, Meng-Chyi Wu, and Wen-Jeng Ho. "Comparison of 1.3-µm AlGaInAs/AlGaInAs Strain-Compensated Multiple-Quantum-Well Laser Diodes with/without GaInAsP and AlGaInAs Graded-Composition Layers." Japanese Journal of Applied Physics 42, Part 2, No. 12B (December 2003): L1507—L1508. http://dx.doi.org/10.1143/jjap.42.l1507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Storozhenko, I. P., and M. V. Kaydash. "AlGaInAs GRADED-GAP GUNN DIODE." Telecommunications and Radio Engineering 75, no. 16 (2016): 1495–504. http://dx.doi.org/10.1615/telecomradeng.v75.i16.70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lei, Po-Hsun. "1.3μm AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well index-coupled distribution feedback laser diodes." Solid-State Electronics 51, no. 6 (June 2007): 925–30. http://dx.doi.org/10.1016/j.sse.2007.04.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Po-Hsun Lei, Chia-Chien Lin, Wen-Jeng Ho, Meng-Chyi Wu, and Lih-Wen Laih. "1.3-μm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple-quantum-well laser diodes." IEEE Transactions on Electron Devices 49, no. 7 (July 2002): 1129–35. http://dx.doi.org/10.1109/ted.2002.1013267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Hyundai, Alexander W. Fang, Oded Cohen, Richard Jones, Mario J. Paniccia, and John E. Bowers. "A Hybrid AlGaInAs–Silicon Evanescent Amplifier." IEEE Photonics Technology Letters 19, no. 4 (2007): 230–32. http://dx.doi.org/10.1109/lpt.2007.891188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Hui-Wen Chen, Ying-Hao Kuo, and J. E. Bowers. "A Hybrid Silicon–AlGaInAs Phase Modulator." IEEE Photonics Technology Letters 20, no. 23 (December 2008): 1920–22. http://dx.doi.org/10.1109/lpt.2008.2004790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ivanov, Andrei V., V. D. Kurnosov, K. V. Kurnosov, Aleksandr A. Marmalyuk, V. I. Romantsevich, Yu L. Ryaboshtan, and Roman V. Chernov. "Refractive indices of solid AlGaInAs solutions." Quantum Electronics 37, no. 6 (June 30, 2007): 545–48. http://dx.doi.org/10.1070/qe2007v037n06abeh013442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Takemasa, K., M. Kubota, T. Munakata, and H. Wada. "1.3-μm AlGaInAs buried-heterostructure lasers." IEEE Photonics Technology Letters 11, no. 8 (August 1999): 949–51. http://dx.doi.org/10.1109/68.775309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Takemasa, K., T. Munakata, M. Kobayashi, H. Wada, and T. Kamijoh. "1.3-μm AlGaInAs-AlGaInAs strained multiple-quantum-well lasers with a p-AlInAs electron stopper layer." IEEE Photonics Technology Letters 10, no. 4 (April 1998): 495–97. http://dx.doi.org/10.1109/68.662572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wu, Ming-Yuan, Chi-Da Yang, Po-Hsun Lei, Meng-Chyi Wu, and Wen-Jeng Ho. "Very Low Threshold Current Operation of 1.3-µm AlGaInAs/AlGaInAs Strain-Compensated Multiple-Quantum-Well Laser Diodes." Japanese Journal of Applied Physics 42, Part 2, No. 6B (June 15, 2003): L643—L645. http://dx.doi.org/10.1143/jjap.42.l643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hou, Lianping, Mohsin Haji, Jehan Akbar, John H. Marsh, and Ann Catrina Bryce. "AlGaInAs/InP Monolithically Integrated DFB Laser Array." IEEE Journal of Quantum Electronics 48, no. 2 (February 2012): 137–43. http://dx.doi.org/10.1109/jqe.2011.2174455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fang, Alexander W., Hyundai Park, Oded Cohen, Richard Jones, Mario J. Paniccia, and John E. Bowers. "Electrically pumped hybrid AlGaInAs-silicon evanescent laser." Optics Express 14, no. 20 (2006): 9203. http://dx.doi.org/10.1364/oe.14.009203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Park, Hyundai, Alexander W. Fang, Richard Jones, Oded Cohen, Omri Raday, Matthew N. Sysak, Mario J. Paniccia, and John E. Bowers. "A hybrid AlGaInAs-silicon evanescent waveguide photodetector." Optics Express 15, no. 10 (2007): 6044. http://dx.doi.org/10.1364/oe.15.006044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zah, C. E., R. Bhat, and T. P. Lee. "High-temperature operation of AlGaInAs/InP lasers1994." Optical and Quantum Electronics 28, no. 5 (May 1996): 463–73. http://dx.doi.org/10.1007/bf00943614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Islam, Arnob. "Designing a High Speed 1310nm AlGaInAs/AlGaInAs VCSEL using MgO/Si Top DBR and GaInAsP/InP Bottom DBR." American Journal of Optics and Photonics 2, no. 3 (2014): 37. http://dx.doi.org/10.11648/j.ajop.20140203.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lei, Po-Hsun, Ming-Yuan Wu, Chia-Chien Lin, Wen-Jeng Ho, and Meng-Chyi Wu. "High-power and low-threshold-current operation of 1.3 μm strain-compensated AlGaInAs/AlGaInAs multiple-quantum-well laser diodes." Solid-State Electronics 46, no. 12 (December 2002): 2041–44. http://dx.doi.org/10.1016/s0038-1101(02)00171-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Fang, A. W., Hyundai Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers. "A continuous-wave hybrid AlGaInAs-silicon evanescent laser." IEEE Photonics Technology Letters 18, no. 10 (May 2006): 1143–45. http://dx.doi.org/10.1109/lpt.2006.874690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Schlereth, T. W., C. Schneider, W. Kaiser, S. Höfling, and A. Forchel. "Low threshold, high gain AlGaInAs quantum dot lasers." Applied Physics Letters 90, no. 22 (May 28, 2007): 221113. http://dx.doi.org/10.1063/1.2745200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Marmalyuk, A. A., Yu L. Ryaboshtan, P. V. Gorlachuk, M. A. Ladugin, A. A. Padalitsa, S. O. Slipchenko, A. V. Lyutetskiy, D. A. Veselov, and N. A. Pikhtin. "Semiconductor AlGaInAs/InP lasers with ultra-narrow waveguides." Quantum Electronics 47, no. 3 (March 31, 2017): 272–74. http://dx.doi.org/10.1070/qel16294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Allovon, M., and M. Quillec. "Interest in AlGaInAs on InP for optoelectronic applications." IEE Proceedings J Optoelectronics 139, no. 2 (1992): 148. http://dx.doi.org/10.1049/ip-j.1992.0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chang‐Hasnain, C. J., R. Bhat, C. E. Zah, M. A. Koza, F. Favire, and T. P. Lee. "Novel AlGaInAs/AlInAs lasers emitting at 1 μm." Applied Physics Letters 57, no. 25 (December 17, 1990): 2638–40. http://dx.doi.org/10.1063/1.103809.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tronc, P., G. Wang, B. Reid, R. Maciejko, J. C. Harmand, J. F. Palmier, B. Sermage, and P. Roussignol. "Time-resolved photoluminescence study of GaInAs/AlGaInAs superlattices." Superlattices and Microstructures 24, no. 5 (November 1998): 347–52. http://dx.doi.org/10.1006/spmi.1998.0591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lv, Xiao-Meng, Ling-Xiu Zou, Jian-Dong Lin, Yong-Zhen Huang, Yue-De Yang, Qi-Feng Yao, Jin-Long Xiao, and Yun Du. "Unidirectional-Emission Single-Mode AlGaInAs-InP Microcylinder Lasers." IEEE Photonics Technology Letters 24, no. 11 (June 2012): 963–65. http://dx.doi.org/10.1109/lpt.2012.2190892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Park, Hyundai, Ying-hao Kuo, Alexander W. Fang, Richard Jones, Oded Cohen, Mario J. Paniccia, and John E. Bowers. "A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector." Optics Express 15, no. 21 (2007): 13539. http://dx.doi.org/10.1364/oe.15.013539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Shao-Shuai Sui, Ming-Ying Tang, Yue-De Yang, Jin-Long Xiao, Yun Du, and Yong-Zhen Huang. "Sixteen-Wavelength Hybrid AlGaInAs/Si Microdisk Laser Array." IEEE Journal of Quantum Electronics 51, no. 4 (April 2015): 1–8. http://dx.doi.org/10.1109/jqe.2015.2397601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wang, Shi-Jiang, Yong-Zhen Huang, Yue-De Yang, Jian-Dong Lin, Kai-Jun Che, Jin-Long Xiao, and Yun Du. "Long rectangle resonator 1550 nm AlGaInAs/InP lasers." Journal of the Optical Society of America B 27, no. 4 (March 22, 2010): 719. http://dx.doi.org/10.1364/josab.27.000719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Zou, Ling-Xiu, Yong-Zhen Huang, Xiao-Meng Lv, Heng Long, Jin-Long Xiao, Yue-De Yang, and Yun Du. "Dynamic characteristics of AlGaInAs/InP octagonal resonator microlaser." Applied Physics B 117, no. 1 (May 10, 2014): 453–58. http://dx.doi.org/10.1007/s00340-014-5854-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

MA, HONG, XINJIAN YI, and SIHAI CHEN. "1.3 μm AlGaInAs-InP POLARIZATION-INSENSITIVE SEMICONDUCTOR OPTICAL AMPLIFIER WITH TENSILE STRAINED WELLS GROWN BY MOVPE." International Journal of Nanoscience 02, no. 03 (June 2003): 119–23. http://dx.doi.org/10.1142/s0219581x03001024.

Full text
Abstract:
We demonstrate a polarization-insensitive multiple-quantum-well optical amplifer for 1.3 μm wavelength in AlGaInAs-InP material system, using three tensile strained wells with strain of 0.36% in the active region. The amplifiers were fabricated forming ridge waveguide structure, which showed excellent polarization insensitivity (less than 0.6 dB) over the entire range of wavelength (1.28 μm ~ 1.34 μm) and a gain of 22.5 dB at the bias current of 200 mA and 1304 nm wavelength.
APA, Harvard, Vancouver, ISO, and other styles
34

Mezosi, G., M. J. Strain, S. Furst, Z. Wang, S. Yu, and M. Sorel. "Unidirectional Bistability in AlGaInAs Microring and Microdisk Semiconductor Lasers." IEEE Photonics Technology Letters 21, no. 2 (January 2009): 88–90. http://dx.doi.org/10.1109/lpt.2008.2008660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Marmalyuk, A. A., A. V. Ivanov, V. D. Kurnosov, K. V. Kurnosov, M. A. Ladugin, A. V. Lobintsov, A. A. Padalitsa, et al. "AlGaInAs/InP semiconductor lasers with an increased electron barrier." Quantum Electronics 49, no. 6 (June 17, 2019): 519–21. http://dx.doi.org/10.1070/qel17032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schlereth, Thomas W., Christian Schneider, Sven Gerhard, Sven Hofling, and Alfred Forchel. "Short-Wavelength (760–920 nm) AlGaInAs Quantum Dot Lasers." IEEE Journal of Selected Topics in Quantum Electronics 15, no. 3 (May 2009): 792–98. http://dx.doi.org/10.1109/jstqe.2008.2011493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sui, Shao‐Shuai, Ming‐Ying Tang, Yong‐Zhen Huang, Yue‐De Yang, Jin‐Long Xiao, and Yun Du. "Eight‐wavelength hybrid Si/AlGaInAs/InP microring laser array." Electronics Letters 51, no. 6 (March 2015): 506–8. http://dx.doi.org/10.1049/el.2014.4442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wang, Shi-Jiang, Jian-Dong Lin, Yong-Zhen Huang, Yue-De Yang, Kai-Jun Che, Jin-Long Xiao, Yun Du, and Zhong-Chao Fan. "AlGaInAs–InP Microcylinder Lasers Connected With an Output Waveguide." IEEE Photonics Technology Letters 22, no. 18 (September 2010): 1349–51. http://dx.doi.org/10.1109/lpt.2010.2056361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Fang, Alexander W., Richard Jones, Hyundai Park, Oded Cohen, Omri Raday, Mario J. Paniccia, and John E. Bowers. "Integrated AlGaInAs-silicon evanescent race track laser and photodetector." Optics Express 15, no. 5 (2007): 2315. http://dx.doi.org/10.1364/oe.15.002315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

de Bernardi, C., S. Morasca, C. Rigo, B. Sordo, A. Stano, I. R. Croston, and T. P. Young. "Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5μm operation." Electronics Letters 25, no. 22 (1989): 1488. http://dx.doi.org/10.1049/el:19890998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wakita, K., I. Iotaka, K. Mogi, H. Asai, and Y. Kawamura. "High-speed AlGaInAs/AlInAs multiple quantum well pin photodiodes." Electronics Letters 25, no. 22 (1989): 1533. http://dx.doi.org/10.1049/el:19891031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Künzel, H., J. Böttcher, R. Gibis, H. Hoenow, and C. Heedt. "Low-temperature MBE of AlGaInAs lattice-matched to InP." Journal of Crystal Growth 127, no. 1-4 (February 1993): 519–22. http://dx.doi.org/10.1016/0022-0248(93)90674-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Полубавкина, Ю. С., Ф. И. Зубов, Э. И. Моисеев, Н. В. Крыжановская, М. В. Максимов, Е. С. Семенова, K. Yvind, Л. В. Асрян, and А. Е. Жуков. "Особенности волноводной рекомбинации в лазерных структурах с асимметричными барьерными слоями." Физика и техника полупроводников 51, no. 2 (2017): 263. http://dx.doi.org/10.21883/ftp.2017.02.44116.8361.

Full text
Abstract:
Методом сканирующей ближнепольной оптической микроскопии исследовано пространственное распределение интенсивности излучения, возникающего при больших уровнях накачки (до 30 кА/см2) вследствие рекомбинации в волноводном слое лазерной структуры GaAs/AlGaAs с асимметричными барьерными слоями GaInP и AlGaInAs. Обнаружено, что в таком лазере волноводная люминесценция, в целом менее интенсивная по сравнению с наблюдаемой в аналогичном лазере без асимметричных барьеров, распределена в волноводе неравномерно --- максимум распределения сдвинут к p-эмиттеру. Это может быть объяснено способностью барьера GaInP, примыкающего к квантовой яме со стороны n-эмиттера, подавлять транспорт дырок. DOI: 10.21883/FTP.2017.02.44116.8361
APA, Harvard, Vancouver, ISO, and other styles
44

Shaoshuai Sui, Shaoshuai Sui, Mingying Tang Mingying Tang, Yuede Yang Yuede Yang, Jinlong Xiao Jinlong Xiao, Yun Du Yun Du, and and Yongzhen Huang and Yongzhen Huang. "Single-mode hybrid AlGaInAs/Si octagonal-ring microlaser with stable output." Chinese Optics Letters 14, no. 3 (2016): 031402–31405. http://dx.doi.org/10.3788/col201614.031402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ohnoki, N., G. Okazaki, F. Koyama, and K. Iga. "Record high characteristic temperature (To = 122 K) of 1.55 [micro sign]m strain-compensated AlGaInAs/AlGaInAs MQW lasers with AlAs/AlInAs multiquantum barrier." Electronics Letters 35, no. 1 (1999): 51. http://dx.doi.org/10.1049/el:19990031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhang, Xiaobin, Shanshan Huang, Jianqing Liu, Kaiwen Lin, Yuehui Wang, and Wenyi Yang. "Research on monolithic AlGaInP/AlGaInAs/GaInAs/Ge quadruple-junction solar cell for high efficiency lattice-matched tandem photovoltaic device." Applied Physics Express 13, no. 7 (June 17, 2020): 071002. http://dx.doi.org/10.35848/1882-0786/ab9990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Xia, Mo, Richard V. Penty, Ian H. White, and Peter P. Vasil’ev. "Femtosecond superradiant emission in AlGaInAs quantum-well semiconductor laser structures." Optics Express 20, no. 8 (March 30, 2012): 8755. http://dx.doi.org/10.1364/oe.20.008755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Song, Yue, Ligong Zhang, Yugang Zeng, Yongyi Chen, Li Qin, Yinli Zhou, Yongshi Luo, Haifeng Zhao, Yongqiang Ning, and Lijun Wang. "Temperature-dependent photoluminescence characterization of compressively strained AlGaInAs quantum wells." Materials Research Bulletin 115 (July 2019): 196–200. http://dx.doi.org/10.1016/j.materresbull.2019.02.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pan, Jen-Wei, Ming-Hong Chen, and Jen-Inn Chyi. "High performance phosphorus-free 1.3 μm AlGaInAs/InP MQW lasers." Journal of Crystal Growth 201-202 (May 1999): 923–26. http://dx.doi.org/10.1016/s0022-0248(98)01490-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Ling-Xiu Zou, Xiao-Meng Lv, Yong-Zhen Huang, Heng Long, Jin-Long Xiao, Qi-Feng Yao, Jian-Dong Lin, and Yun Du. "Mode Analysis for Unidirectional Emission AlGaInAs/InP Octagonal Resonator Microlasers." IEEE Journal of Selected Topics in Quantum Electronics 19, no. 4 (July 2013): 1501808. http://dx.doi.org/10.1109/jstqe.2013.2244566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography