Academic literature on the topic 'Algebraic logic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algebraic logic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algebraic logic"
Rota, Gian-Carlo. "Algebraic logic." Advances in Mathematics 61, no. 2 (August 1986): 184. http://dx.doi.org/10.1016/0001-8708(86)90075-7.
Full textYang, Eunsuk. "Basic Core Fuzzy Logics and Algebraic Routley–Meyer-Style Semantics." Axioms 10, no. 4 (October 25, 2021): 273. http://dx.doi.org/10.3390/axioms10040273.
Full textDe Araujo Feitosa, Hércules, Mariana Matulovic, and Ana Claudia de J. Golzio. "A basic epistemic logic and its algebraic model." INTERMATHS 4, no. 2 (December 30, 2023): 28–37. http://dx.doi.org/10.22481/intermaths.v4i2.14133.
Full textHöfner, Peter, and Bernhard Möller. "Algebraic Neighbourhood Logic." Journal of Logic and Algebraic Programming 76, no. 1 (May 2008): 35–59. http://dx.doi.org/10.1016/j.jlap.2007.10.004.
Full textDang, H. H., P. Höfner, and B. Möller. "Algebraic separation logic." Journal of Logic and Algebraic Programming 80, no. 6 (August 2011): 221–47. http://dx.doi.org/10.1016/j.jlap.2011.04.003.
Full textMaddux, Roger D. "Finitary Algebraic Logic." Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35, no. 4 (1989): 321–32. http://dx.doi.org/10.1002/malq.19890350405.
Full textHsiang, Jieh, and Anita Wasilewska. "Automating Algebraic Proofs in Algebraic Logic." Fundamenta Informaticae 28, no. 1,2 (1996): 129–40. http://dx.doi.org/10.3233/fi-1996-281208.
Full textvan Alten, C. J. "The finite model property for knotted extensions of propositional linear logic." Journal of Symbolic Logic 70, no. 1 (March 2005): 84–98. http://dx.doi.org/10.2178/jsl/1107298511.
Full textFont, Josep Maria, and Miquel Rius. "An abstract algebraic logic approach to tetravalent modal logics." Journal of Symbolic Logic 65, no. 2 (June 2000): 481–518. http://dx.doi.org/10.2307/2586552.
Full textALBUQUERQUE, HUGO, JOSEP MARIA FONT, and RAMON JANSANA. "COMPATIBILITY OPERATORS IN ABSTRACT ALGEBRAIC LOGIC." Journal of Symbolic Logic 81, no. 2 (June 2016): 417–62. http://dx.doi.org/10.1017/jsl.2015.39.
Full textDissertations / Theses on the topic "Algebraic logic"
Albuquerque, Hugo Cardoso. "Operators and strong versions of sentential logics in Abstract Algebraic Logic." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/394003.
Full textAquesta dissertació presenta els resultats de la nostra recerca sobre alguns temes recents en Lògica Algebraica Abstracta (LAA), concretament, l'operador de Suszko, els filtres de Leibniz, i les lògiques truth-equacionals. La interacció entre vàries nocións relacionades amb els operadors de Leibniz i de Suszko ens va portar a considerar un marc general basat en la noció de S-operador, que abasta els operadors de Leibniz, de Suszko, i de Frege, unificant així aquests tres operadors paradigmàtics de la LAA sota un mateix tractament.
Engstrom, Ronald W. Retzer Kenneth A. "The effects of logic on achievement in intermediate algebra." Normal, Ill. : Illinois State University, 1988. http://www.mlb.ilstu.edu/articles/dissertations/8818710.PDF.
Full textTitle from title page screen, viewed Oct. 13, 2004. Dissertation Committee: Kenneth A. Retzer (chair), Lynn H. Brown, John A. Dossey, Lotus D. Hershberger, Albert D. Otto, Walter D. Pierce. Includes bibliographical references (leaves 97-102) and abstract. Also available in print.
Esteban, María. "Duality Theory and Abstract Algebraic Logic." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/125336.
Full textEn esta tesis se presentan los resultados de nuestra investigación acerca de la teoría de la dualidad para lógicas no clásicas desde el punto de vista de la Lógica Algebráica Abstracta (LAA). Un estudio preliminar de las distintas nociones de filtros e ideales lógicos asociados a las álgebras de una lógica cualquiera, y los lemas de separación entre dichas nociones nos lleva a proponer una dualidad abstracta de tipo espectral, y otra de tipo Priestley, para cada lógica congruencial, filtro distributiva, finitaria y con teoremas. Esta propuesta pretende unificar las distintas dualidades de tipo espectral y de tipo Priestley para lógicas no clásicas que encontramos en la literatura, mostrando el esquema abstracto en el que todas ellas encajan e identificando. En segundo lugar es examinada la correspondencia dual de algunas propiedades lógicas, como la propiedad de la conjunción, la propiedad de la disyunción, el teorema de deducción, la propiedad del elemento inconsistente o la propiedad de introducción de la modalidad. Esto sirve, por una parte, para revelar la conexión que existe entre las dualidades abstractas propuestas y las dualidades concretas relacionadas con lógicas no clásicas que habían sido estudiadas previamente, y por otra parte, para obtener nuevas dualidades. Centrándonos en el fragmento implicativo de la lógica intuicionista y en sus expansiones que son filtro distributivas, congruenciales, finitarias y con teoremas, mostramos cómo las dualidades que habían sido estudiadas para algunas de esas lógicas se pueden obtener como casos particulares de la teoría general. Además obtenemos nuevas dualidades para varias de dichas expansiones, algunas de las cuales pueden ser simplificadas dado que las lógicas tienen buenas propiedades. Finalmente, desarrollamos una nueva estrategia que puede ser aplicada de forma modular para simplificar algunas de las dualidades obtenidas. En conclusión, en esta tesis se muestra que la Lógica Algebráica Abstracta provee un marco general teórico apropiado para desarrollar una teoría abstracta de la dualidad para lógicas no clásicas. Dicha teoría uniformiza los diferentes resultados de la literatura, y de ella se deducen nuevos resultados.
Pretnar, Matija. "Logic and handling of algebraic effects." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4611.
Full textTownsend, Brian E. "Examining secondary students algebraic reasoning flexibility and strategy use /." Diss., Columbia, Mo. : University of Missouri-Columbia, 2005. http://hdl.handle.net/10355/4131.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (November 14, 2006) Vita. Includes bibliographical references.
Lu, Weiyun. "Topics in Many-valued and Quantum Algebraic Logic." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35173.
Full textPhillips, Caitlin. "An algebraic approach to dynamic epistemic logic." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86767.
Full textPast approaches to dynamic epistemic logic have typically been focused on actions whose primary purpose is to communicate information from one agent to another. These actions are unable to alter the valuation of any proposition within the system. In fields such as security and economics, it is easy to imagine situations in which this sort of action would be insufficient. Instead, we expand the framework to include both communication actions and actions that change the state of the system. Furthermore, we propose a new modality which captures both epistemic and propositional changes that result from the agents' actions.
En raisonnement sur les systemes multi-agents, il est important de regarder au-dela du domaine de la logique propositionnelle et de raisonner sur les con- naissances des agents au sein du syst`eme, parce que ce qu'ils savent au sujet de l'environnement influe sur la mani`ere dont ils se comportent. Un outil utile pour l'analyse et la formalisation de ce que les agents savent, est la logique epistemique, une logique modale developpee par les philosophes du debut des annees 1960. La logique epistemique est la cle de la comprehension des connaissances dans les systemes multi-agents, mais elle est insuffisante si l'on veut etudier la facon dont la connaissance des agents evolue a travers le temps. Pour ce faire, il est necessaire de recourir a une logique qui allie des modalites dynamiques et epistemiques, appele la logique epistemique dynamique. Certaines formalisations de la logique epistemique dynamique utilisent la semantique de Kripke pour les etats et les actions, tandis que d'autres prennent une approche algebrique, et utilisent les structures ordonne dans leur semantique. Nous discutons plusieurs de ces logiques, mais nous nous concentrons principalement sur le cadre algebrique pour la logique epistemique dynamique.
Les approches adoptees dans le passe a la logique epistemique dynamique ont generalement ete axe sur les actions dont l'objectif principal est de communiquer des informations d'un agent a un autre. Ces actions sont dans l'impossibilite de modifier l' evaluation de toute proposition au sein du systeme. Dans des domaines tels que la securite et l' economie, il est facile d'imaginer des situations dans lesquelles ce type d'action serait insuffisante. Au lieu de cela, nous etendons le cadre algebrique pour inclure a la fois des actions de communication et des actions qui changent l' etat du systeme. En outre, nous proposons une nouvelle modalite qui permet de capturer a la fois les changements epistemiques et les changements propositionels qui resultent de l'action des agents.
Silva, Thiago Nascimento da. "Algebraic semantics for Nelson?s logic S." PROGRAMA DE P?S-GRADUA??O EM SISTEMAS E COMPUTA??O, 2018. https://repositorio.ufrn.br/jspui/handle/123456789/24823.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-03-13T18:55:45Z (GMT) No. of bitstreams: 1 ThiagoNascimentoDaSilva_DISSERT.pdf: 675458 bytes, checksum: 9123812e69a846020d3cd6346e530e1e (MD5)
Made available in DSpace on 2018-03-13T18:55:45Z (GMT). No. of bitstreams: 1 ThiagoNascimentoDaSilva_DISSERT.pdf: 675458 bytes, checksum: 9123812e69a846020d3cd6346e530e1e (MD5) Previous issue date: 2018-01-25
Al?m da mais conhecida l?gica de Nelson (?3) e da l?gica paraconsistente de Nelson (?4), David Nelson introduziu no artigo de 1959 "Negation and separation of concepts in constructive systems", com motiva??es de aritm?tica e construtividade, a l?gica que ele chamou de "?". Naquele trabalho, a l?gica ? definida por meio de um c?lculo (que carece crucialmente da regra de contra??o) tendo infinitos esquemas de regras, e nenhuma sem?ntica ? fornecida. Neste trabalho n?s tomamos o fragmento proposicional de ?, mostrando que ele ? algebriz?vel (de fato, implicativo) no sentido de Blok & Pigozzi com respeito a uma classe de reticulados residuados involutivos. Assim, fornecemos a primeira sem?ntica para ? (que chamamos de ?-?lgebras), bem como um c?lculo estilo Hilbert finito equivalente ? apresenta??o de Nelson. Fornecemos um algoritmo para construir ?-?lgebras a partir de ?-?lgebras ou reticulados implicativos e demonstramos alguns resultados sobre a classe de ?lgebras que introduzimos. N?s tamb?m comparamos ? com outras l?gicas da fam?lia de Nelson, a saber, ?3 e ?4.
Besides the better-known Nelson logic (?3) and paraconsistent Nelson logic (?4), in Negation and separation of concepts in constructive systems (1959) David Nelson introduced a logic that he called ?, with motivations of arithmetic and constructibility. The logic was defined by means of a calculus (crucially lacking the contraction rule) having infinitely many rule schemata, and no semantics was provided for it. We look in the present dissertation at the propositional fragment of ?, showing that it is algebraizable (in fact, implicative) in the sense of Blok and Pigozzi with respect to a class of involutive residuated lattices. We thus provide the first known algebraic semantics for ?(we call them of ?-algebras) as well as a finite Hilbert-style calculus equivalent to Nelson?s presentation. We provide an algorithm to make ?-algebras from ?-algebras or implicative lattices and we prove some results about the class of algebras which we have introduced. We also compare ? with other logics of the Nelson family, that is, ?3 and ?4.
PERUZZI, LUISA. "Algebraic approach to paraconsistent weak Kleene logic." Doctoral thesis, Università degli Studi di Cagliari, 2018. http://hdl.handle.net/11584/255936.
Full textBONZIO, STEFANO. "Algebraic structures from quantum and fuzzy logics." Doctoral thesis, Università degli Studi di Cagliari, 2016. http://hdl.handle.net/11584/266667.
Full textBooks on the topic "Algebraic logic"
Gindikin, S. G. Algebraic Logic. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1877-5.
Full textH, Andréka, Monk J. Donald 1930-, and Németi I, eds. Algebraic logic. Amsterdam: New York, 1991.
Find full textAndréka, Hajnal, Zalán Gyenis, István Németi, and Ildikó Sain. Universal Algebraic Logic. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14887-3.
Full textKirchner, Hélène, and Giorgio Levi, eds. Algebraic and Logic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0013814.
Full textHanus, Michael, Jan Heering, and Karl Meinke, eds. Algebraic and Logic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0026998.
Full textGrabowski, J., P. Lescanne, and W. Wechler, eds. Algebraic and Logic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-50667-5.
Full textKirchner, Hélène, and Wolfgang Wechler, eds. Algebraic and Logic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-53162-9.
Full textLevi, Giorgio, and Mario Rodríguez-Artalejo, eds. Algebraic and Logic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58431-5.
Full textHanus, Michael, and Mario Rodríguez-Artalejo, eds. Algebraic and Logic Programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61735-3.
Full text1947-, Blass Andreas, Zhang, Yi, 1964 Aug. 22-, and Workshop on Combinatorial Set Theory, Excellent Classes, and Schanuel Conjecture (2003 : University of Michigan), eds. Logic and its applications. Providence, R.I: American Mathematical Society, 2005.
Find full textBook chapters on the topic "Algebraic logic"
Kempf, George R. "Logic." In Algebraic Structures, 144–49. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-80278-1_19.
Full textAndréka, H., I. Németi, and I. Sain. "Algebraic Logic." In Handbook of Philosophical Logic, 133–247. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-0452-6_3.
Full textGindikin, S. G. "Predicate Logic." In Algebraic Logic, 316–42. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1877-5_12.
Full textKlement, Erich Peter, Radko Mesiar, and Endre Pap. "Algebraic aspects." In Trends in Logic, 21–51. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-015-9540-7_2.
Full textVingron, Shimon P. "Algebraic Minimisation." In Logic Circuit Design, 79–88. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-40673-7_7.
Full textVingron, Shimon P. "Algebraic Minimisation." In Logic Circuit Design, 75–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27657-6_7.
Full textGindikin, S. G. "Operations on Propositions." In Algebraic Logic, 1–21. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1877-5_1.
Full textGindikin, S. G. "Elements of Probabilistic Logic." In Algebraic Logic, 238–99. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1877-5_10.
Full textGindikin, S. G. "Multi-Valued Logics." In Algebraic Logic, 300–315. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1877-5_11.
Full textGindikin, S. G. "Logical Functions. Normal Forms." In Algebraic Logic, 22–56. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4757-1877-5_2.
Full textConference papers on the topic "Algebraic logic"
Liang, Fei, and Zhe Lin. "On the Decidability of Intuitionistic Tense Logic without Disjunction." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/249.
Full textPAL'CHUNOV, D. E., and G. E. YAKHYAEVA. "INTERVAL FUZZY ALGEBRAIC SYSTEMS." In Proceedings of the 9th Asian Logic Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812772749_0014.
Full textPlotkin, Gordon, and Matija Pretnar. "A Logic for Algebraic Effects." In 2008 23rd Annual IEEE Symposium on Logic in Computer Science (LICS 2008). IEEE, 2008. http://dx.doi.org/10.1109/lics.2008.45.
Full textDOWNEY, ROD. "COMPUTABILITY, DEFINABILITY AND ALGEBRAIC STRUCTURES." In 7th and 8th Asian Logic Conferences. CO-PUBLISHED WITH SINGAPORE UNIVERSITY PRESS, 2003. http://dx.doi.org/10.1142/9789812705815_0004.
Full textGomes, Joel Felipe Ferreira, and Vitor Rodrigues Greati. "Notes on the Logic of Perfect Paradefinite Algebras." In Workshop Brasileiro de Lógica. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/wbl.2021.15777.
Full textMardare, Radu, Prakash Panangaden, and Gordon Plotkin. "Quantitative Algebraic Reasoning." In LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2933575.2934518.
Full textBogaerts, Bart, Joost Vennekens, and Marc Denecker. "Safe Inductions: An Algebraic Study." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/119.
Full textLima Neto, Clodomir Silva, Thiago Nascimento da Silva, and Umberto Rivieccio. "Quasi-N4-lattices and their logic." In Workshop Brasileiro de Lógica. Sociedade Brasileira de Computação, 2022. http://dx.doi.org/10.5753/wbl.2022.222852.
Full textYUUICHI, KAWAGUCHI. "A COMMON STRUCTURE OF LOGICAL AND ALGEBRAIC ALGORITHMS." In 7th and 8th Asian Logic Conferences. CO-PUBLISHED WITH SINGAPORE UNIVERSITY PRESS, 2003. http://dx.doi.org/10.1142/9789812705815_0009.
Full textBeffara, Emmanuel. "An Algebraic Process Calculus." In 2008 23rd Annual IEEE Symposium on Logic in Computer Science (LICS 2008). IEEE, 2008. http://dx.doi.org/10.1109/lics.2008.40.
Full textReports on the topic "Algebraic logic"
IOWA STATE UNIV AMES DEPT OF MATHEMATICS. Applications of Algebraic Logic and Universal Algebra to Computer Science. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada210556.
Full textObua, Steven. Abstraction Logic. Recursive Mind, November 2021. http://dx.doi.org/10.47757/abstraction.logic.2.
Full textObua, Steven. Abstraction Logic. Steven Obua (as Recursive Mind), October 2021. http://dx.doi.org/10.47757/abstraction.logic.1.
Full textBaader, Franz. Concept Descriptions with Set Constraints and Cardinality Constraints. Technische Universität Dresden, 2017. http://dx.doi.org/10.25368/2022.232.
Full textBaader, Franz, Silvio Ghilardi, and Cesare Tinelli. A New Combination Procedure for the Word Problem that Generalizes Fusion Decidability Results in Modal Logics. Technische Universität Dresden, 2003. http://dx.doi.org/10.25368/2022.130.
Full textBarnett, Janet Heine. Origins of Boolean Algebra in the Logic of Classes: George Boole, John Venn and C. S. Peirce. Washington, DC: The MAA Mathematical Sciences Digital Library, July 2013. http://dx.doi.org/10.4169/loci003997.
Full text