Academic literature on the topic 'Algebraic Modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algebraic Modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algebraic Modeling"
Letychevskyi, O. О. "Algebraic modeling and its application." Visnik Nacional'noi' academii' nauk Ukrai'ni, no. 03 (March 25, 2021): 59–66. http://dx.doi.org/10.15407/visn2021.03.059.
Full textPanaras, Argyris G. "Algebraic Turbulence Modeling for Swept." AIAA Journal 35, no. 3 (March 1997): 456–63. http://dx.doi.org/10.2514/2.151.
Full textAndrianov, S. N., N. S. Edamenko, and A. A. Dyatlov. "Algebraic modeling and parallel computing." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 558, no. 1 (March 2006): 150–53. http://dx.doi.org/10.1016/j.nima.2005.11.036.
Full textJusevičius, Vaidas, and Remigijus Paulavičius. "Web-Based Tool for Algebraic Modeling and Mathematical Optimization." Mathematics 9, no. 21 (October 29, 2021): 2751. http://dx.doi.org/10.3390/math9212751.
Full textPatrikalakis, N. M., and P. V. Prakash. "Surface Intersections for Geometric Modeling." Journal of Mechanical Design 112, no. 1 (March 1, 1990): 100–107. http://dx.doi.org/10.1115/1.2912565.
Full textWang, Bo, Yi Li, Wei Yan Xing, and Dong Liu. "Algebraic Modeling for Dynamic Gates in Dynamic Fault Trees." Applied Mechanics and Materials 232 (November 2012): 573–77. http://dx.doi.org/10.4028/www.scientific.net/amm.232.573.
Full textKallrath, Josef. "Polylithic modeling and solution approaches using algebraic modeling systems." Optimization Letters 5, no. 3 (April 8, 2011): 453–66. http://dx.doi.org/10.1007/s11590-011-0320-4.
Full textSantri, Diah Dwi, Yusuf Hartono, and Somakim Somakim. "Mathematical modeling for learning algebraic operation." Journal of Education and Learning (EduLearn) 13, no. 2 (May 1, 2019): 201. http://dx.doi.org/10.11591/edulearn.v13i2.8996.
Full textEnnassiri, Brahim, Marouane Moukhliss, Said Abouhanifa, Elmostapha Elkhouzai, Azizi Elmostafa, and Benkenza Najia. "Analysis of the Institutional Relationship of the Modeling Activity in a Moroccan High School Textbook." Academic Journal of Interdisciplinary Studies 12, no. 1 (January 5, 2023): 248. http://dx.doi.org/10.36941/ajis-2023-0020.
Full textYusrina, Siti Laiyinun, and Masriyah Masriyah. "Profil Berpikir Aljabar Siswa SMP dalam Memecahkan Masalah Matematika Kontekstual Ditinjau dari Kemampuan Matematika." MATHEdunesa 8, no. 3 (August 12, 2019): 477–84. http://dx.doi.org/10.26740/mathedunesa.v8n3.p477-484.
Full textDissertations / Theses on the topic "Algebraic Modeling"
Wintz, Julien. "Algebraic methods for geometric modeling." Nice, 2008. http://www.theses.fr/2008NICE4005.
Full textLes domaines de géométrie algébrique et de géométrie algorithmique, bien qu'étroitement liés, sont traditionnellement représentés par des communautés de recherche disjointes. Chacune d'entre elles utilisent des courbes et surfaces, mais représentent les objets de différentes manières. Alors que la géométrie algébrique définit les objets par le biais d'équations polynomiales, la géométrie algorithmique a pour habitude de manipuler des modèles linéaires. La tendance actuelle est d'appliquer les algorithmes traditionnels de géométrie algorithmique sur des modèles non linéaires tels que ceux trouvés en géométrie algébrique. De tels algorithmes jouent un rôle important dans de nombreux champs d'application tels que la Conception Assistée par Ordinateur. Leur utilisation soulève d'importantes questions en matière de développement logiciel. Tout d'abord, la manipulation de leur représentation implique l'utilisation de calculs symboliques numériques qui représentent toujours un domaine de recherche majeur. Deuxièmement, leur visualisation et leur manipulation n'est pas évidente, en raison de leur caractère abstrait. La première partie de cette thèse porte sur l'utilisation de méthodes algébriques en modélisation géométrique, l'accent étant mis sur la topologie, l'intersection et l'auto-intersection dans le cadre du calcul d'arrangement d'ensembles semi-algébriques comme les courbes et surfaces à représentation implicite ou paramétrique. Une attention particulière est portée à la généricité des algorithmes qui peuvent être spécifiés quel que soit le contexte, puis spécialisés pour répondre aux exigences d'une certaine représentation. La seconde partie de cette thèse présente le prototypage d'un environnement de modélisation géométrique dont le but est de fournir un moyen générique et efficace pour modéliser des solides à partir d'objets géométriques à représentation algébrique tels que les courbes et surfaces implicites ou paramétriques, à la fois d'un point de vue utilisateur et d'un point de vue de développeur, par l'utilisation de librairies de calcul symbolique numérique pour la manipulation des polynômes définissant les objets géométriques
Murrugarra, Tomairo David M. "Algebraic Methods for Modeling Gene Regulatory Networks." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/28388.
Full textPh. D.
Bose, Jyoti Sankar. "Modeling turbulence anisotropy using algebraic Reynolds stress models." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq22277.pdf.
Full textYODER, DENNIS ALLEN. "ALGEBRAIC REYNOLDS STRESS MODELING OF PLANAR MIXING LAYER FLOWS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1115637717.
Full textBorchert, Katja. "Disassociation between arithmetic and algebraic knowledge in mathematical modeling /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/9141.
Full textLorenzetti, David Michael. "Numerical solution of nonlinear algebraic systems in building energy modeling." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10752.
Full textIncludes bibliographical references (p. 249-251).
When solving a system of nonlinear equations by Newton-Raphson's method, a common means of avoiding divergence requires each step to reduce some vector norm of the residual errors, usually the convenient and tractable sum of squares. Unfortunately, the descent requirement subjects the solver to difficulties typically associated with function minimization-- stagnation, and convergence to local minima. The descent requirement also can disrupt a successful Newton-Raphson sequence. To explore these problems, the thesis reformulates the theory of function minimization in terms of the familiar Jacobian matrix, which linearizes the equations, and a vector which relates first-order changes in the norm to first-order changes in the residuals. The resulting expressions give the norm's gradient, and approximate its Hessian, as functions of the key variables defining the underlying equations. Therefore when Newton- raphson diverges, the solver can choose a reasonable alternate search strategy directly from the Jacobian model, and subsequently construct an appropriate norm for evaluating the search. Applying these results, the thesis modifies a standard equation-solving algorithm, the double dogleg method. Replacing the published algorithm's r-square norm with a general family of weighted r-square norms, it develops and tests a variety of rules for choosing the particular weighting factors. Selecting new weights at each iteration avoids local minima; in tests on a standard suite of nonlinear systems, the resulting algorithms prove more robust to stagnation, and often converge faster, than the double dogleg. In separate investigations, the thesis specializes to equation-solving a double dogleg variation which minimizes the norm model in the plane of its steepest descent and Newton-Raphson directions, and develops a scalar measure of divergence which, unlike a residual norm, does not depend on results from function minimization.
by David Michael Lorenzetti.
Ph.D.
Kwong, Gordon Houng. "Approximations for Nonlinear Differential Algebraic Equations to Increase Real-time Simulation Efficiency." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/42753.
Full textMaster of Science
Gordon, Brandon W. (Brandon William). "State space modeling of differential-algebraic systems using singularly perturbed sliding manifolds." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9340.
Full textIncludes bibliographical references (p. 126-128).
This thesis introduces a new approach for modeling and control of algebraically constrained dynamic systems. The formulation of dynamic systems in terms of differential equations ·and algebraic constraints provides a systematic framework that is well suited for object oriented modeling of thermo-fluid systems. In this approach, differential equations are used to describe the evolution of subsystem states and algebraic equations are used to define the interconnections between the subsystems (boundary conditions). Algebraic constraints also commonly occur as a result of modeling simplifications such as steady state approximation of fast dynamics and rigid body assumptions that result in kinematic constraints. Important examples of algebraically constrained dynamic systems include multi-body problems, chemical processes, and two phase thermo-fluid systems. Differential-algebraic equation (DAE) systems often referred to as descriptor, implicit, or singular systems present a number of difficult problems in simulation and control. One of the key difficulties is that DAEs are not expressed in an explicit state space form required by many simulation and control design methods. This is particularly true in control of nonlinear DAE systems for which there are few known results. Existing control methods for nonlinear DAEs have so far relied on deriving state space models for limited classes of problems. A new approach for state space modeling of DAEs is developed by formulating an equivalent nonlinear control problem. The zero dynamics of the control system represent the dynamics of the original DAE. This new connection between DAE model representation and nonlinear control is used to obtain state space representations for a general class of differential-algebraic systems. By relating nonlinear control concepts to DAE structural properties a sliding manifold is constructed that asymptotically satisfies the constraint equations. Sliding control techniques are combined with elements of singular perturbation theory to develop an efficient state space model with properties necessary for controller synthesis. This leads to the singularly perturbed sliding manifold (SPSM) approach for state space realization. The new approach is demonstrated by formulating a state space model of vapor compression cycles. This allows verification of the method and provides more insight into the problems associated with modeling differential algebraic systems.
by Brandon W. Gordon.
Ph.D.
Song, Xuefeng. "Dynamic modeling issues for power system applications." Texas A&M University, 2003. http://hdl.handle.net/1969.1/1591.
Full textGabrielson, Donald D. "Battle group stationing algebraic modeling system : an anti-air warfare tactical decision aid methodology /." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA296246.
Full textBooks on the topic "Algebraic Modeling"
Kallrath, Josef, ed. Algebraic Modeling Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23592-4.
Full textElkadi, Mohamed, Bernard Mourrain, and Ragni Piene, eds. Algebraic Geometry and Geometric Modeling. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-33275-6.
Full textJüttler, Bert, and Ragni Piene, eds. Geometric Modeling and Algebraic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-72185-7.
Full textB, Jüttler, Piene Ragni, Dokken Tor, and European Science Foundation Workshop, eds. Geometric modeling and algebraic geometry. Berlin: Springer, 2008.
Find full textRockswold, Gary K. College algebra with modeling and visualization. 3rd ed. Boston: Pearson Addison Wesley, 2006.
Find full textRockswold, Gary K. College algebra with modeling and visualization. 4th ed. Boston: Pearson Addison-Wesley, 2010.
Find full textMartínez-Moro, Edgar. Algebraic geometry modeling in information theory. New Jersey: World Scientific, 2013.
Find full textservice), SpringerLink (Online, ed. Algebraic Modeling Systems: Modeling and Solving Real World Optimization Problems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textBook chapters on the topic "Algebraic Modeling"
Furia, Carlo A., Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. "Algebraic Formalisms." In Modeling Time in Computing, 325–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32332-4_10.
Full textde Launey, Warwick, and Dane Flannery. "Modeling Λ-equivalence." In Algebraic Design Theory, 63–69. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/surv/175/05.
Full textKallrath, Josef. "Algebraic Modeling Languages: Introduction and Overview." In Algebraic Modeling Systems, 3–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_1.
Full textHecker, Axel, and Arnd vom Hofe. "VisPlain®: Insight by Visualization." In Algebraic Modeling Systems, 185–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_10.
Full textBritz, Wolfgang, and Josef Kallrath. "Economic Simulation Models in Agricultural Economics: The Current and Possible Future Role of Algebraic Modeling Languages." In Algebraic Modeling Systems, 199–212. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_11.
Full textKallrath, Josef. "A Practioner’s Wish List Towards Algebraic Modeling Systems." In Algebraic Modeling Systems, 213–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_12.
Full textSchodl, Peter, Arnold Neumaier, Kevin Kofler, Ferenc Domes, and Hermann Schichl. "Towards a Self-Reflective, Context-Aware Semantic Representation of Mathematical Specifications." In Algebraic Modeling Systems, 11–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_2.
Full textBussieck, Michael R., Michael C. Ferris, and Timo Lohmann. "GUSS: Solving Collections of Data Related Models Within GAMS." In Algebraic Modeling Systems, 35–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_3.
Full textRuiz, Juan P., Jan-H. Jagla, Ignacio E. Grossmann, Alex Meeraus, and Aldo Vecchietti. "Generalized Disjunctive Programming: Solution Strategies." In Algebraic Modeling Systems, 57–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_4.
Full textHeipcke, Susanne. "Xpress–Mosel." In Algebraic Modeling Systems, 77–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23592-4_5.
Full textConference papers on the topic "Algebraic Modeling"
Letychevskyi, Oleksandr, Volodymyr Peschanenko, Yuliia Tarasich, and Vladislav Volkov. "Algebraic Approach in Molecular Modeling." In 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). IEEE, 2022. http://dx.doi.org/10.1109/iceccme55909.2022.9988227.
Full textBest, Christoph. "Algebraic multigrid operators for disordered systems and lattice gauge theory." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386842.
Full textHuchette, Joey, Miles Lubin, and Cosmin Petra. "Parallel Algebraic Modeling for Stochastic Optimization." In 2014 First Workshop for High Performance Technical Computing in Dynamic Languages (HPTCDL). IEEE, 2014. http://dx.doi.org/10.1109/hptcdl.2014.6.
Full textBlechschmidt, James L., and D. Nagasuru. "The Use of Algebraic Functions As a Solid Modeling Alternative: An Investigation." In ASME 1990 Design Technical Conferences. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/detc1990-0005.
Full textZeng, Zhonggang. "Geometric modeling and regularization of algebraic problems." In ISSAC '20: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3373207.3404066.
Full textMeftah, Imen Tayari, Nhan Le Thanh, and Chokri Ben Amar. "Towards an Algebraic Modeling of Emotional States." In 2010 Fifth International Conference on Internet and Web Applications and Services. IEEE, 2010. http://dx.doi.org/10.1109/iciw.2010.82.
Full textRoy, Sourajeet, and Anestis Dounavis. "RLC interconnect modeling using delay algebraic equations." In 2009 IEEE Dallas Circuits and Systems Workshop (DCAS). IEEE, 2009. http://dx.doi.org/10.1109/dcas.2009.5505769.
Full textFrolov, A. B., and A. M. Vinnikov. "Modeling Cryptographic Protocols Using the Algebraic Processor." In 2018 IV International Conference on Information Technologies in Engineering Education (Inforino). IEEE, 2018. http://dx.doi.org/10.1109/inforino.2018.8581781.
Full textKhrennikov, A. Yu. "On the algebraic aspect of singular solutions to conservation laws systems." In MATHEMATICAL MODELING OF WAVE PHENOMENA: 2nd Conference on Mathematical Modeling of Wave Phenomena. AIP, 2006. http://dx.doi.org/10.1063/1.2205804.
Full textMAVRIPLIS, DIMITRI. "Algebraic turbulence modeling for unstructured and adaptive meshes." In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1653.
Full textReports on the topic "Algebraic Modeling"
Thompson, David C., Joseph Maurice Rojas, and Philippe Pierre Pebay. Computational algebraic geometry for statistical modeling FY09Q2 progress. Office of Scientific and Technical Information (OSTI), March 2009. http://dx.doi.org/10.2172/984161.
Full textLee, Martin J. A proposed Global Optimum Algebraic Iterative Solver for Modeling of Lattice Element Errors. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1104724.
Full textNewcomb, Harry. Modeling Bus Bunching with Petri Nets and Max-Plus Algebra. Portland State University Library, January 2014. http://dx.doi.org/10.15760/honors.66.
Full textBayak, Igor V. Applications of the Local Algebras of Vector Fields to the Modelling of Physical Phenomena. Jgsp, 2015. http://dx.doi.org/10.7546/jgsp-38-2015-1-23.
Full text