To see the other types of publications on this topic, follow the link: Algal production.

Dissertations / Theses on the topic 'Algal production'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Algal production.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lizzul, A. M. "Integrated production of algal biomass." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1474169/.

Full text
Abstract:
Applied research is increasingly defined within a context of sustainability and ecological modernisation. Within this remit, recent developments in algal biotechnology are considered to hold particular promise in integrating aspects of bioremediation and bioproduction. However, there are still a number of engineering and biological bottlenecks related to large scale production of algae; including requirements to reduce both capital expenditure (CAPEX) and operational expenditure (OPEX). One potential avenue to reduce these costs is via feedstock substitution and resource sharing; often described as industrial symbiosis. Such an approach has the benefit of providing both environmental and economic benefits as part of an 'eco-biorefinery'. This thesis set out to investigate and address how best to approach some of the cost related bottlenecks within the algal industry, through a process of industrial integration and novel system design. The doctorate focussed on applications within a Northern European context and was split into four research topics. The first and second parts identified a suitable algal strain and were followed by the characterisation of its growth on wastewater; with the findings showing Chlorella sorokiniana (UTEX1230) capable of robust growth and rapid inorganic nutrient removal. The third part detailed the design, construction and validation of a lower cost and fully scalable modular airlift (ALR) photobioreactor, suitable amongst other applications for use within wastewater treatment. This work concluded with a pilot scale deployment of a 50 L ALR system. The fourth research section detailed the costs of ALR construction and operation at a wastewater treatment works, with a particular focus on the benefits that can be derived by industrial symbiosis. The thesis concludes with an appraisal of the ALR design and considers the potential for the technology, particularly within a wastewater treatment role. A final consideration is given to the practicalities of developing the algal industry within the UK in the short to medium term.
APA, Harvard, Vancouver, ISO, and other styles
2

Hiatt, Michael John. "Synergetic Algal Infrastructure: Investigating the Benefits of Algae Production in an Airport Environment." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366241697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Moore, Sarah Elizabeth. "Production of Algal Concentrate for Mollusk Feed." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/321883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sherman, Jennifer Ramin. "Production of Algal Concentrate for Mollusk Feed." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/321956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Traeger, Jeremiah Clemens. "Production of Algal Concentrate for Mollusk Feed." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/322077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Veach, Rebecca Suzanne. "Production of Algal Concentrate for Mollusk Feed." Thesis, The University of Arizona, 2014. http://hdl.handle.net/10150/322080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mokebo, Kirsty R. "Ultrahigh productivity photobioreactors for algal biofuel production." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.589640.

Full text
Abstract:
Algal biodiesel is a biodegradable and sustainable alternative to traditional petroleum fuels. Algal biodiesel is synthesised from algal lipids via transesterification and has many desirable physical properties for fuel use. Current photobioreactors are inefficient. This thesis looks to increase efficiency and reduce energetic running costs. This was undertaken by the design, construction and trialling of an LED photobioreactor. The controlled growth of the algae, specifically Chlorella emersonii, using pulsed monochromatic or bi-chromatic light conditions with comparison to continuous white light to improve light economy is explored in this thesis. The prediction of biodiesel profile from the growth conditions is also investigated for Chlorella emersonii. Chapter 1 is a general introduction to the area of algal biodiesel. This introductory chapter reviews the current literature regarding microalgae growth conditions and control, processing microalgae to produce biodiesel and photobioreactor designs for the controlled growth of algae. The known effects of different light sources and types on algal growth are also reviewed. Chapter 2 concerns the pulsing-LED vertical airlift photobioreactor design, construction and testing, including an overview of the system constructed and the process of design to combat specific issues. Results from the testing of the photobioreactor are reported in this chapter which include analysis of the resultant fatty acid methyl ester (FAME) profile of algae grown under various pulsed mono-chromatic and bi-chromatic light conditions and the comparison to continuous white light. This chapter draws together the hypotheses and stand-alone observations reported in the current literature allowing direct comparisons for different light conditions and conclusions to be reported which include the effect on resultant FAME profile and not just lipid percentage. Chapter 3 explores the effect of environmental factors on the fatty acid methyl ester composition of the algal biodiesel. This chapter describes the effect of carbon dioxide, nitrate, phosphate and iron levels, length of culture and the effect of supplementary carbon sources on Chlorella emersonii growth and resultant FAME composition. The result of synergetic effects of nutrient levels and length of algal cultivation are analysed in addition to the stage of algal growth and its impact on FAME profile. Chapter 4 details the procedures used for the growth of algae, the production of the algal biodiesel and the development of techniques used for analysis of the resultant biodiesel. The techniques and conditions employed for the growth of the algae as well as the extraction and transesterification of the algal lipids are explained.
APA, Harvard, Vancouver, ISO, and other styles
8

Johnson, Michael Ben. "Microalgal Biodiesel Production through a Novel Attached Culture System and Conversion Parameters." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32034.

Full text
Abstract:
Due to a number of factors, the biodiesel industry in the United States is surging in growth. Traditionally, oil seed crops such as soybean are used as the feedstock to create biodiesel. However, the crop production can no longer safely keep up with the demand for the growing biodiesel industry. Using algae as a feedstock has been considered for a number of years, but it has always had limitations. These limitations were mainly due to the production methods used to grow and harvest the algae, rather than the reaction methods of creating the biodiesel, which are the same as when using traditional crops. Algae is a promising alternative to other crops for a number of reasons: it can be grown on non arable land, is not a food crop, and produces much more oil than other crops. In this project, we propose a novel attached growth method to produce the algae while recycling dairy farm wastewater using the microalga Chlorella sp. The first part of the study provided a feasibility study as the attachment of the alga onto the supporting substrate as well as determining the pretreatment options necessary for the alga to grow on wastewater. The results showed that wastewater filtered through cheesecloth to remove large particles was feasible for production of Chlorella sp, with pure wastewater producing the highest biomass yield. Most importantly, the attached culture system largely exceeded suspended culture systems as a potentially feasible and practical method to produce microalgae. The algae grew quickly and were able to produce more than 3.2 g/m2-day with lipid contents of about 9% dry weight, while treating dairy farm wastewater and removing upwards of 90% of the total phosphorus and 79% of the nitrogen contained within the wastewater. Once the â proof-of-conceptâ work was completed, we investigated the effects of repeat harvests and intervals on the biomass and lipid production of the microalgae. The alga, once established, was harvested every 6, 10, or 15 days, with the remaining algae on the substrate material functioning as inoculums for repeated growth. Using this method, a single alga colony produced biomass and lipids for well over six months time in a laboratory setting. The second part of this study investigated another aspect of biodiesel production from algae. Rather than focus solely on biomass production, we looked into biodiesel creation methods as well. Biodiesel is created through a chemical reaction known as transesterification, alcoholysis, or commonly, methylation, when methanol is the alcohol used. There are several different transesterification methods. By simplifying the reaction conditions and examining the effects in terms of maximum fatty acid methyl esters (FAME) produced, we were able to determine that a direct transesterification with chloroform solvent was more effective than the traditional extraction-transesterification method first popularized by Bligh & Dyer in 1959 and widely used. This synergistic research helps to create a more complete picture of where algal biodiesel research and development is going in the future.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
9

Al, Hoqani U. H. A. "Metabolic engineering of the algal chloroplast for terpenoid production." Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1564823/.

Full text
Abstract:
Microalgal biotechnology has attracted considerable interest owing to it is potential to provide renewable energy and its capacity to produce molecules such as pigments, fatty acids and other high value compounds, which can be used in the biomaterials, cosmetics and pharmaceutical industries. One class of compounds are the terpenoids: a diverse group of molecules derived from C5 isoprene units that are exploited for their aromatic and bioactive properties. Terpenoid production in microalgae offers an alternative to extraction from plant species or chemical synthesis. However, metabolic engineering technology for microalgae is still in its infancy and far from economic viability. Thus, the aim of this study was to develop engineering tools for the industrial algal species Nannochloropsis gaditana, with the goal of manipulating the main terpenoid pathway located in the chloroplast. In parallel, the effects of such manipulation was studied using the laboratory species Chlamydomonas reinhardtii, for which chloroplast genetic engineering is already established. N. gaditana is a robust marine species well suited to industrial scale cultivation. The availability of a draft genomic sequence, nuclear transformation methodology and a high lipid productivity have positioned N. gaditana as a promising oleaginous alga for metabolic engineering. However, to develop it as an industrially relevant platform, further molecular tools are needed; in particular a reliable chloroplast transformation method. Thus, the aim of the first project was to develop chloroplast transformation for the alga. This involved optimizing the cultivation conditions for N. gaditana, evaluating its sensitivity to herbicides and chloroplast specific compounds in order to identify suitable selectable markers, and to construct chloroplast transformation vectors. In addition, the temporary increase in cell size by inhibition of cytokinesis was investigated in order to facilitate the delivery of DNA into the small chloroplast. C. reinhardtii is the most developed algal model with well-established tools for genetic manipulation, and can be used to study the effect of chloroplast metabolic engineering in other species such as Nannochloropsis. Thus, the second project focused on the manipulation of the terpenoid biosynthetic pathway: specifically, the chloroplast-localized methylerythritol phosphate pathway by over-expressing the rate limiting enzyme; 1-deoxy-D-xylulose-5-phosphate synthase (DXS). An additional dxs gene from the cyanobacterium Synechocystis 6803 was introduced into the chloroplast genome in the hope of improving the productivity of downstream terpenoid metabolites. A number of transgenic lines were obtained and the successful integration was confirmed by molecular analysis. The effects of up-regulating DXS enzyme activity on overall algal growth and terpenoid profile are studied.
APA, Harvard, Vancouver, ISO, and other styles
10

Woolsey, Paul A. "Rotating Algal Biofilm Reactors: Mathematical Modeling and Lipid Production." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/1107.

Full text
Abstract:
Harvesting of algal biomass presents a large barrier to the success of biofuels made from algae feedstock. Small cell sizes coupled with dilute concentrations of biomass in lagoon systems make separation an expensive and energy intense-process. The rotating algal biofilm reactor (RABR) has been developed at USU to provide a sustainable technology solution to this issue. Algae cells grown as a biofilm are concentrated in one location for ease of harvesting of high density biomass. A mathematical model of this biofilm system was developed based on data generated from three pilot scale reactors at the City of Logan, Utah wastewater reclamation plant. The data were fit using nonlinear regression to a modified logistic growth equation. The logistic growth equation was used to estimate nitrogen and phosphorus removal from the system, and to find the best harvesting time for the reactors. These values were extrapolated to determine yields of methane and biodiesel from algae biomass that could be used to provide energy to the City of Logan if these reactors were implemented at full scale. For transesterification into biodiesel, algae need to have high lipid content. Algae biofilms have been relatively unexplored in terms of cell lipid composition accumulation and changes with regard to environmental stressors. Results indicated that biofilm biomass was largely unaffected by nutrient stresses. Neither nitrogen limitation nor excess inorganic carbon triggered a significant change in lipid content. Biofilm algae grown with indoor lighting produced an average of 4.2% lipid content by dry weight. Biofilm algae gown outdoors yielded an average of 6.2% lipid content by dry weight.
APA, Harvard, Vancouver, ISO, and other styles
11

Kazamia, Elena. "Synthetic ecology : a way forward for sustainable algal biofuel production." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Narendar, Priyanka. "Screening and Identification of Everglades Algal Isolates for Biodiesel production." FIU Digital Commons, 2010. http://digitalcommons.fiu.edu/etd/287.

Full text
Abstract:
This project investigates the potential of the 27 Everglades green algal strains for producing biodiesel. The five potential strains chosen by measuring the neutral lipid content using the Nile red method were Coelastrum 46-4, Coccoid green 64-12, Dactylococcus 64-10, Stigeoclonium 64-8 and Coelastrum 108-5. Coelastrum 108-5 and Stigeoclonium 64-8 yielded the same amount of lipids in both Gravimetric and Nile red method. A linear relationship between algal biomass and lipid accumulation was seen in Coelastrum 46-4, Coccoid green 64-12, Stigeoclonium 64-8 and Coelastrum 108-5 indicating that increase in algal biomass increased the lipid accumulation. Nitrogen and phosphorous stress conditions were also studied where higher lipid accumulation was observed significantly (p < 0.05) in 64-8 Stigeoclonium and 64-12 Coccoid green. Collectively, it could be summarized that Coelastrum 108-5, Coccoid green 64-12 and Stigeoclonium 64-8 were promising in some aspects and could be used for further studies.
APA, Harvard, Vancouver, ISO, and other styles
13

Mazzotti, Matilde <1986&gt. "Physiological studies to optimize algal biomass production in phytoremediation processes." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6934/.

Full text
Abstract:
Nowadays microalgae are studied, and a number of species already mass-cultivated, for their application in many fields: food and feed, chemicals, pharmaceutical, phytoremediation and renewable energy. Phytoremediation, in particular, can become a valid integrated process in many algae biomass production systems. This thesis is focused on the physiological and biochemical effects of different environmental factors, mainly macronutrients, lights and temperature on microalgae. Microalgal species have been selected on the basis of their potential in biotechnologies, and nitrogen occurs in all chapters due to its importance in physiological and applicative fields. There are 5 chapters, ready or in preparation to be submitted, with different specific matters: (i) to measure the kinetic parameters and the nutrient removal efficiencies for a selected and local strain of microalgae; (ii) to study the biochemical pathways of the microalga D. communis in presence of nitrate and ammonium; (iii) to improve the growth and the removal efficiency of a specific green microalga in mixotrophic conditions; (iv) to optimize the productivity of some microalgae with low growth-rate conditions through phytohormones and other biostimulants; and (v) to apply the phyto-removal of ammonium in an effluent from anaerobic digestion. From the results it is possible to understand how a physiological point of view is necessary to provide and optimize already existing biotechnologies and applications with microalgae.
APA, Harvard, Vancouver, ISO, and other styles
14

Aitken, Douglas. "Assessment of the sustainability of bioenergy production from algal feedstock." Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/8961.

Full text
Abstract:
Growing concerns regarding the impact of fossil fuel use upon the environment and the cost of production have led to a growth in the interest of obtaining energy from biomass. 1st and 2nd generation biomass types, however, are often criticised for their high energy requirements and environmental impacts. Algal biomass is considered a 3rd generation biomass which does not require arable land for cultivation, typically has a high productivity and can be converted to a wide variety of energy carriers. Despite research on the concept of producing energy from algal biomass dating back to the 1960s there has been limited commercial development and the environmental advantages are still in doubt. This thesis investigated the potential of algal biomass as a source of bioenergy feedstock by considering the cultivation and processing of localised species of algae and applying life cycle assessment (LCA) methodology to algal biofuel production systems. Experiments were conducted to examine the productivity of a wild algal species in wastewater and the potential recoverable bioenergy yields. The LCA studies drew together data from external studies, commercial databases, industrial reports and experimental work to assess the environmental impacts and the energy balance for each system considered. The thesis investigated the generation of biofuel from both freshwater algal biomass and marine algal biomass. For both cases, the current state of research was examined and the gaps determined. Existing studies suggest the high intensity of microalgal biomass production (fertiliser requirements, high energy harvesting) greatly reduces the overall sustainability. Part of this thesis therefore investigated the possibility of a low input system of microalgal cultivation. A recommended approach was suggested using local species cultivated in wastewater as the nutrient source and a conversion strategy based on the characteristics of the dominant species. The practicality and effectiveness of cultivating and processing locally grown algal biomass under low input conditions was determined by experiments that were conducted in the laboratory. Algal biomass was collected locally and cultivated in the laboratory using agricultural effluent as the nutrient source. The productivity of the algae was monitored alongside the uptake of nutrients. The effluent provided a good media for the cultivation of the wild algae and the nitrogen and phosphorous loading of the effluent was reduced by as much as 98% for NH4+ and 90% for PO4³-. The algal biomass was also tested for its potential as a feedstock for bioethanol production as well as biochar alongside pyrolysis oils and gases. Compared to alternative biomass types tested, the algal biomass appeared to be a good candidate for bioethanol production providing a 38% recovery of bioethanol. The biomass appeared a less favourable substrate for energy recovery from pyrolysis but this process could be considered for carbon biofixation. The sustainability of incorporating microalgal cultivation in wastewater treatment was tested by conducting a life cycle assessment of a large scale system. The life cycle assessment used Haifa wastewater treatment plant in Israel as a case study. The study compared algal cultivation with energy recovery to conventional nutrient removal (A2O process) for enhanced nutrient removal within the wastewater treatment plant. It was found that the use of algal ponds for nutrient removal compared favourably to conventional treatment under specific conditions. These conditions were: the algal biomass is converted to both biodiesel and biogas and the algal biomass is converted to biodiesel, bioethanol and biogas. In these cases the energy balance was greater and the global warming potential and eutrophication potential were less. The conventional nutrient removal was, however, found to be the better method in terms of the acidification potential. Despite being the favourable method of nutrient removal the cultivation and processing of algae relies upon several key assumptions: high year round growth of algae, no contamination and access to a high land area for the cultivation ponds. The sustainability of recovering bioenergy from the cultivation of macroalgae was also tested. A life cycle assessment was conducted investigating the energy return on investment and six environmental impacts for three cultivation methods and three process streams to convert the biomass to bioenergy. Cultivation and processing in Chile was used as a case study due to the depth of knowledge and availability of data. The cultivation scenarios were: bottom cultivation of Gracilaria chilensis, the long line cultivation of Gracilaria chilensis and the long line cultivation of Macrocystis pyrifera. The processing streams were: bioethanol, biogas and both bioethanol and biogas. Most of the data used in the life cycle assessment was obtained from studies conducted in Chile and from communication with local fisherman. It was found that the bottom cultivation of Gracilaria chilensis and conversion to bioethanol and biogas produced the best energy return on investment (2.95) and was most beneficial in terms of the environmental impacts considered. Alternative circumstances were also considered which included new research (untested on a large scale) related to the value used for productivity and conversion of the biomass. This analysis indicated that an EROI of 10.3 could be achieved for the long-line cultivation of Macrocystis pyrifera and conversion to bioethanol and biogas alongside very limited environmental impacts. This result relies, however, upon favourable assumptions that have not yet been proven on a large scale. The work conducted in this thesis highlights the potential of recovering energy from algal biomass. The experimental work and life cycle analysis of freshwater algal cultivation demonstrates the importance of using wastewater treatment as added value to the system. Maximising energy recovery by using a combination of conversion techniques was also shown to be key in providing the most sustainable solution. The sustainability of energy produced from macroalgae was established as being preferable to several conventional energy sources. Innovative methods to improve the system were also shown to greatly enhance the concept.
APA, Harvard, Vancouver, ISO, and other styles
15

Copertino, Margareth. "Production ecology and ecophysiology of turf algal communities on a temperate reef (West Island, South Australia)." Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phc782.pdf.

Full text
Abstract:
Includes bibliographical references (leaves 235-258). Estimates the primary production and investigates the photosynthetic performance of temperate turfs at West Island, off the coast of South Australia. These communities play a fundamental role in reef ecology, being the main source of food for grazers, both fishes and invertebrates. Turfs also have an important function in benthic algal community dynamics, being the first colonizers on disturbed and bare substratum.
APA, Harvard, Vancouver, ISO, and other styles
16

Cormier, Ivy. "A STELLA Model for Integrated Algal Biofuel Production and Wastewater Treatment." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3562.

Full text
Abstract:
Based on a municipal wastewater treatment plant (WWTP) in Tampa, FL, a dynamic multiple-systems model was developed on the STELLA software platform to explore algae biomass production in wastewater by incorporating two photobioreactors into the WWTP‟s treatment train. Using a mass balance approach, the model examined the synergy through algal growth and substrate removal kinetics, as well as macroeconomic-level analyses of algal biomass conversion to biodiesel, biogas, or fertilizer. A sensitivity analysis showed that biomass production is highly dependent on Monod variables and harvesting regime, and profitability was sensitive to processing costs, market prices of products, and energy environment. The model demonstrated that adequate nutrients and carbon dioxide are available in the plant‟s influent to sustain algal growth. Biogas and fertilizer production were found to be profitable, but biodiesel was not, due to high processing costs under current technologies. Useful in determining the growth potential on a macro-level, the model is a tool for identifying focus areas for bench and pilot scale testing.
APA, Harvard, Vancouver, ISO, and other styles
17

Milledge, J. J. "Energy balance and techno-economic assessment of algal biofuel production systems." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/357074/.

Full text
Abstract:
There has been considerable discussion in recent years about the potential of micro-algae for the production of sustainable and renewable biofuels. Unfortunately the scientific studies are accompanied by a multitude of semi-technical and commercial literature in which the claims made are difficult to substantiate or validate on the basis of theoretical considerations. To determine whether biofuel from micro-algae is a viable source of renewable energy three questions must be answered : a. How much energy can be produced by the micro-algae? b. How much energy is used in the production of micro-algae? c. Is more energy produced than used? A simple approach has been developed that allows calculation of maximum theoretical dry algal biomass and oil yields which can be used to counter some of the extreme yield values suggested in the 'grey' literature. No ready made platform was found that was capable of producing an energy balance model for micro-algal biofuel. A mechanistic energy balance model was successfully developed for the production of biogas from the anaerobic digestion of micro-algal biomass from raceways. Preliminary calculations had suggested this was the most promising approach. The energy balance model was used to consider the energetic viability of a number of production scenarios, and to identify the most critical parameters affecting net energy production. These were: a. Favourable climatic conditions. The production of micro-algal biofuel in UK would be energetically challenging at best. b. Achievement of ‘reasonable yields’ equivalent to ~3 % photosynthetic efficiency (25 g m-2 day-1) c. Low or no cost and embodied energy sources of CO2 and nutrients from flue gas and wastewater d. Mesophilic rather than thermophilic digestion e. Adequate conversion of the organic carbon to biogas (≥ 60 %) f. A low dose and low embodied energy organic flocculant that is readily digested, or micro-algal communities that settle readily g. Additional concentration after flocculation or sedimentation h. Exploitation of the heat produced from parasitic combustion of micro-algal biogas in CHP units i. Minimisation of pumping of dilute micro-algal suspension It was concluded that the production of only biodiesel from micro-algae is not economically or energetically viable using current commercial technology, however, the production of micro-algal biogas is energetically viable, but is dependent on the exploitation of the heat generated by the combustion of biogas in combined heat and power units to show a positive balance. Two novel concepts are briefly examined and proposed for further research: a. The co-production of Dunaliella in open pan salt pans. b. A 'Horizontal biorefinery' where micro-algae species and useful products vary with salt concentration driven by solar evaporation.
APA, Harvard, Vancouver, ISO, and other styles
18

Inglesby, Alister Edward. "Anaerobic digestion of algal biomass for bioenergy production- a feasibility study." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/11474.

Full text
Abstract:
AD technology is well developed, cost efficient and can be easily implemented in developing countries. Biogas production has become a very topical subject, with many European nations introducing initiatives to increase biogas production. AD of algal biomass was studied in detail during the 1980’s, however, with the current drive toward cleaner technology processes, there has been a renewed interest in the technology. This study investigated the feasibility of using algal biomass as a feedstock for AD.
APA, Harvard, Vancouver, ISO, and other styles
19

Liu, Junying. "Investigation of optimal growth environments for large-scale algal biodiesel production." Thesis, University of Sheffield, 2012. http://etheses.whiterose.ac.uk/3181/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ying, Kezhen. "Microbubble driven airlift bioreactor for CO2 sequestration and algal biomass production." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/5315/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

North, April Kiers. "Impacts of nutrients and insecticide on algal production in a prairie wetland." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0015/MQ56142.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ortwine, Michelle L. "The impacts of rainfall runoff on tidal creek algal and bacterial production /." Electronic version (PDF), 2007. http://dl.uncw.edu/etd/2007-1/ortwinem/michelleortwine.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Hodson, Sarah Joy. "A model system for mutualistic cobalamin production mediated by bacterial-algal communication." Thesis, University of Kent, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Adesanya, Victoria Oluwatosin. "Investigation into the sustainability and feasibility of potential algal-based biofuel production." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Berthold, Erwin David. "Enhancing Algal Biomass and Lipid Production through Bacterial and Fungal Co-Culture." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2563.

Full text
Abstract:
This thesis investigates the effects of co-culturing microorganisms including 37 yeast, 38 bacteria, nine diazotrophic cyanobacteria, and three fungi on biomass and lipid production in fresh- and saltwater algae. Algal lipid content was measured using Nile Red method and gravimetric techniques. Among the algal strains tested, freshwater Coelastrum sp. 46-4, and saltwater Cricosphaera sp. 146-2-9, showed enhanced biomass yield and lipid content in response to co-culture with bacteria, cyanobacteria, and fungi. While co-culture with yeast caused inhibition of algal productivity, no difference in algal productivity was observed between nitrogen-free diazotrophic cyanobacterial co-culture and nitrogen-replete monoalgal culture. Results indicated that extracellular compounds from the freshwater bacteria Pseudomonas stutzeri and marine fungus Fusarium sp. significantly account for stimulation of lipid accumulation within algal cells, while co-cultivation with live microorganism cells stimulated biomass production in algae.
APA, Harvard, Vancouver, ISO, and other styles
26

Wagley, Pravin Kumar. "Molecular analysis of microbial community structure in open ponds for algal biodiesel production." Thesis, Wichita State University, 2012. http://hdl.handle.net/10057/5980.

Full text
Abstract:
Algal farming in open ponds can be done with simple technology and low capital expenditures. However, in relatively uncontrolled ponds the likelihood that microbial contamination that could affect algal yield is high. We are interested in understanding natural contamination as an ecological process to better control the trajectory of microbial community assembly. Nannochloropsis salina was grown in small outdoor open ponds (100 L; 10 cm deep) through three cycles of batch culture using a simplified brackish growth medium. Time-course samples were monitored via pigment analyses, and direct microscopic counts. Extracted metagenomic DNA was subjected to touchdown PCR for amplification of 16S rRNA genes with universal bacterial primers and 18S rRNA genes with algae-specific primers, both using GC-clamps. PCR products of similar lengths were separated by melting characteristics using denaturing gradient gel electrophoresis (DGGE). Contamination of the open ponds by algae was not observed over three two-week batch culture cycles, however, contamination by bacteria was observed. Salinity and pH were likely major factors behind limited algal contamination. DGGE bands from bacterial 16S rRNA gene amplifications were excised, eluted, reamplified, and sequenced, revealing a diverse consortium of bacteria including Aeromonas, Loktanella, Marinobacter, and Pseudomonas. Most of the bands were seen on third and fourth day of the batch culture. As the culture progressed, the number of bands seen with DGGE decreased. Band migration was measured and relative front values were calculated. A 2% overall window was used to analyze how closely one band is associated with another. Overall there were 22 individual bands designated as novel based on relative front values. A dendrogram of relatedness was created to compare time-course samples from triplicate ponds, supporting the conclusion that community assembly was more of stochastic than deterministic in nature.
Thesis (M.S.)--Wichita State University, College of Liberal Arts and Sciences, Dept. of Biological Sciences
APA, Harvard, Vancouver, ISO, and other styles
27

Christenson, Logan. "Algal Biofilm Production and Harvesting System for Wastewater Treatment with Biofuels By-Products." DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/994.

Full text
Abstract:
Excess nitrogen and phosphorus in discharged wastewaters can lead to downstream eutrophication, ecosystem damage, and impaired water quality that may affect human health. Chemical-based and physical-based technologies are available to remove these nutrients; however, they often consume significant amounts of energy and chemicals, greatly increasing treatment costs. Algae are capable of removing these pollutants through biomass assimilation, and if harvested, can be utilized as a feedstock for biomethane or biodiesel production. Currently, difficulties in harvesting, concentrating, and dewatering algae have limited the development of an economically feasible treatment and production process. When algae are grown as surface-attached biofilms, the biomass is naturally concentrated and more easily harvested, leading to less expensive removal from treated water, and less expensive downstream processing for biofuel production. In this study, a novel algal biofilm production and harvesting system was designed, built, and tested. Key growth parameters were optimized in order to maximize biomass production and nutrient uptake from wastewater. Compared to suspended algae systems, the attached algal biofilm design of this study led to increased biomass production and greater treatment of domestic wastewater. An efficient and inexpensive algal biofilm harvesting technique was also developed in order to obtain a concentrated biosolids product, resulting in improved water quality and a feedstock suitable for further processing in the production of biofuels.
APA, Harvard, Vancouver, ISO, and other styles
28

Armstrong, Howard Meredith Dana Armstrong Howard Meredith Dana. "Harmful algal blooms on the U.S. west coast : new insights into domoic acid production and identification of yessotoxin, a new marine toxin detected in California coastal waters /." Digital Dissertations Database. Restricted to UC campuses, 2007. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Dandinpet, Kiran Kumar. "Dark grown chlorella kessleri fed corn, sorghum and lignocellulosic hydrosylates for algal biodiesel production." Thesis, Wichita State University, 2013. http://hdl.handle.net/10057/7033.

Full text
Abstract:
Biodiesel production by microalgae is typically driven by photosynthetic light harvesting. Production in open ponds is hampered by high water requirements and contamination. Photobioreactor are highly engineered systems with high capital costs. Both approaches are limited by a requirement for high surface area-to-volume ratios that promote light penetration. The current study avoids these issues by growing algae heterotrophically. If algae are grown in the dark, existing bioethanol facilities may be used to co-produce, or readily be changed to produce, biodiesel. Here we fed Chlorella kessleri grown in the dark with the same corn and sorghum hydrosylates used for bioethanol production. Chlorella cultures also were grown heterotrophically in the dark on pure sugars (fructose, glucose, sucrose and a mixture of three sugars) in shake-flasks or continuously sparged and stirred bioreactors. The rate of growth in heterotrophic cultures was comparable to light-grown autotrophic cultures and mixotrophic cultures supplemented with exogenously added sugars in the light. Strong heterotrophic growth was observed for Chlorella maintained heterotrophically on corn mash, sweet sorghum juice, and sorghum mash prepared by hydrolysis of bulk grains. When these bioethanol feedstocks were added to a final concentration of 1% sugar, growth rates were comparable to pure sugar substrates. Biodiesel production was low in these experiments since no attempt was made to promote nitrogen starvation. The current study suggests that algal biodiesel production may be possible during heterotrophic growth in the dark on sugar feedstocks already in use by the biofuel industry. This provides new opportunities for flexible production of renewable liquid fuels using existing infrastructure.
Thesis (M.S.)--Wichita State University, Fairmount College of Liberal Arts and Sciences, Dept. of Biological Sciences.
APA, Harvard, Vancouver, ISO, and other styles
30

Henrich, Christian-Dominik. "Algal and bacterial nitrogen processing in a zero-discharge suspended-culture shrimp production system." Connect to this title online, 2008. http://etd.lib.clemson.edu/documents/1211390821/.

Full text
Abstract:
Thesis (M.S.) -- Clemson University, 2008.
Title from first page of PDF file. Document formatted into pages; contains xxi, 174 p. ; also includes graphics (chiefly col.). Contains additional supplemental file.
APA, Harvard, Vancouver, ISO, and other styles
31

Ahmed, Tanveer. "A detailed investigation into the production of calcium alginate fibre from various algal sources." Thesis, University of South Wales, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Razzano, Mandy L. "Monitoring Algal Production in Akron Water Supply Reserviors in Northeast Ohio Using Satellite Imagery." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1310178613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shao, Heng. "Efficient Production of Plat-form from Organic Acids from Ligocellulosic and Algal Biomass Carbohydrates." University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1420847319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Danerie, Giovanni. "Primary production studies in the southern Bight of the North Sea with reference to Phaeocystis sp. and its adaption to varying photon flux densities." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.359246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kendrick, Martin. "Algal bioreactors for nutrient removal and biomass production during the tertiary treatment of domestic sewage." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8944.

Full text
Abstract:
This thesis covers work carried out on algae bioreactors as a tertiary treatment process for wastewater treatment. The process was primarily assessed by the removal of Phosphorus and Nitrogen as an alternative to chemical and bacterial removal. Algal bioreactors would have the added advantage of carbon sequestration and a by-product in the energy rich algal biomass that should be exploited in the existing AD capacity. Laboratory scale bioreactors were run (4.5-30L) using the secondary treated final effluent from the local Loughborough sewage works. In a preliminary series of experiments several different bioreactor designs were tested. These included both batch feed and continuous flow feed configurations. The bioreactors were all agitated to keep the algal cells in suspension. The results demonstrated that the most effective and easy to operate was the batch feed process with the algal biomass by-product harvested by simple gravitational settling. Experiments also compared an artificial light source with natural light in outdoor experiments. Outdoor summer light produced greater growth rates but growth could not be sustained in natural UK winter light. Light intensity is proportional to productivity and algae require a minimum of around 97W/m2 to grow, an overcast winter day (the worst case scenario) was typically around 78W/m2, however this was only available for a few hours per day during Nov-Jan. The process would be better suited to areas of the world that receive year round sunlight. It was shown that phosphorus could be totally removed from wastewater by the algae in less than 24 hours depending on other operating variables. With optimisation and addition of more carbon, a HRT of 10-12 hours was predicted to achieve the EU WFD / UWWTD standard. It was further predicted that the process could be economically and sustainably more attractive than the alternatives for small to medium sized works. Biomass 3 concentrations of between 1-2g/L were found to best achieve these removals and produce the fastest average growth rates of between 125-150mg/L/d. The uptake rates of phosphorus and nitrogen were shown to be dependent on the type of algae present in the bioreactor. Nitrogen removal was shown to be less effective when using filamentous bluegreen algae whilst phosphorus removal was almost completely stopped compared to unicellular green algae that achieved a nitrogen uptake of 5.3mg/L/d and phosphorus uptake of 8mg/L/d. Soluble concentrations of Fe, Ni and Zn were also reduced by 60% in the standard 10 hours HRT. The predominant algae were shown to depend largely on these concentrations of phosphorus and nitrogen, and the strain most suited to that specific nutrient or temperature environment dominated. Nutrient uptake rates were linked to algal growth rates which correlated with the availability of Carbon as CO2. CO2 was shown to be the limiting factor for growth; becoming exhausted within 10 hours and causing the pH to rise to above 10.5. The literature showed this was a common result and the use of CO2 sparging would more than double performance making this process a good candidate for waste CO2 sequestration. Heat generated from combustion or generators with exhaust CO2 would also be ideal to maintain a year round constant temperature of between 20-25°C within the bioreactors. A number of possible uses for the algal biomass generated were examined but currently the most feasible option is wet anaerobic co-digestion. Further economic analysis was recommended on the balance between land area and complementary biomass generation for AD. It was also suggested given the interest as algae as a future fuel source, the process could also be adapted for large scale treatment and algal biomass production in areas of the world where land was available.
APA, Harvard, Vancouver, ISO, and other styles
36

Bangert, Krys. "Photo-bioreactor modelling and development of methods for the optimisation of micro-algal biodiesel production." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/5570/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wood, Joseph. "Causes and Consequences of Algal Blooms in the Tidal Fresh James River." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3429.

Full text
Abstract:
This dissertation includes 3 chapters which focus on algal bloom of the tidal fresh James River. The first chapter describes nutrient and light limitation assays performed on algal cultures and draw conclusions about long-term patterns in nutrient limitation by comparing results with a previous study . This chapter also describes the influence of riverine discharge upon nutrient limitation in a point-source dominated estuary. This chapter was published in Estuaries and Coasts (Wood and Bukaveckas 2014). The second chapter presents the first comprehensive assessment of the occurrence of the cyanotoxin Microcystin in water and biota of the James River. Data presented in this chapter show that bivalve grazing declines in the presence of Microcystin in the water. The chapter also describes feeding habits in fish as a predictor for inter-specific differences in Microcystin accumulation in their tissues. The work presented in this chapter was published in Environmental Science & Technology (Wood et al. 2014). The third chapter describes the fate of algal carbon in the James River Estuary and the importance of autochthonous and allochthonous sources of organic matter in supporting production of higher trophic levels. Here I draw upon ecosystem metabolism data (NPP and R), abundance and grazing estimates for primary consumers and estimates of advective losses of chlorophyll and external inputs of nitrogen to place ‘top-down’ effects in the broader context of factors influencing chlorophyll and nitrogen fluxes in the James. . This chapter also describes results from mesocosm experiments used to assess the influences of grazers on chlorophyll, nutrients and Microcystis. This work will be submitted in the summer of 2014 to the journal Ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
38

Ahmad, Kamaroddin Mohd Farizal. "In-situ disinfection and algal lipid extraction using ozonation in novel microbubble bioreactor for biofuel production." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17194/.

Full text
Abstract:
The scaling up and downstream processing costs of biodiesel from microalgae are major concerns. This study focuses on developing a new method by integrating ozone-rich microbubbles in both the production of microalgae and in downstream processes such as biomass harvesting and lipid extraction. A bacterial contaminant of a green algal (Dunaliella salina) culture was successfully screened, isolated and identified using 16S rRNA gene sequencing as a member of the Halomonas genus (gram-negative). Ozonation of mixed cultures of D. salina and Halomonas for 10 minutes at 8 mg/L reduced the bacterial contaminant without harming the microalgal cells. The sterilisation efficiency reached 66% after 5 minutes and increased to 93% after 10 minutes of ozonation. The algal cell growth performance (biomass concentration) was decreased by over 50% at 10% (v/v) contaminant concentration. Ozonation for 10 minutes at the beginning of the experiment resulted in a biomass reduction of 28.6%, which suggests that ozonation at the beginning of experiment can control the contamination. The optimum values for three parameters (culture media volume, ozone concentration and ozonation time) suggested by the statistical software were 30.63 mL, 8.20 mg/L and 37.7 min, respectively. Harvesting of D. salina cells through microflotation resulted in a 93.4% recovery efficiency. Ozonation of the harvested microalgae for 40 minutes produced three main saturated compounds [2-pentadecanone 6, 10, 14-trimethyl; n-hexadecanoic acid (palmitic acid); and octadecanoic acid (stearic acid)] that consist of 16 to 18 carbons. The main products increased significantly around 156%, 88.9% and 150% for 2-pentadecanone, 6, 10, 14-trimethyl; palmitic acid and stearic acid, respectively when the temperature was increased (60 ˚C), and smaller bubbles (generated by a fluidic oscillator) were introduced during the extraction process. By integrating microbubbles and ozonation into an airlift-loop bioreactor-processing system, this thesis describes a microbubble photobioreactor that delivers in-situ disinfection with microflotation harvesting and lipid extraction in an easily scalable and energy-efficient process.
APA, Harvard, Vancouver, ISO, and other styles
39

Overbeck, Tom J. "Strategies for Increased Lactic Acid Production from Algal Cake Fermentations at Low pH by Lactobacillus casei." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6481.

Full text
Abstract:
We explored using de-oiled algal biomass (algal cake) as a low-value substrate for production of lactic acid in fermentations with Lactobacillus casei, and strategies for increasing lactic acid production at low pH. L. casei 12A algal cake (AC) fermentations showed carbohydrate and amino acid availability limit growth and lactic acid production. These nutritional requirements were effectively addressed with enzymatic hydrolysis of the AC using α-amylase, cellulase, and pepsin. Producing 0.075 g lactic acid per g AC from AC digested with all three enzymes. We explored heterologous expression of the cellulase gene (celE) from Clostridium thermocellum and the α-amylase gene (amyA) from Streptococcus bovis in L. casei 12A. Functional activity of CelE was not detected, but low-level activity of AmyA was achieved, and increased > 1.5-fold using a previously designed synthetic promoter. Nonetheless, the improvement was insufficient to significantly increase lactic acid production. Thus, substantial optimization of amyA and celE expression in L. casei 12A would be needed to achieve activities needed to increase lactic acid production from AC. We explored transient inactivation of MutS as a method for inducing hypermutability and increasing adaptability of L. casei 12A and ATCC 334 to lactic acid at low pH. The wild type cells and their ΔmutS derivatives were subject to a 100-day adaptive evolution experiment, followed by repair of the ΔmutS lesion in representative isolates. Growth studies at pH 4.0 revealed that all four adapted strains grew more rapidly, to higher cell densities, and produced significantly more lactic acid than untreated wild-type cells. The greatest increases were observed from the adapted ΔmutS derivatives. Further examination of the 12A adapted ΔmutS derivative identified morphological changes, and increased survival at pH 2.5. Genome sequence analysis confirmed transient MutS inactivation decreased DNA replication fidelity, and identified potential genotypic changes in 12A that might contribute to increased acid lactic acid resistance. Targeted inactivation of three genes identified in the adapted 12A ΔmutS derivative revealed that a NADH dehydrogenase (ndh), phosphate transport ATP-binding protein PstB (pstB), and two-component signal transduction system (TCS) quorum-sensing histidine kinase (hpk) contribute to increased acid resistance in 12A.
APA, Harvard, Vancouver, ISO, and other styles
40

King, Leighton R. "The Response of Utah Lake's Plant and Algal Community Structure to Cultural Eutrophication." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7631.

Full text
Abstract:
Human activities have long had a negative impact on the water quality of freshwater lakes around the world. Utah Lake, located in north-central Utah, has been a subject of such impacts, as the lake experiences recurrent harmful algal blooms during the summer months. Lake warnings and closures have made the public increasingly aware of the ecological and economic impact of these blooms. The objectives of this study were to: 1) compare historical and present-day water quality and ecosystem conditions using environmental data contained in sediment cores, 2) identify whether, and when, Utah Lake transitioned from clearwater to turbid conditions, and 3) incorporate historically-validated lake plant community structure models into establishing forward-thinking lake management targets. The first two objectives will guide lake remediation efforts by providing insight into where lake managers should set our water quality goals and help identify the main driver(s) of eutrophication in Utah Lake. Environmental data from sediment cores indicate a transition in the lake’s recent history, marking a shift to greater phytoplankton dominance, which I attribute to the introduction of invasive common carp around 1881. The third objective provides management and restoration efforts with the water clarity requirements for returning the lake to its historical ecological state.
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, Jin, and 刘进. "Genetic engineering of Chlorella zofingiensis for enhanced astaxanthinbiosynthesis and assessment of the algal oil for biodiesel production." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45151593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Portune, Kevin Joseph. "Examinations on harmful algal cyst distribution, germination, and reactive oxygen species production within Delaware's Inland Bays, USA." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 210 p, 2008. http://proquest.umi.com/pqdweb?did=1601513961&sid=6&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Woisard, Kevin Keith. "Mixotrophic Production of Omega-3 Fatty Acid-rich Alga Phaeodactylum tricornutum on Biodiesel-derived Crude Glycerol." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/76902.

Full text
Abstract:
Crude glycerol is the major byproduct of the biodiesel industry. There is an abundance of this byproduct and purifying it for use in industries such as food, pharmaceutical, or cosmetic is prohibitively expensive. Developing an alternative use for crude glycerol is needed. Utilizing it as a carbon source in the fermentation of algae is one potential method for using this under-utilized byproduct. In this research, crude glycerol is used in the mixotrophic production of the alga, Phaeodactylum tricornutum, which is an eicosapentaenoic acid (EPA) producing diatom. Mixotrophic growth is when cells perform autotrophic and heterotrophic modes of growth concurrently. EPA is an omega-3 polyunsaturated fatty acid that has been demonstrated to have a multitude of beneficial health effects, including maintaining human cardiovascular health, treating cancer and human depression diseases, and an anti-obesity effect. In this study, the potential of using crude glycerol in batch mode mixotrophic culture of P. tricornutum was investigated. Once the mixotrophic culture was established, parameters involved in increasing the biomass and EPA production were optimized. These included nitrogen source, level of supplemental carbon dioxide, and concentration of crude glycerol. Using nitrate, 0.08 M crude glycerol, and 3% (vol/vol) carbon dioxide led to the highest biomass productivity of 0.446 g L?? day?? and the highest EPA productivity of 16.9 mg L?? day?? in batch mode culture. The continuous culture of the mixotrophic culture was then performed following the batch culture optimization. The effects of dilution rate were observed in continuous culture with the parameters of nitrate as the nitrogen source, 0.08 M crude glycerol, and 3% (vol/vol) carbon dioxide held constant. The highest biomass productivity of 0.612 g L?? day?? was obtained at D = 0.24 day??. The highest EPA productivity of 16.5 mg L?? day?? was achieved at both D = 0.15 day?? and D = 0.24 day??. The maximum specific growth rate was estimated from the washing out dilution rate and was determined to be around 0.677 day??. Overall, it was found that crude glycerol increases the biomass and EPA productivity of Phaeodactylum tricornutum. Continuous culture with the use of crude glycerol can further increase these measurements. The potential for scaling up studies is demonstrated by these results and can help lead to a market for this abundant, little-used byproduct of the biodiesel industry.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
44

Pyle, Denver. "Use of Biodiesel-Derived Crude Glycerol for the Production of Omega-3 Polyunsaturated Fatty Acids by the Microalga Schizochytrium limacinum." Thesis, Virginia Tech, 2008. http://hdl.handle.net/10919/31796.

Full text
Abstract:
Crude glycerol is the major byproduct of the biodiesel industry. In general, for every 100 pounds of biodiesel produced, approximately 10 pounds of crude glycerol are created. Because this glycerol is expensive to purify for use in food, pharmaceutical, or cosmetics industries, biodiesel producers must seek alternative methods for its disposal. Using crude glycerol as a carbon source for fermentation is a promising alternative use for this waste material. In this project, we propose to use crude glycerol in the fermentation of the microalga Schizochytrium limacinum, which is a prolific producer of docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid with proven beneficial effects on treating human diseases such as cardiovascular diseases, cancers, and Alzheimerâ s. The first part of this study provided â proof-of-conceptâ that Schizochytrium limacinum was capable of utilizing crude glycerol while producing DHA. The results show that pretreated crude glycerol was a viable carbon source for algal growth and DHA production, with 75 g/L to 100 g/L of glycerol being the optimum concentration range. In addition to glycerol concentration, temperature, trace metal levels, ammonium acetate concentration, and NH4Cl concentration also had significant effects (P < 0.1) on algal DHA production. Optimizing these factors using response surface methodology led to a DHA yield of 4.91 g/L and a DHA productivity of 0.82 g/L-day. The second part of this study investigated the effects of impurities within the glycerol on DHA production and algal biomass composition, with a goal of ensuring that the algal biomass produced from crude glycerol can be safely utilized as an ingredient in omega-3 fortified foods or animal feed additives. Crude glycerol samples obtained from different biodiesel producers were tested. All the samples contained methanol, soaps, and various elements including calcium, phosphorus, potassium, silicon, sodium, and zinc. Both methanol and soaps in the glycerol negatively influence algal DHA production. The two impurities can be removed from the culture medium by evaporation through autoclaving (for methanol) or by precipitation through pH adjustment (for soap). The results showed that the crude glycerol-derived algal biomass contained 45-50% lipid, 14-20% protein, and 25% carbohydrate, with 8-13% ash content. Palmitic acid (C16:0) and DHA (C22:6) were the two major fatty acids in the algal lipid. ICP analysis showed that that boron, calcium, copper, iron, magnesium, phosphorus, potassium, silicon, sodium, and sulfur were present in the algal biomass, but no heavy metals (such as mercury) were detected. The crude glycerol-derived algal biomass had a high level of DHA and a nutritional profile similar to glucose-derived commercial algal biomass, suggesting a great potential for using crude-glycerol derived algae in omega-3 fortified food or feed. Overall, this study shows that crude glycerol can be used as a safe and effective substrate for algal culture to produce high levels of omega-3 fatty acids. With the rapid expansion of the biodiesel industry, there is an urgent need to develop new markets for large quantities of crude glycerol. This research provides an exciting opportunity to utilize a large quantity of this low grade glycerol.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
45

Downes-Tettmar, Naomi. "Factors that impact Pseudo-nitzschia spp. occurrence, growth, and toxin production." Thesis, University of Plymouth, 2013. http://hdl.handle.net/10026.1/1588.

Full text
Abstract:
This work investigates, for the first time, the Pseudo-nitzschia (PN) dynamics in the western English Channel (L4) and the environmental factors impacting on domoic acid (DA) production in these waters. This is combined with laboratory studies examining key environmental factors and the multifactorial impact of multiple macronutrient and micronutrient availability on PN growth and DA production. An LC-MS method was established, optimised, and compared with ELISA for the accurate and reproducible extraction and determination of particulate and dissolved DA. The method was used to measure the seasonal variation in DA at L4 during 2009 and this was compared to PN seasonal abundance and diversity. Three groups a P. delicatissima-group, a P. seriata-group, and a P. pungens/multiseries-group were identified and were found to have different ecological distributions with the latter two groups significantly correlating with DA concentration. Macronutrients, in combination with other environmental factors, were found to influence PN populations at L4. Multifactorial laboratory culture experiments investigating the availability of nitrate, phosphate, and silicate, confirmed that the interrelatedness of all these nutrients significantly affected the growth, decline, and DA production of P. multiseries, and highlight the importance of both phosphate and silicate availability for DA production. When the impacts of both macronutrient (phosphate and silicate) and micronutrient (iron and copper) availability were investigated, limited growth and DA production was observed in P. multiseries cultures. Results revealed the complexity and interrelationship of factors affecting both PN growth and DA production. Furthermore, molecular methods were developed to elucidate the PN species present from 2009 Lugol’s-preserved L4 samples. DNA was successfully extracted and amplified from these samples which had been stored for up to 2 years. Initial sequence analysis identified the rbcL DNA marker as an informative site for future work with a number of L4 sequences closely relating to different Pseudo-nitzschia spp.
APA, Harvard, Vancouver, ISO, and other styles
46

Pelletreau, Karen Nicole. "The application of molecular tools towards the study of brown algal chemical ecology and the production of phlorotannins." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 230 p, 2008. http://proquest.umi.com/pqdweb?did=1601234901&sid=4&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Norell, Isabella. "Phaeodactylum tricornutum – Compositional Analysis, Carbohydrate-Active Enzymes and Potential Applications of Residual Algal Biomass from Omega 3 Production." Thesis, KTH, Industriell bioteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292409.

Full text
Abstract:
Microalgae are gaining more attention for several reasons such as being potential producers of sustainable fuel, for use as health supplements and in skincare. Simris Alg is a Swedish company that produces Omega 3 supplements from a primary producer of these fatty acids - the algal diatom Phaeodactylum tricornutum, which is a sustainable alternative to Omega 3 derived from fish. Omega 3 fatty acids constitute a small fraction of the total algal biomass, and to increase profitability and utilize all of the biomass, the purpose of this thesis project is to present potential applications for the residual material that is left after oil extraction. A general composition study was made of Simris Alg algal residue material, and results are compared to those found in previous studies of P. tricornutum biomass. An optimization of the fractionation is needed to separate the storage carbohydrate chrysolaminarin and cell wall component glucuronomannan, followed by analysis for confirmation. Also, it would be interesting to separate chitin, if there is any, since despite the presence of chitin synthases, it is unclear whether the diatom actually produces chitin. When gathering information, no actual experimental characterization of carbohydrate active enzymes involved in synthesis of the main carbohydrates investigated were found. Such information would be useful to increase production of the carbohydrate of interest, if valuable applications are found. Potential applications of various cell components, such as carbohydrates, in skincare would be interesting to investigate, as well as optimizing fucoxanthin extraction for use as an additional high value product next to Omega 3.
APA, Harvard, Vancouver, ISO, and other styles
48

Monari, Chiara. "Life cycle assessment of biodiesel production from micro-algae: a case study in Denmark." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amslaurea.unibo.it/6106/.

Full text
Abstract:
Le sperimentazioni riguardanti la produzione di biodiesel da alghe sono state condotte solo in laboratorio o in impianti pilota e il processo produttivo non è ancora stato sviluppato su scala industriale. L’obiettivo di questo lavoro di tesi è stato quello di valutare la potenziale sostenibilità ambientale ed energetica della produzione industriale di biodiesel da microalghe nella realtà danese ipotizzando la coltivazione in fotobioreattori. La tesi ha analizzato le diverse tecnologie attualmente in sperimentazione cercando di metterne in evidenza punti di forza e punti di debolezza. La metodologia applicata in questa tesi per valutare la sostenibilità ambientale ed energetica dei processi analizzati è LCA strumento che permette di effettuare la valutazione sull’intero ciclo di vita di un prodotto o di un processo. L’unità funzionale scelta è 1 MJ di biodiesel. I confini del sistema analizzato comprendono: coltivazione, raccolta, essicazione, estrazione dell’olio, transesterificazione, digestione anaerobica della biomassa residuale e uso del glicerolo ottenuto come sottoprodotto della transesterificazione. Diverse categorie d’impatto sono state analizzate. In questo caso studio, sono stati ipotizzati 24 diversi scenari differenziati in base alle modalità di coltivazione, di raccolta della biomassa, di estrazione dell’olio algale. 1. la produzione di biodiesel da microalghe coltivate in fotobioreattori non appare ancora conveniente né dal punto di vista energetico né da quello ambientale. 2. l’uso di CO2 di scarto e di acque reflue per la coltivazione, fra l’altro non ancora tecnicamente realizzabili, migliorerebbero le prestazioni energetiche ed ambientali del biodiesel da microalghe 3. la valorizzazione di prodotti secondari svolge un ruolo importante nel processo e nel suo sviluppo su larga scala Si conclude ricordando che il progetto di tesi è stato svolto in collaborazione con la Danish Technical University of Denmark (DTU) svolgendo presso tale università un periodo di tirocinio per tesi di sei mesi
APA, Harvard, Vancouver, ISO, and other styles
49

Hoshino, Takanori. "Design of Novel Strategy for Green Algal Photo-Hydrogen Production: Spectral-Selective Photosystem I Activation and Photosystem II Deactivation." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/196095.

Full text
Abstract:
With a surge in future demand for hydrogen as a renewable fuel, the specific aim of this study was to develop a novel strategy in photosynthetic hydrogen production from green algae, which is one of the cleanest processes among existing hydrogen-production methodologies currently being explored. The novel strategy designed was a spectral-selective PSI-activation/PSII-deactivation protocol that would work to maintain a steady flow of electrons in the electron transport system in the light-dependent part of photosynthesis for delivery of electrons to hydrogenase for photo-hydrogen production. The strategy would work to activate PSI to assist in driving the electron flow, while partially deactivating PSII to a degree that it would still supply electrons, but would limit its photosynthetic oxygen production below the respiratory oxygen consumption so that an anoxic condition would be maintained as required by hydrogenase. This study successfully showed that the implementation of the spectral-selective PSIactivation/ PSII-deactivation strategy resulted in actual and relatively sustained photohydrogen production in Chlamydomonas reinhardtii cells, which had been dark-adapted for three hours immediately prior to exposure to a PSI-spectral selective radiation, which had a spectral peak at 692 nm, covering a narrow waveband of 681-701 nm, and was applied at 15 W m⁻². The optimal condition for the PSI-spectral-selective radiation (692 nm) corresponded with low cell density of 20 mg chlorophyll L⁻¹ ("chl" henceforth) with cells grown at 25⁰C. At this condition, the PSI-spectral-selective radiation induced the maximal initial hydrogen production rate of 0.055 mL H² mg⁻¹ chl h⁻¹ which statistically the same as that achieved under white light of 0.044 mL H² mg⁻¹ chl h⁻¹, a maximal total hydrogen production of 0.108 mL H² mg⁻¹ chl which significantly exceeded that under white light of 0.066 mL H² mg⁻¹ chl, and a maximal gross radiant energy conversion efficiency for hydrogen production of 0.515 μL H² mg⁻¹ chl L⁻¹ that statistically matched that under white light of 0.395 μL H² mg⁻¹ chl L⁻¹. The study also successfully demonstrated the reversibility feature of the novel strategy, allowing for the cells to alternately engage in photo-hydrogen production and to recover by simply switching on or off the PSI-spectral-selective radiation.
APA, Harvard, Vancouver, ISO, and other styles
50

Sörbom, Johanna. "Utilizing beach-cast seaweed for biochar production in Gotland : A study of energy and carbon balances of algal biochar." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289436.

Full text
Abstract:
With global warming, rising environmental issues, and increased beach-cast production, climate change mitigation efforts are important for the future of the planet. Carbon dioxide removal technologies are now deemed essential to reach the Sustainable development goals and keep the temperature rise under 1.5 or 2 degrees °C. Biochar produced from beach-cast seaweed has great potential as a fuel or as a means of carbon sequestration, while also proposing a way of dealing with unwanted beach-cast at public beaches. This study compares the alternative methodologies for performing carbon- and energy balances of the production of biochar from beach-cast seaweed. The methodologies differ in the accounting of emissions and energy consumption, either only accounting for consumed energy, including energy embodied in materials, or including avoided emissions. The viability of producing biochar from beach-cast seaweed is assessed while trying to answer if the biochar is best used as a fuel or as a means of carbon sequestration. Furthermore, the effect of pyrolysis peak temperature on the pyrolysis products is assessed. The study provides evidence that waste products such as beach-cast seaweed can be a valuable resource both in the field of power production and for climate mitigation. Beach-cast has the potential to mitigate climate change by offsetting 0.5 kg CO₂e per kg of dry beach-cast. Using the full potential of Gotland, this would mean a carbon capture potential of 1 600 tonnes CO₂e per year. Furthermore, the energy balance suggests a best-case scenario of 4.5 proving that biochar production from beach-cast is viable as a fuel. However, the results vary depending on the methodology used for the assessment. If energy bound in materials is included, the carbon balance is not good enough for carbon sequestration while including avoided emissions leads to a more optimistic result. The study shows that a peak temperature of 500°C is optimal for producing biochar with a high energy content and that natural drying should be included in the drying process to reduce CO₂e emissions and energy consumption in the production process.
Med den pågående globala uppvärmningen, miljöproblem och en ökad mängd alger längs stränder, är åtgärder för att minska klimatpåverkan av största vikt för planetens framtid. Tekniker för att minska mängden koldioxid i atmosfären bedöms nu vara nödvändiga för att nå målen för hållbar utveckling och hålla temperaturökningen under 1,5 eller 2 grader °C. Biokol producerad från alger har en stor potential som bränsle eller som en kolsänka, samtidigt som det är ett sätt att hantera oönskade alger som samlas längs stränder. I denna studie jämförs tre alternativa metoder för att utföra kol- och energibalanser för produktion av biokol från alger. Metoderna skiljer sig åt i vad som tas med i beräkningarna för utsläpp och energiförbrukning. Antingen redovisas endast konsumerad energi eller så inkluderas energi bundet i material eller utsläpp som undvikits vid produktion av biokol. Möjligheten att producera biokol från alger utvärderas i denna studie som även undersöker om biokolet bäst används som bränsle eller som en kolsänka. Vidare bedöms effekten av olika maxtemperaturer vid pyrolysis på de resulterande produkterna. Studien visar på att avfallsprodukter såsom döda alger kan vara en värdefull resurs både inom kraftproduktion och för att handskas med klimatförändringar. Alger har potential att binda 0,5 kg CO₂e per kg torra alger. Genom att utnyttja alla de alger som skulle kunna skördas på Gotland, skulle detta innebära en upptagningspotential på 1 600 ton CO₂e per år. Vidare antyder energibalansen ett scenario som i bästa fall skulle hamna på 4,5 och därmed bevisar att biokol producerat av alger kan användas som ett bränsle. Resultaten varierar dock beroende på vilken metod som används för bedömningen. Om energi bundet i använda material ingår i binds inte lika mycket ton CO₂e som släpps ut i produktionen, medan inkluderandet av undvikna utsläpp leder till ett mer optimistiskt resultat. Studien visar att en maxtemperatur på 500°C är optimal för produktion av biokol med ett högt energiinnehåll samt att naturlig torkning bör inkluderas i torkprocessen för att minska CO₂-utsläpp och energiförbrukning i produktionsprocessen.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography