Academic literature on the topic 'Algebraic control systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algebraic control systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Algebraic control systems"

1

Legat, Benoît, and Raphaël M. Jungers. "Geometric control of algebraic systems." IFAC-PapersOnLine 54, no. 5 (2021): 79–84. http://dx.doi.org/10.1016/j.ifacol.2021.08.478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bacciotti, Andrea. "Nonlinear control systems — an algebraic setting." Automatica 37, no. 12 (December 2001): 2079–80. http://dx.doi.org/10.1016/s0005-1098(01)00168-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Conte, G., C. Moog, and A. Perdon. "Algebraic Methods for Nonlinear Control Systems." IEEE Transactions on Automatic Control 52, no. 12 (December 2007): 2395–96. http://dx.doi.org/10.1109/tac.2007.911476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YU, RUN-YI, and WEI-BING GAO. "Algebraic properties of decentralized control systems." International Journal of Control 50, no. 1 (July 1989): 81–88. http://dx.doi.org/10.1080/00207178908953348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sperilă, Andrei, Florin S. Tudor, Bogdan D. Ciubotaru, and Cristian Oară. "ℋ∞ Control for Differential-Algebraic Systems." IFAC-PapersOnLine 53, no. 2 (2020): 4285–90. http://dx.doi.org/10.1016/j.ifacol.2020.12.2577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Li. "H∞Control of Fractional Nonlinear Differential Systems." Advanced Materials Research 945-949 (June 2014): 2737–40. http://dx.doi.org/10.4028/www.scientific.net/amr.945-949.2737.

Full text
Abstract:
In this paper, the stabilization of nonlinear fractional differential algebraic system is constructed. The fractional nonlinear differential algebraic systems (FNDAS) in presence of disturbance, we construct a fractional control strategy. The proposed stabilization and robust controller effectively take advantage of the structural characteristics of FNDAS and is simple in form.
APA, Harvard, Vancouver, ISO, and other styles
7

SATO, Kazuhiro. "Algebraic Controllability of Nonlinear Mechanical Control Systems." SICE Journal of Control, Measurement, and System Integration 7, no. 4 (2014): 191–98. http://dx.doi.org/10.9746/jcmsi.7.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Roubíček, Tomáš, and Michael Valášek. "Optimal control of causal differential–algebraic systems." Journal of Mathematical Analysis and Applications 269, no. 2 (May 2002): 616–41. http://dx.doi.org/10.1016/s0022-247x(02)00040-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pommaret, J. "Algebraic analysis of linear multidimensional control systems." IMA Journal of Mathematical Control and Information 16, no. 3 (September 1, 1999): 275–97. http://dx.doi.org/10.1093/imamci/16.3.275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Yuan, and Eduardo D. Sontag. "Algebraic Differential Equations and Rational Control Systems." SIAM Journal on Control and Optimization 30, no. 5 (September 1992): 1126–49. http://dx.doi.org/10.1137/0330060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Algebraic control systems"

1

Lampakis, Elias G. "Algebraic synthesis methods for linear multivariable control systems." Thesis, City, University of London, 1995. http://openaccess.city.ac.uk/19007/.

Full text
Abstract:
The mathematical formulation of various control synthesis problems (such as Decentralized Stabilization Problem (DSP), Total Finite Settling Time Stabilization for discrete time linear systems (TFSTS), Exact Model Matching Problem (EMMP), Decoupling and Noninteracting Control Problems) via the algebraic framework of Matrix Fractional Representation (MFR) - i.e. the representation of the transfer matrices of the system as matrix fractions over the ring of interest - results to the study of matrix equations over rings, such as : A . X + B . Y = C , (X. A + Y . B =C) (1) A· X = B , (y. A = B) (2) A·X·B = C (3) A·X + Y·B = C, X·A + B·Y = C, A·X·B + C·Y·D = E (4). The main objective of this dissertation is to further investigate conditions for existence and characterization of certain types of solutions of equation (1) ; develop a unifying algebraic approach for solvability and characterization of solutions of equations (1) - (4), based on structural properties of the given matrices, over the ring of interest. The standard matrix Diophantine equation (1) is associated with the TFSTS for discrete time linear systems and issues concerning the characterization of solutions according to the Extended McMillan Degree (EMD) (minimum EMD, or fixed EMD) of the stabilizing controllers they define, are studied. A link between the issues in question and topological properties of certain families of solutions of (1) is established . Equation (1) is also studied in association with the DSP and Diagonal DSP (DDSP) for continuous time linear systems. Conditions for characterizing block diagonal solutions of (1) (which define decentralized stabilizing controllers) are derived and a closed form description of the families of diagonal and two blocks diagonal decentralized stabilizing controllers is introduced. The set of matrix equations (1) - (4) is assumed over the field of fractions of the ring of interest , ℛ , (mainly a Euclidean Domain (ED) and thus a Principal Ideal Domain (PID)) and solvability as well as parametrization of solutions over ℛ is investigated under the unifying algebraic framework of extended non square matrix divisors, projectors and annihilators of the known matrices over ℛ . In practice the ring of interest is either the ring of polynomials ℝ [s] , or the rings of proper ℝ_pr(s) and especially proper and stable rational functions R_op(s). The importance of R_op(s) is highlighted early in the thesis and further computational issues arising from its structure as an ED are considered.
APA, Harvard, Vancouver, ISO, and other styles
2

Stefanidis, Peter. "Pole-placement design of multivariable control systems using algebraic methods /." Title page, abstract and contents only, 1989. http://web4.library.adelaide.edu.au/theses/09ENS/09enss816.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dafis, Chris J. Nwankpa Chika O. "An observability formulation for nonlinear power systems modeled as differential algebraic systems /." Philadelphia, Pa. : Drexel University, 2005. http://dspace.library.drexel.edu/handle/1860/519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Syrmos, Vassilis L. "Feedback design techniques in linear system theory : geometric and algebraic approaches." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/13348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adiguzel, Mehmet Emin. "A new control treatise of dynamic systems via algebraic state equations "Direct Optimal Control" /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487858417983374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bell, Simon J. G. "Numerical techniques for smooth transformation and regularisation of time-varying linear descriptor systems." Thesis, University of Reading, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Milonidis, E. "Finite settling time stabilization for linear multivariable time-invariant discrete-time systems : an algebraic approach." Thesis, City University London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Yahao. "Geometric analysis of differential-algebraic equations and control systems : linear, nonlinear and linearizable." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR04.

Full text
Abstract:
Dans la première partie de cette thèse, nous étudions les équations différentielles algébriques (en abrégé EDA) linéaires et les systèmes de contrôles linéaires associés (en abrégé SCEDA). Les problèmes traités et les résultats obtenus sont résumés comme suit : 1. Relations géométriques entre les EDA linéaires et les systèmes de contrôles génériques SCEDO. Nous introduisons une méthode, appelée explicitation, pour associer un SCEDO à n'importe quel EDA linéaire. L'explicitation d'une EDA est une classe des SCEDO, précisément un SCEDO défini, à un changement de coordonnées près, une transformation de bouclage près et une injection de sortie près. Puis nous comparons les « suites de Wong » d'une EDA avec les espaces invariants de son explicitation. Nous prouvons que la forme canonique de Kronecker FCK d'une EDA linéaire et la forme canonique de Morse FCM d'un SCEDO, ont une correspondance une à une et que leurs invariants sont liés. De plus, nous définissons l'équivalence interne de deux EDA et montrons sa particularité par rapport à l'équivalence externe en examinant les relations avec la régularité interne, i.e., l'existence et l'unicité de solutions. 2. Transformation d'un SCEDA linéaire vers sa forme canonique via la méthode d'explicitation avec des variables de driving. Nous étudions les relations entre la forme canonique par bouclage FCFB d'un SCEDA proposée dans la littérature et la forme canonique de Morse pour les SCEDO. Premièrement, dans le but de relier SCEDA avec les SCEDO, nous utilisons une méthode appelée explicitation (avec des variables de driving). Cette méthode attache à une classe de SCEDO avec deux types d'entrées (le contrôle original et le vecteur des variables de driving) à un SCEDA donné. D'autre part, pour un SCEDO linéaire classique (sans variable de driving) nous proposons une forme de Morse triangulaire FMT pour modifier la construction de la FCM. Basé sur la FMT nous proposons une forme étendue FMT et une forme étendue de FCM pour les SCEDO avec deux types d'entrées. Finalement, un algorithme est donné pour transformer un SCEDA dans sa FCFB. Cet algorithme est construit sur la FCM d'un SCEDO donné par la procédure d'explicitation. Un exemple numérique illustre la structure et l'efficacité de l'algorithme. Pour les EDA non linéaires et les SCEDA (quasi linéaires) nous étudions les problèmes suivants : 3. Explicitations, analyse externe et interne et formes normales des EDA non linéaires. Nous généralisons les deux procédures d'explicitation (avec ou sans variables de driving) dans le cas des EDA non linéaires. L'objectif de ces deux méthodes est d'associer un SCEDO non linéaire à une EDA non linéaire telle que nous puissions l'analyser à l'aide de la théorie des EDO non linéaires. Nous comparons les différences de l'équivalence interne et externe des EDA non linéaires en étudiant leurs relations avec l'existence et l'unicité d'une solution (régularité interne). Puis nous montrons que l'analyse interne des EDA non linéaire est liée à la dynamique nulle en théorie classique du contrôle non linéaire. De plus, nous montrons les relations des EDAS de forme purement semi-explicite avec les 2 procédures d'explicitations. Finalement, une généralisation de la forme de Weierstrass non linéaire FW basée sur la dynamique nulle d'un SCEDO non linéaire donné par la méthode d'explicitation est proposée
In the first part of this thesis, we study linear differential-algebraic equations (shortly, DAEs) and linear control systems given by DAEs (shortly, DAECSs). The discussed problems and obtained results are summarized as follows. 1. Geometric connections between linear DAEs and linear ODE control systems ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an ODECS defined up to a coordinates change, a feedback transformation and an output injection. Then we compare the Wong sequences of a DAE with invariant subspaces of its explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspondence and their invariants (indices and subspaces) are related. Furthermore, we define the internal equivalence of two DAEs and show its difference with the external equivalence by discussing their relations with internal regularity, i.e., the existence and uniqueness of solutions. 2. Transform a linear DAECS into its feedback canonical form via the explicitation with driving variables. We study connections between the feedback canonical form FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse canonical form MCF of ODECSs. In order to connect DAECSs with ODECSs, we use a procedure named explicitation (with driving variables). This procedure attaches a class of ODECSs with two kinds of inputs (the original control input and the vector of driving variables) to a given DAECS. On the other hand, for classical linear ODECSs (without driving variables), we propose a Morse triangular form MTF to modify the construction of the classical MCF. Based on the MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to transform a given DAECS into its FBCF. This algorithm is based on the extended MCF of an ODECS given by the explication procedure. Finally, a numerical example is given to show the structure and efficiency of the proposed algorithm. For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems: 3. Explicitations, external and internal analysis, and normal forms of nonlinear DAEs. We generalize the two explicitation procedures (with or without driving variable) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by showing their relations with the existence and uniqueness of solutions (internal regularity). Then we show that the internal analysis of nonlinear DAEs is closely related to the zero dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear generalization of the Weierstrass form WE is proposed based on the zero dynamics of a nonlinear ODECS given by the explicitation procedure
APA, Harvard, Vancouver, ISO, and other styles
9

Jones, Bryn Llywelyn. "Control of fluid flows and other systems governed by partial differential-algebraic equations." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5697.

Full text
Abstract:
The motion of fluids, such as air or water, is central to many engineering systems of significant economic and environmental importance. Examples range from air/fuel mixing in combustion engines to turbulence induced noise and fatigue on aircraft. Recent advances in novel sensor/actuator technologies have raised the intriguing prospect of actively sensing and manipulating the motion of the fluid within these systems, making them ripe for feedback control, provided a suitable control model exists. Unfortunately, the models for many of these systems are described by nonlinear, partial differential-algebraic equations for which few, if any, controller synthesis techniques exist. In stark contrast, the majority of established control theory assumes plant models of finite (and typically small) state dimension, expressed as a linear system of ordinary differential equations. Therefore, this thesis explores the problem of how to apply the mainstream tools of control theory to the class of systems described by partial differential-algebraic equations, that are either linear, or for which a linear approximation is valid. The problems of control system design for infinite-dimensional and algebraically constrained systems are treated separately in this thesis. With respect to the former, a new method is presented that enables the computation of a bound on the n-gap between a discretisation of a spatially distributed plant, and the plant itself, by exploiting the convergence rate of the v-gap metric between low-order models of successively finer spatial resolution. This bound informs the design, on loworder models, of H[infinity] loop-shaping controllers that are guaranteed to robustly stabilise the actual plant. An example is presented on a one-dimensional heat equation. Controller/estimator synthesis is then discussed for finite-dimensional systems containing algebraic, as well as differential equations. In the case of fluid flows, algebraic constraints typically arise from incompressibility and the application of boundary conditions. A numerical algorithm is presented, suitable for the semi-discrete linearised Navier-Stokes equations, that decouples the differential and algebraic parts of the system, enabling application of standard control theory without the need for velocity-vorticity type methods. This algorithm is demonstrated firstly on a simple electrical circuit, and secondly on the highly non-trivial problem of flow-field estimation in the transient growth region of a flat-plate boundary layer, using only wall shear measurements. These separate strands are woven together in the penultimate chapter, where a transient energy controller is designed for a channel-flow system, using wall mounted sensors and actuators.
APA, Harvard, Vancouver, ISO, and other styles
10

Gerdin, Markus. "Identification and Estimation for Models Described by Differential-Algebraic Equations." Doctoral thesis, Linköping : Department of Electrical Engineering, Linköpings universitet, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Algebraic control systems"

1

Conte, Giuseppe, Claude H. Moog, and Anna Maria Perdon. Algebraic Methods for Nonlinear Control Systems. London: Springer London, 2007. http://dx.doi.org/10.1007/978-1-84628-595-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Won, Chang-Hee, Cheryl B. Schrader, and Anthony N. Michel, eds. Advances in Statistical Control, Algebraic Systems Theory, and Dynamic Systems Characteristics. Boston, MA: Birkhäuser Boston, 2008. http://dx.doi.org/10.1007/978-0-8176-4795-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sira-Ramírez, Hebertt, Carlos García-Rodríguez, John Cortés-Romero, and Alberto Luviano-Juárez. Algebraic Identification and Estimation Methods in Feedback Control Systems. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118730591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wong, Kai Cheung. An algebraic description of hierarchial control in discrete-event systems. Ottawa: National Library of Canada, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gündes, A. N. Algebraic theory oflinear feedback systems with full and decentralized compensators. Berlin: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Desoer Charles, ed. Algebraic theory of linear feedback systems with full and decentralized compensators. Berlin: Springer-Verlag, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsay, Y. T. Structural analysis and design of multivariable control systems: An algebraic approach. Berlin: Springer-Verlag, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tsay, Yih Tsong. Structural Analysis and Design of Multivariable Control Systems: An Algebraic Approach. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ilchmann, Achim. Surveys in Differential-Algebraic Equations I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prodromos, Daoutidis, ed. Control of nonlinear differential algebraic equation systems: With applications to chemical processes. Boca Raton: Chapman & Hall/CRC, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Algebraic control systems"

1

Elliott, David L. "Algebraic Geometry." In Bilinear Control Systems, 247–50. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1023/b101451_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wonham, W. Murray, and Kai Cai. "Algebraic Preliminaries." In Supervisory Control of Discrete-Event Systems, 1–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77452-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pardubská, Dana, Martin Plátek, and Friedrich Otto. "Parallel Communicating Grammar Systems with Regular Control." In Algebraic Informatics, 342–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03564-7_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kůrka, Petr. "Algebraic Number Fields." In Studies in Systems, Decision and Control, 165–95. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33367-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kučera, Vladimı́r. "Polynomial/Algebraic Design Methods." In Encyclopedia of Systems and Control, 1076–85. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kučera, Vladimı́r. "Polynomial/Algebraic Design Methods." In Encyclopedia of Systems and Control, 1–13. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5102-9_239-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kučera, Vladimír. "Polynomial/Algebraic Design Methods." In Encyclopedia of Systems and Control, 1745–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-44184-5_239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Brezinski, Claude. "Systems of Linear Algebraic Equations." In Computational Aspects of Linear Control, 171–223. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4613-0261-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Encheva, Sylvia, and Gérard Cohen. "Copyright Control and Separating Systems." In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 79–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44828-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Barbot, J. P., and N. Pantalos. "Using symbolic calculus for singularly perturbed nonlinear systems." In Algebraic Computing in Control, 40–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0006929.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Algebraic control systems"

1

Nemcova, Jana. "Algebraic reachability of rational systems." In 2009 European Control Conference (ECC). IEEE, 2009. http://dx.doi.org/10.23919/ecc.2009.7074414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schwarzschild, Renee, and Eduardo D. Sontag. "Algebraic theory of sign-linear systems." In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mordukhovich, B., and Lianwen Wang. "Optimal control of differential-algebraic systems." In 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. http://dx.doi.org/10.1109/cdc.2004.1428959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sperila, Andrei, Bogdan D. Ciubotaru, and Cristian Oara. "ℋ2 Control for Differential-Algebraic Systems." In 2020 European Control Conference (ECC). IEEE, 2020. http://dx.doi.org/10.23919/ecc51009.2020.9143949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sato, Kazuhiro. "Algebraic observability of nonlinear differential algebraic systems with geometric index one." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6760271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiuhua, Zhang, and Zhang Qingling. "Passivity for Differential-algebraic Systems with Application to Excitation System." In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4347078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reger, Johann, Philipp Mai, and Hebertt Sira-Ramirez. "Robust algebraic state estimation of chaotic systems." In 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, 2006. http://dx.doi.org/10.1109/cacsd-cca-isic.2006.4776667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yanhong, Liu, and Li Chunwen. "Dissipative Hamiltonian Realization of Nonlinear Differential Algebraic Systems." In 2007 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.4347469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Desoer, Charles A., and A. Nazli Gundes. "Algebraic Theory of Two-Channel Decentralized Control Systems." In 1988 American Control Conference. IEEE, 1988. http://dx.doi.org/10.23919/acc.1988.4789959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luse, D. William. "An Algebraic Framework for Multiple-Frequency-Scale Systems." In 1988 American Control Conference. IEEE, 1988. http://dx.doi.org/10.23919/acc.1988.4790001.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Algebraic control systems"

1

Mesbahi, Mehran. Dynamic Security and Robustness of Networked Systems: Random Graphs, Algebraic Graph Theory, and Control over Networks. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada567125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kamen, Edward W. Control of Linear Systems Over Commutative Normed Algebras with Applications. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada178765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography