To see the other types of publications on this topic, follow the link: Algebraic geometric codes.

Journal articles on the topic 'Algebraic geometric codes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Algebraic geometric codes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Hao. "Testing algebraic geometric codes." Science in China Series A: Mathematics 52, no. 10 (August 8, 2009): 2171–76. http://dx.doi.org/10.1007/s11425-009-0141-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, H., S. Ling, and C. Xing. "Quantum Codes From Concatenated Algebraic-Geometric Codes." IEEE Transactions on Information Theory 51, no. 8 (August 2005): 2915–20. http://dx.doi.org/10.1109/tit.2005.851760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walker, Judy L. "Algebraic geometric codes over rings." Journal of Pure and Applied Algebra 144, no. 1 (December 1999): 91–110. http://dx.doi.org/10.1016/s0022-4049(98)00047-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lint, J. H. van. "Book Review: Algebraic-geometric codes." Bulletin of the American Mathematical Society 27, no. 2 (October 1, 1992): 306–11. http://dx.doi.org/10.1090/s0273-0979-1992-00311-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Hao. "Algebraic geometric codes with applications." Frontiers of Mathematics in China 2, no. 1 (March 2007): 1–11. http://dx.doi.org/10.1007/s11464-007-0001-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sorensen, A. B. "Weighted Reed-Muller codes and algebraic-geometric codes." IEEE Transactions on Information Theory 38, no. 6 (1992): 1821–26. http://dx.doi.org/10.1109/18.165459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shokrollahi, M. A., and H. Wasserman. "List decoding of algebraic-geometric codes." IEEE Transactions on Information Theory 45, no. 2 (March 1999): 432–37. http://dx.doi.org/10.1109/18.748993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pellikan, R., B. Z. Shen, and G. J. M. van Wee. "Which linear codes are algebraic-geometric?" IEEE Transactions on Information Theory 37, no. 3 (May 1991): 583–602. http://dx.doi.org/10.1109/18.79915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Davis, Jennifer A. "Algebraic geometric codes on anticanonical surfaces." Journal of Pure and Applied Algebra 215, no. 4 (April 2011): 496–510. http://dx.doi.org/10.1016/j.jpaa.2010.06.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Duursma, Iwan, Radoslav Kirov, and Seungkook Park. "Distance bounds for algebraic geometric codes." Journal of Pure and Applied Algebra 215, no. 8 (August 2011): 1863–78. http://dx.doi.org/10.1016/j.jpaa.2010.10.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Maharaj, H. "Explicit Constructions of Algebraic-Geometric Codes." IEEE Transactions on Information Theory 51, no. 2 (February 2005): 714–22. http://dx.doi.org/10.1109/tit.2004.840896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Duursma, Iwan M., and Seungkook Park. "Coset bounds for algebraic geometric codes." Finite Fields and Their Applications 16, no. 1 (January 2010): 36–55. http://dx.doi.org/10.1016/j.ffa.2009.11.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tsfasman, Michael A. "Algebraic-geometric codes and asymptotic problems." Discrete Applied Mathematics 33, no. 1-3 (November 1991): 241–56. http://dx.doi.org/10.1016/0166-218x(91)90120-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Leonard, D. A. "Error-locator ideals for algebraic-geometric codes." IEEE Transactions on Information Theory 41, no. 3 (May 1995): 819–24. http://dx.doi.org/10.1109/18.382034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hoholdt, T., and R. Pellikaan. "On the decoding of algebraic-geometric codes." IEEE Transactions on Information Theory 41, no. 6 (1995): 1589–614. http://dx.doi.org/10.1109/18.476214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Skorobogatov, A. N., and S. G. Vladut. "On the decoding of algebraic-geometric codes." IEEE Transactions on Information Theory 36, no. 5 (1990): 1051–60. http://dx.doi.org/10.1109/18.57204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Calderini, Marco, and Giorgio Faina. "Generalized Algebraic Geometric Codes From Maximal Curves." IEEE Transactions on Information Theory 58, no. 4 (April 2012): 2386–96. http://dx.doi.org/10.1109/tit.2011.2177068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Miura, Shinji. "Algebraic geometric codes on certain plane curves." Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 76, no. 12 (1993): 1–13. http://dx.doi.org/10.1002/ecjc.4430761201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chen, L., R. A. Carrasco, and M. Johnston. "List decoding performance of algebraic geometric codes." Electronics Letters 42, no. 17 (2006): 986. http://dx.doi.org/10.1049/el:20061999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Nardi, Jade. "Algebraic geometric codes on minimal Hirzebruch surfaces." Journal of Algebra 535 (October 2019): 556–97. http://dx.doi.org/10.1016/j.jalgebra.2019.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Hao Chen. "Some good quantum error-correcting codes from algebraic-geometric codes." IEEE Transactions on Information Theory 47, no. 5 (July 2001): 2059–61. http://dx.doi.org/10.1109/18.930942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Deundyak, Vladimir M., and Denis V. Zagumennov. "On the Properties of Algebraic Geometric Codes as Copy Protection Codes." Modeling and Analysis of Information Systems 27, no. 1 (March 23, 2020): 22–38. http://dx.doi.org/10.18255/1818-1015-2020-1-22-38.

Full text
Abstract:
Traceability schemes which are applied to the broadcast encryption can prevent unauthorized parties from accessing the distributed data. In a traceability scheme a distributor broadcasts the encrypted data and gives each authorized user unique key and identifying word from selected error-correcting code for decrypting. The following attack is possible in these schemes: groups of c malicious users are joining into coalitions and gaining illegal access to the data by combining their keys and identifying codewords to obtain pirate key and codeword. To prevent this attacks, classes of error-correcting codes with special c-FP and c-TA properties are used. In particular, c -FP codes are codes that make direct compromise of scrupulous users impossible and c -TA codes are codes that make it possible to identify one of the a‹ackers. We are considering the problem of evaluating the lower and the upper boundaries on c, within which the L-construction algebraic geometric codes have the corresponding properties. In the case of codes on an arbitrary curve the lower bound for the c-TA property was obtained earlier; in this paper, the lower bound for the c-FP property was constructed. In the case of curves with one infinite point, the upper bounds for the value of c are obtained for both c-FP and c-TA properties. During our work, we have proved an auxiliary lemma and the proof contains an explicit way to build a coalition and a pirate identifying vector. Methods and principles presented in the lemma can be important for analyzing broadcast encryption schemes robustness. Also, the c-FP and c-TA boundaries monotonicity by subcodes are proved.
APA, Harvard, Vancouver, ISO, and other styles
23

Le, Phong, and Sunil Chetty. "On the Dimension of Algebraic-Geometric Trace Codes." Mathematics 4, no. 2 (May 7, 2016): 32. http://dx.doi.org/10.3390/math4020032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fernandez, M., and M. Soriano. "Identification of Traitors in Algebraic-Geometric Traceability Codes." IEEE Transactions on Signal Processing 52, no. 10 (October 2004): 3073–77. http://dx.doi.org/10.1109/tsp.2004.833858.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Leonard, D. A. "A generalized Forney formula for algebraic-geometric codes." IEEE Transactions on Information Theory 42, no. 4 (July 1996): 1263–68. http://dx.doi.org/10.1109/18.508855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

MAHARAJ, HIREN. "SPACES OF MODULAR FORMS AND ALGEBRAIC GEOMETRIC CODES." International Journal of Number Theory 08, no. 06 (August 3, 2012): 1485–502. http://dx.doi.org/10.1142/s1793042112500881.

Full text
Abstract:
For ℓ = 2, 3, 5, we show that spaces of modular forms M2k(Γ0(ℓn)) are closely related to a class of one-point codes from the reduction of the modular tower {X0(ℓn)}n≥2 (mod p) for primes p > ℓ. Code construction from the space of cusp form is also considered.
APA, Harvard, Vancouver, ISO, and other styles
27

Johnston, M., R. A. Carrasco, and B. L. Burrows. "Design of algebraic-geometric codes over fading channels." Electronics Letters 40, no. 21 (2004): 1355. http://dx.doi.org/10.1049/el:20045392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Beelen, Peter. "The order bound for general algebraic geometric codes." Finite Fields and Their Applications 13, no. 3 (July 2007): 665–80. http://dx.doi.org/10.1016/j.ffa.2006.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Park, Seungkook. "Coherence of sensing matrices coming from algebraic-geometric codes." Advances in Mathematics of Communications 10, no. 2 (April 2016): 429–36. http://dx.doi.org/10.3934/amc.2016016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Tapia1, H., and C. Rentería. "Some geometric-algebraic codes on a covering plane curve." Communications in Algebra 22, no. 15 (January 1994): 6401–8. http://dx.doi.org/10.1080/00927879408825196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bartoli, D., L. Quoos, and G. Zini. "Algebraic geometric codes on many points from Kummer extensions." Finite Fields and Their Applications 52 (July 2018): 319–35. http://dx.doi.org/10.1016/j.ffa.2018.04.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Anderson, Sarah E., and Gretchen L. Matthews. "Exponents of polar codes using algebraic geometric code kernels." Designs, Codes and Cryptography 73, no. 2 (June 25, 2014): 699–717. http://dx.doi.org/10.1007/s10623-014-9987-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Besana, Alberto, and Cristina Martínez. "A Topological View of Reed–Solomon Codes." Mathematics 9, no. 5 (March 9, 2021): 578. http://dx.doi.org/10.3390/math9050578.

Full text
Abstract:
We studied a particular class of well known error-correcting codes known as Reed–Solomon codes. We constructed RS codes as algebraic-geometric codes from the normal rational curve. This approach allowed us to study some algebraic representations of RS codes through the study of the general linear group GL(n,q). We characterized the coefficients that appear in the decompostion of an irreducible representation of the special linear group in terms of Gromov–Witten invariants of the Hilbert scheme of points in the plane. In addition, we classified all the algebraic codes defined over the normal rational curve, thereby providing an algorithm to compute a set of generators of the ideal associated with any algebraic code constructed on the rational normal curve (NRC) over an extension Fqn of Fq.
APA, Harvard, Vancouver, ISO, and other styles
34

Kuznetsov, A. A., I. P. Kolovanova, D. I. Prokopovych-Tkachenko, and T. Y. Kuznetsova. "ANALYSIS AND STUDYING OF THE PROPERTIES OF ALGEBRAIC GEOMETRIC CODES." Telecommunications and Radio Engineering 78, no. 5 (2019): 393–417. http://dx.doi.org/10.1615/telecomradeng.v78.i5.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Feng, G. L., and T. R. N. Rao. "Decoding algebraic-geometric codes up to the designed minimum distance." IEEE Transactions on Information Theory 39, no. 1 (1993): 37–45. http://dx.doi.org/10.1109/18.179340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ehrhard, D. "Achieving the designed error capacity in decoding algebraic-geometric codes." IEEE Transactions on Information Theory 39, no. 3 (May 1993): 743–51. http://dx.doi.org/10.1109/18.256485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Geil, Olav, Stefano Martin, Ryutaroh Matsumoto, Diego Ruano, and Yuan Luo. "Relative Generalized Hamming Weights of One-Point Algebraic Geometric Codes." IEEE Transactions on Information Theory 60, no. 10 (October 2014): 5938–49. http://dx.doi.org/10.1109/tit.2014.2345375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wolper, James S. "Algebraic-Geometric Codes (M. A. Tsfasman and S. G. Vladui)." SIAM Review 35, no. 3 (September 1993): 541–43. http://dx.doi.org/10.1137/1035131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chen, L., and R. A. Carrasco. "Soft decoding of algebraic–geometric codes using Koetter-Vardy algorithm." Electronics Letters 45, no. 25 (2009): 1334. http://dx.doi.org/10.1049/el.2009.0940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Guruswami, Venkatesan, and Anindya C. Patthak. "Correlated algebraic-geometric codes: Improved list decoding over bounded alphabets." Mathematics of Computation 77, no. 261 (January 1, 2008): 447–73. http://dx.doi.org/10.1090/s0025-5718-07-02012-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Jian, Ren, and Xiao Guozhen. "On the decoding of algebraic geometric codes based on FIA." Journal of Electronics (China) 13, no. 1 (January 1996): 23–30. http://dx.doi.org/10.1007/bf02684711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Couvreur, Alain. "The dual minimum distance of arbitrary-dimensional algebraic–geometric codes." Journal of Algebra 350, no. 1 (January 2012): 84–107. http://dx.doi.org/10.1016/j.jalgebra.2011.09.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ba-Zhong Shen and K. K. Tzeng. "A code decomposition approach for decoding cyclic and algebraic-geometric codes." IEEE Transactions on Information Theory 41, no. 6 (1995): 1969–87. http://dx.doi.org/10.1109/18.476320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chen, Hao, Hing Sun Luk, and Stephen Yau. "Explicit Computation of Generalized Hamming Weights for Some Algebraic Geometric Codes." Advances in Applied Mathematics 21, no. 1 (July 1998): 124–45. http://dx.doi.org/10.1006/aama.1998.0591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Skorobogatov, Alexei N. "The parameters of subcodes of algebraic-geometric codes over prime subfields." Discrete Applied Mathematics 33, no. 1-3 (November 1991): 205–14. http://dx.doi.org/10.1016/0166-218x(91)90116-e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Mita, S., and H. Matsui. "An effective error correction using a combination of algebraic geometric codes and Parity codes for HDD." IEEE Transactions on Magnetics 41, no. 10 (October 2005): 2992–94. http://dx.doi.org/10.1109/tmag.2005.854451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Johnston, M., and R. A. Carrasco. "Construction and performance of algebraic–geometric codes over AWGN and fading channels." IEE Proceedings - Communications 152, no. 5 (2005): 713. http://dx.doi.org/10.1049/ip-com:20045153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gui-Liang Feng, V. K. Wei, T. R. N. Rao, and K. K. Tzeng. "Simplified understanding and efficient decoding of a class of algebraic-geometric codes." IEEE Transactions on Information Theory 40, no. 4 (July 1994): 981–1002. http://dx.doi.org/10.1109/18.335973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sakata, S., J. Justesen, Y. Madelung, H. E. Jensen, and T. Hoholdt. "Fast decoding of algebraic-geometric codes up to the designed minimum distance." IEEE Transactions on Information Theory 41, no. 6 (1995): 1672–77. http://dx.doi.org/10.1109/18.476240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Park, Seungkook. "Floor type bound for the minimum distance of generalized algebraic geometric codes." Journal of Pure and Applied Algebra 220, no. 1 (January 2016): 175–79. http://dx.doi.org/10.1016/j.jpaa.2015.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography