Academic literature on the topic 'Algebra, Abstract'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algebra, Abstract.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algebra, Abstract"
Sreeja S Nair, Kumari. "Exploring Normal Covering Spaces: A Bridge between Algebraic Topology and Abstract Algebra." International Journal of Science and Research (IJSR) 12, no. 8 (August 5, 2023): 2474–77. http://dx.doi.org/10.21275/sr23824225856.
Full textSAMEA, H. "ESSENTIAL AMENABILITY OF ABSTRACT SEGAL ALGEBRAS." Bulletin of the Australian Mathematical Society 79, no. 2 (March 13, 2009): 319–25. http://dx.doi.org/10.1017/s0004972708001329.
Full textChen, Quanguo, and Yong Deng. "Hopf algebra structures on generalized quaternion algebras." Electronic Research Archive 32, no. 5 (2024): 3334–62. http://dx.doi.org/10.3934/era.2024154.
Full textBenkart, Georgia, and I. N. Herstein. "Abstract Algebra." American Mathematical Monthly 94, no. 8 (October 1987): 804. http://dx.doi.org/10.2307/2323434.
Full textFreedman, Haya, G. D. Crown, M. H. Fenrick, and R. J. Valenza. "Abstract Algebra." Mathematical Gazette 71, no. 455 (March 1987): 89. http://dx.doi.org/10.2307/3616329.
Full textMadden, Daniel J., Ronald Solomon, and Ronald S. Irving. "Abstract Algebra." American Mathematical Monthly 112, no. 5 (May 1, 2005): 475. http://dx.doi.org/10.2307/30037513.
Full textSharma, Vibhuti. "Abstract Algebra." International Journal for Research in Applied Science and Engineering Technology 9, no. VII (July 20, 2021): 1628–34. http://dx.doi.org/10.22214/ijraset.2021.36688.
Full textBai, Liqian, Xueqing Chen, Ming Ding, and Fan Xu. "A generalized quantum cluster algebra of Kronecker type." Electronic Research Archive 32, no. 1 (2024): 670–85. http://dx.doi.org/10.3934/era.2024032.
Full textHuang, Junyuan, Xueqing Chen, Zhiqi Chen, and Ming Ding. "On a conjecture on transposed Poisson $ n $-Lie algebras." AIMS Mathematics 9, no. 3 (2024): 6709–33. http://dx.doi.org/10.3934/math.2024327.
Full textBezhanishvili, Guram, and Patrick J. Morandi. "Profinite Heyting Algebras and Profinite Completions of Heyting Algebras." gmj 16, no. 1 (March 2009): 29–47. http://dx.doi.org/10.1515/gmj.2009.29.
Full textDissertations / Theses on the topic "Algebra, Abstract"
Frisk, Anders. "On the structure of standardly stratified algebras /." Uppsala, 2004. http://www.math.uu.se/research/pub/Frisk5lic.pdf.
Full textWiesnet, Franziskus Wolfgang Josef. "The computational content of abstract algebra and analysis." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/313875.
Full textWiesnet, Franziskus Wolfgang Josef. "The computational content of abstract algebra and analysis." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/313875.
Full textJuett, Jason Robert. "Some topics in abstract factorization." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/2534.
Full textFernandes, Renato da Silva. "Combinatória: dos princípios fundamentais da contagem à álgebra abstrata." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55136/tde-31012018-161438/.
Full textThe objective of this work is to make a broad and sequential study on combinatorics. It begins with the foundations of enumerative combinatorics, such as permutations, simple combinations, complete combinations, and Kaplanskis lemmas. In a second moment an approach is presented to the counting problems using set theory; the principle of inclusion-exclusion, chaotic permutations and the counting of functions are addressed. In the third moment a deepening of the concept of permutation is made from the perspective of abstract algebra. The concept of group of permutations and related important results is explored. A strict total order relation for the permutation group is proposed. Finally, we investigate two interesting combinatorial problems: the determination of the number of paths in a grid and the number of permutations that avoids patterns of length three.
Awuah, Bernard Prince. "The effectiveness of the concrete / semi-concrete / abstract (CSA) appoach and drill- practice on grade 10 learners' ability to simplify addition and subtraction algebraic fractions." Thesis, University of Fort Hare, 2016. http://hdl.handle.net/10353/5105.
Full textRome, Zachary Robert. "Computational Abstract Algebra: Using Monomial Matrices to Represent Groups in GAP." Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/244772.
Full textAhlgren, Joyce Christine. "Ideals, varieties, and Groebner bases." CSUSB ScholarWorks, 2003. https://scholarworks.lib.csusb.edu/etd-project/2282.
Full textSPINOSA, Leonardo. "Burnside and Mackey Theories for Abstract Groupoids." Doctoral thesis, Università degli studi di Ferrara, 2019. http://hdl.handle.net/11392/2488082.
Full textL'obiettivo di questa tesi è lo studio delle teorie di Mackey e Burnside per i gruppoidi astratti, che sono generalizzazioni naturali dei gruppi. Infatti, un gruppoide può essere pensato come un gruppo con molti oggetti. Nel Capitolo 1 verranno innanzitutto illustrate le proprietà basilari dei gruppoidi; successivamente, verranno provate alcune proprietà delle due strutture monoidali sulla categoria dei groupoid-set (generalizzazioni dei group-set). Per la precisione, la struttura data dal coprodotto, cioè l'unione disgiunta, e la struttura data dal prodotto fibrato sull'insieme degli oggetti del gruppoide, considerato in modo canonico come un groupoid-set. Nel Capitolo 2 verrà sviluppata una teoria delle coniugazioni per i sottogruppoidi, mostrando le profonde differenze con il caso dei gruppi. Inoltre, questa teoria verrà utilizzata per provare una versione del teorema di Burnside per i gruppoidi, con le appropriate ipotesi di finitezza. Nel Capitolo 3 verrà provata una versione della famosa formula di Mackey per i group-biset nel caso dei groupoid-biset, mostrando la sua efficacia con uno specifico esempio. Nel Capitolo 4 verrà discussa l'equivalenza di due gruppoidi come categorie e cosa questo implichi per le categorie di groupoid-biset coinvolte. Nel Capitolo 5, seguendo la teoria classica, verrà sviluppata una teoria di Burnside per i gruppoidi, mostrando come l'anello di Burnside di un gruppoide sia isomorfo al prodotto diretto degli anelli di Burnside dei suoi gruppi di isotropia, uno per ogni componente connessa. Tutto ciò dimostra chiaramente come i metodi classici conducano allo studio solamente di una parte del poset dei sottogruppoidi, dato che i sottogruppoidi con più di un oggetto non compaiono. Nel Capitolo 6 verrà sviluppata una categorificazione della classica nozione di groupoid-set, sostituendolo con una categoria interna alla categoria dei groupoid-set, chiamata un groupoid-set categorificato. Successivamente, questa nozione verrà utilizzata per costruire una nuova teoria di Burnside per i gruppoidi e, infine, verrà dimostrato come, anche in questo caso, l'anello di Burnside categorificato di un gruppoide sia isomorfo al prodotto diretto degli anelli di Burnside categorificati dei suoi gruppi di isotropia, uno per ogni componente connessa. Tutto ciò dimostra come lo studio dei gruppoidi necessiti di tecniche e strumenti più sofisticati di quelli tradizionali. Nelle appendici verrà spiegato come passare da un rig (chiamato anche semianello), cioè un anello privo degli inversi additivi, a un anello, usando una costruzione chiamata funtore di Grothendieck. Questa nozione è cruciale per entrambe le teorie di Burnside sviluppate in questa tesi. Inoltre, nell'ultima appendice verranno riunite alcune definizioni sulle categorie monoidali, per fissare la terminologia utilizzata, e verrà provato un risultato conosciuto del quale, però, non si riesce a trovare altrove la dimostrazione.
Vernitski, Alexei. "Classes of abstract semigroups closed under the formation of subsemigroups and finitary direct products." Thesis, University of Essex, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284611.
Full textBooks on the topic "Algebra, Abstract"
Dummit, David Steven. Abstract algebra. Englewood Cliffs, N.J: Prentice Hall, 1991.
Find full textDummit, David Steven. Abstract algebra. 2nd ed. Upper Saddle River, N.J: Prentice Hall, 1999.
Find full textHerstein, I. N. Abstract algebra. 3rd ed. Upper Saddle River, N.J: Prentice-Hall, 1996.
Find full textDurbin, John R. Modern algebra: An introduction. 3rd ed. New York, NY: Wiley, 1992.
Find full text1948-, Fine Benjamin, and Rosenberger Gerhard, eds. Abstract algebra. Berlin: De Gruyter, 2011.
Find full textPaulsen, William. Abstract Algebra. 2nd edition. | Boca Raton : Taylor & Francis, 2016. | Series: Textbooks in mathematics ; 40 | “A CRC title.”: Chapman and Hall/CRC, 2018. http://dx.doi.org/10.1201/9781315370972.
Full textBook chapters on the topic "Algebra, Abstract"
Rubinstein-Salzedo, Simon. "Abstract Algebra." In Springer Undergraduate Mathematics Series, 85–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94818-8_9.
Full textFinston, David R., and Patrick J. Morandi. "Identification Numbers and Modular Arithmetic." In Abstract Algebra, 1–21. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04498-9_1.
Full textFinston, David R., and Patrick J. Morandi. "Symmetry." In Abstract Algebra, 145–81. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04498-9_10.
Full textFinston, David R., and Patrick J. Morandi. "Correction to: Identification Numbers and Modular Arithmetic." In Abstract Algebra, C1. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-04498-9_11.
Full textFinston, David R., and Patrick J. Morandi. "Error Correcting Codes." In Abstract Algebra, 23–40. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04498-9_2.
Full textFinston, David R., and Patrick J. Morandi. "Rings and Fields." In Abstract Algebra, 41–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04498-9_3.
Full textFinston, David R., and Patrick J. Morandi. "Linear Algebra and Linear Codes." In Abstract Algebra, 57–72. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04498-9_4.
Full textFinston, David R., and Patrick J. Morandi. "Quotient Rings and Field Extensions." In Abstract Algebra, 73–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04498-9_5.
Full textFinston, David R., and Patrick J. Morandi. "Ruler and Compass Constructions." In Abstract Algebra, 93–104. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04498-9_6.
Full textFinston, David R., and Patrick J. Morandi. "Cyclic Codes." In Abstract Algebra, 105–20. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04498-9_7.
Full textConference papers on the topic "Algebra, Abstract"
Wang, Yingxu. "On Abstract Systems and System Algebra." In 2006 5th IEEE International Conference on Cognitive Informatics. IEEE, 2006. http://dx.doi.org/10.1109/coginf.2006.365515.
Full textChen, Xinzuo. "Core of abstract algebra: group theory." In 2nd International Conference on Applied Mathematics, Modelling, and Intelligent Computing (CAMMIC 2022), edited by Chi-Hua Chen, Xuexia Ye, and Hari Mohan Srivastava. SPIE, 2022. http://dx.doi.org/10.1117/12.2639400.
Full textSantas, Phillip S. "A type system for computer algebra (abstract)." In the 1993 international symposium. New York, New York, USA: ACM Press, 1993. http://dx.doi.org/10.1145/164081.164096.
Full textRisnanosanti and Yuriska Destania. "Undergraduate Students’ Conceptual Understanding on Abstract Algebra." In International Conference on Mathematics and Islam. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0008523304380443.
Full textHasan Shaheed, Hassnaa, Judy-anne Osborn, and Malcolm Roberts. "Modelling the diversity of Tertiary Abstract Algebra Textbooks." In International Conference on Research in Teaching and Education. Acavent, 2019. http://dx.doi.org/10.33422/rteconf.2019.06.339.
Full textNEUMANN, ERIC K., SVETLANA LOCKWOOD, BALA KRISHNAMOORTHY, and DAVID SPIVAK. "WORKSHOP ON TOPOLOGY AND ABSTRACT ALGEBRA FOR BIOMEDICINE." In Proceedings of the Pacific Symposium. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814749411_0053.
Full textYufeng Wang. "A Systematical Natural Language Model by Abstract Algebra." In 2007 IEEE International Conference on Control and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icca.2007.4376566.
Full textFreudenthal, Eric A., Kien Lim, Karla Carmona, and Catherine Tabor. "Integrating Programming into Physics and Algebra (Abstract Only)." In SIGCSE '15: The 46th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2676723.2691884.
Full textTomé Cortiñas, Carlos, and Wouter Swierstra. "From algebra to abstract machine: a verified generic construction." In ICFP '18: 23nd ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3240719.3241787.
Full textAbraham, Erika. "Abstract domains in SMT solving for real algebra (invited talk)." In SPLASH '20: Conference on Systems, Programming, Languages, and Applications, Software for Humanity. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3427762.3430180.
Full textReports on the topic "Algebra, Abstract"
Aadithya, Karthik, Eric Keiter, and Ting Mei. Abstract Algebra Basics. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1761970.
Full textBardzell, Mike, Jennifer Bergner, Kathleen Shannon, Don Spickler, and Tyler Evans. PascGalois Abstract Algebra Classroom Resources. Washington, DC: The MAA Mathematical Sciences Digital Library, July 2008. http://dx.doi.org/10.4169/loci002636.
Full textBarnett, Janet Heine. Boolean Algebra as an Abstract Structure: Edward V. Huntington and Axiomatization. Washington, DC: The MAA Mathematical Sciences Digital Library, July 2013. http://dx.doi.org/10.4169/loci003998.
Full textSixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report. Office of Scientific and Technical Information (OSTI), December 1997. http://dx.doi.org/10.2172/674876.
Full text