Dissertations / Theses on the topic 'Algebras, Linear Algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Algebras, Linear Algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gunnels, John Andrew. "A systematic approach to the design and analysis of linear algebra algorithms." Access restricted to users with UT Austin EID Full text (PDF) from UMI/Dissertation Abstracts International, 2001. http://wwwlib.umi.com/cr/utexas/fullcit?p3037015.
Full textPorter, Annabelle Louise. "The evolution of equation-solving: Linear, quadratic, and cubic." CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3069.
Full textWu, Wenhao. "High-performance matrix multiplication hierarchical data structures, optimized kernel routines, and qualitative performance modeling /." Master's thesis, Mississippi State : Mississippi State University, 2003. http://library.msstate.edu/etd/show.asp?etd=etd-07092003-003633.
Full textRocha, Eugénio Alexandre Miguel. "Uma Abordagem Algébrica à Teoria de Controlo Não Linear." Doctoral thesis, Universidade de Aveiro, 2003. http://hdl.handle.net/10773/21444.
Full textNesta tese de Doutoramento desenvolve-se principalmente uma abordagem algébrica à teoria de sistemas de controlo não lineares. No entanto, outros tópicos são também estudados. Os tópicos tratados são os seguidamente enunciados: fórmulas para sistemas de controlo sobre álgebras de Lie livres, estabilidade de um sistema de corpos rolantes, algoritmos para aritmética digital, e equações integrais de Fredholm não lineares. No primeiro e principal tópico estudam-se representações para as soluções de sistemas de controlo lineares no controlo. As suas trajetórias são representadas pelas chamadas séries de Chen. Estuda-se a representação formal destas séries através da introdução de várias álgebras não associativas e técnicas específicas de álgebras de Lie livres. Sistemas de coordenadas para estes sistemas são estudados, nomeadamente, coordenadas de primeiro tipo e de segundo tipo. Apresenta-se uma demonstração alternativa para as coordenadas de segundo tipo e obtêm-se expressões explícitas para as coordenadas de primeiro tipo. Estas últimas estão intimamente ligadas ao logaritmo da série de Chen que, por sua vez, tem fortes relações com uma fórmula designada na literatura por “continuous Baker-Campbell- Hausdorff formula”. São ainda apresentadas aplicações à teoria de funções simétricas não comutativas. É, por fim, caracterizado o mapa de monodromia de um campo de vectores não linear e periódico no tempo em relação a uma truncatura do logaritmo de Chen. No segundo tópico é estudada a estabilizabilidade de um sistema de quaisquer dois corpos que rolem um sobre o outro sem deslizar ou torcer. Constroem-se controlos fechados e dependentes do tempo que tornam a origem do sistema de dois corpos num sistema localmente assimptoticamente estável. Vários exemplos e algumas implementações em Maple°c são discutidos. No terceiro tópico, em apêndice, constroem-se algoritmos para calcular o valor de várias funções fundamentais na aritmética digital, sendo possível a sua implementação em microprocessadores. São também obtidos os seus domínios de convergência. No último tópico, também em apêndice, demonstra-se a existência e unicidade de solução para uma classe de equações integrais não lineares com atraso. O atraso tem um carácter funcional, mostrando-se ainda a diferenciabilidade no sentido de Fréchet da solução em relação à função de atraso.
In this PhD thesis several subjects are studied regarding the following topics: formulas for nonlinear control systems on free Lie algebras, stabilizability of nonlinear control systems, digital arithmetic algorithms, and nonlinear Fredholm integral equations with delay. The first and principal topic is mainly related with a problem known as the continuous Baker-Campbell-Hausdorff exponents. We propose a calculus to deal with formal nonautonomous ordinary differential equations evolving on the algebra of formal series defined on an alphabet. We introduce and connect several (non)associative algebras as Lie, shuffle, zinbiel, pre-zinbiel, chronological (pre-Lie), pre-chronological, dendriform, D-I, and I-D. Most of those notions were also introduced into the universal enveloping algebra of a free Lie algebra. We study Chen series and iterated integrals by relating them with nonlinear control systems linear in control. At the heart of all the theory of Chen series resides a zinbiel and shuffle homomorphism that allows us to construct a purely formal representation of Chen series on algebras of words. It is also given a pre-zinbiel representation of the chronological exponential, introduced by A.Agrachev and R.Gamkrelidze on the context of a tool to deal with nonlinear nonautonomous ordinary differential equations over a manifold, the so-called chronological calculus. An extensive description of that calculus is made, collecting some fragmented results on several publications. It is a fundamental tool of study along the thesis. We also present an alternative demonstration of the result of H.Sussmann about coordinates of second kind using the mentioned tools. This simple and comprehensive proof shows that coordinates of second kind are exactly the image of elements of the dual basis of a Hall basis, under the above discussed homomorphism. We obtain explicit expressions for the logarithm of Chen series and the respective coordinates of first kind, by defining several operations on a forest of leaf-labelled trees. It is the same as saying that we have an explicit formula for the functional coefficients of the Lie brackets on a continuous Baker-Campbell-Hausdorff-Dynkin formula when a Hall basis is used. We apply those formulas to relate some noncommutative symmetric functions, and we also connect the monodromy map of a time-periodic nonlinear vector field with a truncation of the Chen logarithm. On the second topic, we study any system of two bodies rolling one over the other without twisting or slipping. By using the Chen logarithm expressions, the monodromy map of a flow and Lyapunov functions, we construct time-variant controls that turn the origin of a control system linear in control into a locally asymptotically stable equilibrium point. Stabilizers for control systems whose vector fields generate a nilpotent Lie algebra with degree of nilpotency · 3 are also given. Some examples are presented and Maple°c were implemented. The third topic, on appendix, concerns the construction of efficient algorithms for Digital Arithmetic, potentially for the implementation in microprocessors. The algorithms are intended for the computation of several functions as the division, square root, sines, cosines, exponential, logarithm, etc. By using redundant number representations and methods of Lyapunov stability for discrete dynamical systems, we obtain several algorithms (that can be glued together into an algorithm for parallel execution) having the same core and selection scheme in each iteration. We also prove their domains of convergence and discuss possible extensions. The last topic, also on appendix, studies the set of solutions of a class of nonlinear Fredholm integral equations with general delay. The delay is of functional character modelled by a continuous lag function. We ensure existence and uniqueness of a continuous (positive) solution of such equation. Moreover, under additional conditions, it is obtained the Fr´echet differentiability of the solution with respect to the lag function.
Yelkenci, Serhat. "Algorithmic Music Composition Using Linear Algebra." Thesis, Southern Illinois University at Edwardsville, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10275073.
Full textSound, in its all forms, is a source of energy whose capabilities humankind is not yet fully aware of. Composition - the way of aggregating sounds into the form of music - still holds to be an unperceived methodology with lots of unknowns. Methodologies used by composers are generally seem as being innate talent, something that cannot be used or shared by others. Yet, as any other form of art, music actually is and can be interpreted with mathematics and geometry. The focus of this thesis is to propose a generative algorithm to compose structured music pieces using linear algebra as the mathematical language for the representation of music. By implementing the linear algebra as the scientific framework, a practical data structure is obtained for analysis and manipulation. Instead of defining a single structure from a certain musical canon, which is a type of limiting the frame of music, the generative algorithm proposed in this paper is capable of learning all kinds of musical structures by linear algebra operations. The algorithm is designed to build musical knowledge (influence) by analyzing music pieces and receive a new melody as the inspirational component to produce new unique and meaningful music pieces. Characteristic analysis features obtained from analyzing music pieces, serves as constraints during the composition process. The proposed algorithm has been successful in generating unique and meaningful music pieces. The process time of the algorithm varies due to complexity of the influential aspect. Yet, the free nature of the generative algorithm and the capability of matrical representation offer a practical linkage between unique and meaningful music creation and any other concept containing a mathematical foundation.
Delaplace, Claire. "Algorithmes d'algèbre linéaire pour la cryptographie." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S045/document.
Full textIn this thesis, we discuss algorithmic aspects of three different problems, related to cryptography. The first part is devoted to sparse linear algebra. We present a new Gaussian elimination algorithm for sparse matrices whose coefficients are exact, along with a new pivots selection heuristic, which make the whole procedure particularly efficient in some cases. The second part treats with a variant of the Birthday Problem with three lists. This problem, which we call 3XOR problem, intuitively consists in finding three uniformly random bit-strings of fixed length, such that their XOR is the zero string. We discuss practical considerations arising from this problem, and propose a new algorithm which is faster in theory as well as in practice than previous ones. The third part is related to the learning with errors (LWE) problem. This problem is known for being one of the main hard problems on which lattice-based cryptography relies. We first introduce a pseudorandom generator, based on the de-randomised learning with rounding variant of LWE, whose running time is competitive with AES. Second, we present a variant of LWE over the ring of integers. We show that in this case the problem is easier to solve, and we propose an interesting application, revisiting a side-channel attack against the BLISS signature scheme
Weihrauch, Christian. "Analysis of Monte Carlo algorithms for linear algebra problems." Thesis, University of Reading, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.515747.
Full textIakymchuk, Roman [Verfasser]. "Performance modeling and prediction for linear algebra algorithms / Roman Iakymchuk." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2012. http://d-nb.info/1026308690/34.
Full textSato, Hiroyuki. "Riemannian Optimization Algorithms and Their Applications to Numerical Linear Algebra." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/180615.
Full textMaust, Reid S. "Optimal power flow using a genetic algorithm and linear algebra." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1163.
Full textTitle from document title page. Document formatted into pages; contains vi, 91 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 41-42).
Kannan, Ramaseshan. "Numerical linear algebra problems in structural analysis." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/numerical-linear-algebra-problems-in-structural-analysis(7df0f708-fc12-4807-a1f5-215960d9c4d4).html.
Full textKaya, Dogan. "Parallel algorithms for numerical linear algebra on a shared memory multiprocessor." Thesis, University of Newcastle Upon Tyne, 1995. http://hdl.handle.net/10443/2008.
Full textLamas, Daviña Alejandro. "Dense and sparse parallel linear algebra algorithms on graphics processing units." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/112425.
Full textOne line of development followed in the field of supercomputing is the use of specific purpose processors to speed up certain types of computations. In this thesis we study the use of graphics processing units as computer accelerators and apply it to the field of linear algebra. In particular, we work with the SLEPc library to solve large scale eigenvalue problems, and to apply matrix functions in scientific applications. SLEPc is a parallel library based on the MPI standard and is developed with the premise of being scalable, i.e. to allow solving larger problems by increasing the processing units. We address the linear eigenvalue problem, Ax = lambda x in its standard form, using iterative techniques, in particular with Krylov's methods, with which we calculate a small portion of the eigenvalue spectrum. This type of algorithms is based on generating a subspace of reduced size (m) in which to project the large dimension problem (n), being m << n. Once the problem has been projected, it is solved by direct methods, which provide us with approximations of the eigenvalues of the initial problem we wanted to solve. The operations used in the expansion of the subspace vary depending on whether the desired eigenvalues are from the exterior or from the interior of the spectrum. In the case of searching for exterior eigenvalues, the expansion is done by matrix-vector multiplications. We do this on the GPU, either by using libraries or by creating functions that take advantage of the structure of the matrix. In the case of eigenvalues from the interior of the spectrum, the expansion requires solving linear systems of equations. In this thesis we implemented several algorithms to solve linear systems of equations for the specific case of matrices with a block-tridiagonal structure, that are run on GPU. In the computation of matrix functions we have to distinguish between the direct application of a matrix function, f(A), and the action of a matrix function on a vector, f(A)b. The first case involves a dense computation that limits the size of the problem. The second allows us to work with large sparse matrices, and to solve it we also make use of Krylov's methods. The expansion of subspace is done by matrix-vector multiplication, and we use GPUs in the same way as when solving eigenvalues. In this case the projected problem starts being of size m, but it is increased by m on each restart of the method. The solution of the projected problem is done by directly applying a matrix function. We have implemented several algorithms to compute the square root and the exponential matrix functions, in which the use of GPUs allows us to speed up the computation.
Una línia de desenvolupament seguida en el camp de la supercomputació és l'ús de processadors de propòsit específic per a accelerar determinats tipus de càlcul. En aquesta tesi estudiem l'ús de targetes gràfiques com a acceleradors de la computació i ho apliquem a l'àmbit de l'àlgebra lineal. En particular treballem amb la biblioteca SLEPc per a resoldre problemes de càlcul d'autovalors en matrius de gran dimensió, i per a aplicar funcions de matrius en els càlculs d'aplicacions científiques. SLEPc és una biblioteca paral·lela que es basa en l'estàndard MPI i està desenvolupada amb la premissa de ser escalable, açò és, de permetre resoldre problemes més grans en augmentar les unitats de processament. El problema lineal d'autovalors, Ax = lambda x en la seua forma estàndard, ho abordem amb l'ús de tècniques iteratives, en concret amb mètodes de Krylov, amb els quals calculem una xicoteta porció de l'espectre d'autovalors. Aquest tipus d'algorismes es basa a generar un subespai de grandària reduïda (m) en el qual projectar el problema de gran dimensió (n), sent m << n. Una vegada s'ha projectat el problema, es resol aquest mitjançant mètodes directes, que ens proporcionen aproximacions als autovalors del problema inicial que volíem resoldre. Les operacions que s'utilitzen en l'expansió del subespai varien en funció de si els autovalors desitjats estan en l'exterior o a l'interior de l'espectre. En cas de cercar autovalors en l'exterior de l'espectre, l'expansió es fa mitjançant multiplicacions matriu-vector. Aquesta operació la realitzem en la GPU, bé mitjançant l'ús de biblioteques o mitjançant la creació de funcions que aprofiten l'estructura de la matriu. En cas d'autovalors a l'interior de l'espectre, l'expansió requereix resoldre sistemes d'equacions lineals. En aquesta tesi implementem diversos algorismes per a la resolució de sistemes d'equacions lineals per al cas específic de matrius amb estructura tridiagonal a blocs, que s'executen en GPU. En el càlcul de les funcions de matrius hem de diferenciar entre l'aplicació directa d'una funció sobre una matriu, f(A), i l'aplicació de l'acció d'una funció de matriu sobre un vector, f(A)b. El primer cas implica un càlcul dens que limita la grandària del problema. El segon permet treballar amb matrius disperses grans, i per a resoldre-ho també fem ús de mètodes de Krylov. L'expansió del subespai es fa mitjançant multiplicacions matriu-vector, i fem ús de GPUs de la mateixa forma que en resoldre autovalors. En aquest cas el problema projectat comença sent de grandària m, però s'incrementa en m en cada reinici del mètode. La resolució del problema projectat es fa aplicant una funció de matriu de forma directa. Nosaltres hem implementat diversos algorismes per a calcular les funcions de matrius arrel quadrada i exponencial, en les quals l'ús de GPUs permet accelerar el càlcul.
Lamas Daviña, A. (2018). Dense and sparse parallel linear algebra algorithms on graphics processing units [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/112425
TESIS
Feng, Wei Pate Thomas H. "The QR algorithm for eigenvalue estimation theory and experiments /." Auburn, Ala, 2008. http://hdl.handle.net/10415/1488.
Full textNguyen, Hong Diep. "Efficient algorithms for verified scientific computing : Numerical linear algebra using interval arithmetic." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00680352.
Full textMusco, Cameron N. (Cameron Nicholas). "The power of randomized algorithms : from numerical linear algebra to biological systems." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120424.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 323-347).
In this thesis we study simple, randomized algorithms from a dual perspective. The first part of the work considers how randomized methods can be used to accelerate the solution of core problems in numerical linear algebra. In particular, we give a randomized low-rank approximation algorithm for positive semidefinite matrices that runs in sublinear time, significantly improving upon what is possible with traditional deterministic methods. We also discuss lower bounds on low-rank approximation and spectral summarization problems that attempt to explain the importance of randomization and approximation in accelerating linear algebraic computation. The second part of the work considers how the theory of randomized algorithms can be used more generally as a tool to understand how complexity emerges from low-level stochastic behavior in biological systems. We study population density- estimation in ant colonies, which is a key primitive in social decision-making and task allocation. We define a basic computational model and show how agents in this model can estimate their density using a simple random-walk-based algorithm. We also consider simple randomized algorithms for computational primitives in spiking neural networks, focusing on fast winner-take-all networks.
by Cameron Nicholas Musco.
Ph. D.
Fabregat, Traver Diego [Verfasser]. "Knowledge-based automatic generation of linear algebra algorithms and code / Diego Fabregat Traver." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1052303080/34.
Full textGomes, Neto Francisco de Assis Magalhães 1964. "Minimização de funções quadraticas com algeba linear adaptativa e aplicações." [s.n.], 1995. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307441.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Científica
Made available in DSpace on 2018-07-20T05:24:48Z (GMT). No. of bitstreams: 1 GomesNeto_FranciscodeAssisMagalhaes_D.pdf: 2662734 bytes, checksum: bab718dc42406f664ee7a530da9a333c (MD5) Previous issue date: 1995
Resumo: Não informado.
Abstract: Not informed.
Doutorado
Doutor em Matemática Aplicada
Zounon, Mawussi. "On numerical resilience in linear algebra." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0038/document.
Full textAs the computational power of high performance computing (HPC) systems continues to increase by using huge number of cores or specialized processing units, HPC applications are increasingly prone to faults. This study covers a new class of numerical fault tolerance algorithms at application level that does not require extra resources, i.e., computational unit or computing time, when no fault occurs. Assuming that a separate mechanism ensures fault detection, we propose numerical algorithms to extract relevant information from available data after a fault. After data extraction, well chosen part of missing data is regenerated through interpolation strategies to constitute meaningful inputs to numerically restart the algorithm. We have designed these methods called Interpolation-restart techniques for numerical linear algebra problems such as the solution of linear systems or eigen-problems that are the inner most numerical kernels in many scientific and engineering applications and also often ones of the most time consuming parts. In the framework of Krylov subspace linear solvers the lost entries of the iterate are interpolated using the available entries on the still alive nodes to define a new initial guess before restarting the Krylov method. In particular, we consider two interpolation policies that preserve key numerical properties of well-known linear solvers, namely the monotony decrease of the A-norm of the error of the conjugate gradient or the residual norm decrease of GMRES. We assess the impact of the fault rate and the amount of lost data on the robustness of the resulting linear solvers.For eigensolvers, we revisited state-of-the-art methods for solving large sparse eigenvalue problems namely the Arnoldi methods, subspace iteration methods and the Jacobi-Davidson method, in the light of Interpolation-restart strategies. For each considered eigensolver, we adapted the Interpolation-restart strategies to regenerate as much spectral information as possible. Through intensive experiments, we illustrate the qualitative numerical behavior of the resulting schemes when the number of faults and the amount of lost data are varied; and we demonstrate that they exhibit a numerical robustness close to that of fault-free calculations. In order to assess the efficiency of our numerical strategies, we have consideredan actual fully-featured parallel sparse hybrid (direct/iterative) linear solver, MaPHyS, and we proposed numerical remedies to design a resilient version of the solver. The solver being hybrid, we focus in this study on the iterative solution step, which is often the dominant step in practice. The numerical remedies we propose are twofold. Whenever possible, we exploit the natural data redundancy between processes from the solver toperform an exact recovery through clever copies over processes. Otherwise, data that has been lost and is not available anymore on any process is recovered through Interpolationrestart strategies. These numerical remedies have been implemented in the MaPHyS parallel solver so that we can assess their efficiency on a large number of processing units (up to 12; 288 CPU cores) for solving large-scale real-life problems
Brenčys, Liutauras. "Puasono lygties sprendimas naudojantis šaltinio apibendrintomis hiperbolinės funkcijomis." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20110804_100133-71588.
Full textIt consists of Poisson equation solution in the "ball" potential algorithm. In this method the Poisson equation, the decision problem are reduced to linear algebraic equations system solution. Created and tested a mathematical package MATHCAD program for that decision. Compared to solutions with those obtained analytically, estimated to obtain accurate solutions. This solution can be used to calculate the real physical potentials, given the real potential of the real workloads.
Barbieri, Caroline Domingues Porto do Nascimento [UNESP]. "Aperfeiçoamento do método clause-column table para a geração eficiente de implicantes primos." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/126338.
Full textA geração eficiente de implicantes primos é um fator importante na fase de cobertura dos mintermos em métodos de minimização de funções booleanas. Este trabalho apresenta uma versão aprimorada do método denominado de Clause-Column Table, utilizado na geração de implicantes primos. Neste novo algoritmo adicionou-se o teorema da adjacência e um novo critério de parada. Estas modificações evitaram a geração de termos nulos e iterações desnecessárias que ocorriam no algoritmo original. O algoritmo original e o aprimorado foram implementados em linguagem C e comparados. O método Clause-Column Table Aprimorado também foi comparado com o método Quine-McCluskey e Expander. Os resultados comprovaram que a versão aprimorada gera menos iterações que a versão original, e que na maioria das funções analisadas evitou-se a geração de termos nulos. Ao comparar com o método de Quine-McCluskey e o Expander comprovou-se que o método Clause-Column Table Aprimorado é superior na geração dos implicantes primos, pois em alguns casos elimina aqueles que não são necessários para a cobertura da função. De posse dos implicantes primos o problema de cobertura dos mintermos foi formulado como um problema de programação linear inteira 0 e 1, em que a solução se abre a todos os avanços ocorridos na área de programação linear visando a obtenção de uma solução mínima
Efficient generation of prime implicants is an important factor in the coverage phase of minterms in minimization's methods of Boolean functions. This research presents an improved version of the method called Clause-Column Table, used to generate prime implicants. In this new algorithm was added to the adjacency theorem and a new stopping criterion. These modifications prevented the generation of null terms and unnecessary iterations that occurred in the original algorithm. The original and improved algorithms were implemented in C language and compared. The Clause-Column Table Improved method was compared with the Expander and Quine-McCluskey method. The results proved that the improved version generates fewer iterations than the original version, and that in most functions analyzed it was avoided the generation of null terms. Comparing Quine-McCluskey method and the Expander it was proved that the Clause-Column Table Enhanced method is superior in the generation of prime implicants, since in some cases eliminates those who are not required to cover the function. In ownership of the prime implicants the cover problem of minterms was formulated as an integer linear programming problem of 0 and 1, where the solution is open to all advances in the area of linear programming in order to obtain a minimal solution
Kochinke, Sebastian. "Special Linear Systems on Curves and Algorithmic Applications." Doctoral thesis, Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-219598.
Full textTurnes, Christopher Kowalczyk. "Efficient solutions to Toeplitz-structured linear systems for signal processing." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51878.
Full textPeh, Lawrence T. W. "An efficient algorithm for extracting Boolean functions from linear threshold gates, and a synthetic decompositional approach to extracting Boolean functions from feedforward neural networks with arbitrary transfer functions." University of Western Australia. Dept. of Computer Science, 2000. http://theses.library.uwa.edu.au/adt-WU2003.0013.
Full textFasi, Massimiliano. "Weighted geometric mean of large-scale matrices: numerical analysis and algorithms." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8274/.
Full textSrđan, Milićević. "Algorithms for computing the optimal Geršgorin-type localizations." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2020. https://www.cris.uns.ac.rs/record.jsf?recordId=114425&source=NDLTD&language=en.
Full textПостоје бројни начини за локализацију карактеристичних корена. Један од најчувенијих резултата је да се спектар дате матрице АCn,n налази у скупу који представља унију кругова са центрима у дијагоналним елементима матрице и полупречницима који су једнаки суми модула вандијагоналних елемената одговарајуће врсте у матрици. Овај резултат (Гершгоринова теорема, 1931.), сматра се једним од најзначајнијих и најелегантнијих начина за локализацију карактеристичних корена ([61]). Међу свим локализацијама Гершгориновог типа, минимални Гершгоринов скуп даје најпрецизнију локализацију спектра ([39]). У овој дисертацији, приказани су нови алгоритми за одређивање тачне и поуздане апроксимације минималног Гершгориновог скупа.
Postoje brojni načini za lokalizaciju karakterističnih korena. Jedan od najčuvenijih rezultata je da se spektar date matrice ACn,n nalazi u skupu koji predstavlja uniju krugova sa centrima u dijagonalnim elementima matrice i poluprečnicima koji su jednaki sumi modula vandijagonalnih elemenata odgovarajuće vrste u matrici. Ovaj rezultat (Geršgorinova teorema, 1931.), smatra se jednim od najznačajnijih i najelegantnijih načina za lokalizaciju karakterističnih korena ([61]). Među svim lokalizacijama Geršgorinovog tipa, minimalni Geršgorinov skup daje najprecizniju lokalizaciju spektra ([39]). U ovoj disertaciji, prikazani su novi algoritmi za određivanje tačne i pouzdane aproksimacije minimalnog Geršgorinovog skupa.
Moreau, Gilles. "On the Solution Phase of Direct Methods for Sparse Linear Systems with Multiple Sparse Right-hand Sides." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN084/document.
Full textWe consider direct methods to solve sparse linear systems AX = B, where A is a sparse matrix of size n x n with a symmetric structure and X and B are respectively the solution and right-hand side matrices of size n x nrhs. A is usually factorized and decomposed in the form LU, where L and U are respectively a lower and an upper triangular matrix. Then, the solve phase is applied through two triangular resolutions, named respectively the forward and backward substitutions.For some applications, the very large number of right-hand sides (RHS) in B, nrhs >> 1, makes the solve phase the computational bottleneck. However, B is often sparse and its structure exhibits specific characteristics that may be efficiently exploited to reduce this cost. We propose in this thesis to study the impact of the exploitation of this structural sparsity during the solve phase going through its theoretical aspects down to its actual implications on real-life applications.First, we investigate the asymptotic complexity, in the big-O sense, of the forward substitution when exploiting the RHS sparsity in order to assess its efficiency when increasing the problem size. In particular, we study on 2D and 3D regular problems the asymptotic complexity both for traditional full-rank unstructured solvers and for the case when low-rank approximation is exploited. Next, we extend state-of-the-art algorithms on the exploitation of RHS sparsity, and also propose an original approach converging toward the optimal number of operations while preserving performance. Finally, we show the impact of the exploitation of sparsity in a real-life electromagnetism application in geophysics that requires the solution of sparse systems of linear equations with a large number of sparse right-hand sides. We also adapt the parallel algorithms that were designed for the factorization to solve-oriented algorithms.We validate and combine the previous improvements using the parallel solver MUMPS, conclude on the contributions of this thesis and give some perspectives
Cabarcas, Daniel. "Gröbner Bases Computation and Mutant Polynomials." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1307321300.
Full textÅkerling, Erik, and Jimmy Jerenfelt. "Analys och framtagning av algoritm för rodermätning." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-23459.
Full textThe task is an investigation to try and locate errors and make improvements on a test equipment that measures rudder angles on the rear-end of a robot. The report contains an overview of the previous method and the errors that is found by testing it. The investigation also challenges many of the assumptions made when the previous method was made. This was made in order to either confirm or deny the assumptions. This is done by the use of mathematical models to simulate different parts of the method. Each part of the report consists of a description of the section followed by explaining the discovered errors that was found by testing the method in the models. The new produced method suggestion is exposed to the same tests as the previous method to discern the differences. The conclusions made from the sections can be found in the results.
Maddah, Sumayya Suzy. "Formal reduction of differential systems : Singularly-perturbed linear differential systems and completely integrable Pfaffian systems with normal crossings." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0065/document.
Full textIn this thesis, we are interested in the local analysis of singularly-perturbed linear differential systems and completely integrable Pfaffian systems in several variables. Such systems have a vast literature and arise profoundly in applications. However, their symbolic resolution is still open to investigation. Our approaches rely on the state of art of formal reduction of singular linear systems of ordinary differential equations (ODS) over univariate fields. In the case of singularly-perturbed linear differential systems, the complications arise mainly from the phenomenon of turning points. We extend notions introduced for the treatment of ODS to such systems and generalize corresponding algorithms to construct formal solutions in a neighborhood of a singularity. The underlying components of the formal reduction proposed are stand-alone algorithms as well and serve different purposes (e.g. rank reduction, classification of singularities, computing restraining index). In the case of Pfaffian systems, the complications arise from the interdependence of the multiple components which constitute the former and the multivariate nature of the field within which reduction occurs. However, we show that the formal invariants of such systems can be retrieved from an associated ODS, which limits computations to univariate fields. Furthermore, we complement our work with a rank reduction algorithm and discuss the obstacles encountered. The techniques developed herein paves the way for further generalizations of algorithms available for univariate differential systems to bivariate and multivariate ones, for different types of systems of functional equations
Sharify, Meisam. "Algorithmes de mise à l'échelle et méthodes tropicales en analyse numérique matricielle." Phd thesis, Ecole Polytechnique X, 2011. http://pastel.archives-ouvertes.fr/pastel-00643836.
Full textDiPaolo, Conner. "Randomized Algorithms for Preconditioner Selection with Applications to Kernel Regression." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/hmc_theses/230.
Full textJacquelin, Mathias. "Memory-aware algorithms : from multicores to large scale platforms." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00662525.
Full textFarabegoli, Bruno. "Analisi delle componenti principali." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11479/.
Full textBacha, Inès. "Traitement symbolique des systèmes d'équations différentielles non linéaires au voisinage des singularités." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10078.
Full textAsafu-Adjei, Joseph Kwaku. "Probabilistic Methods." VCU Scholars Compass, 2007. http://hdl.handle.net/10156/1420.
Full textIshigami, Hiroyuki. "Studies on Parallel Solvers Based on Bisection and Inverse Iterationfor Subsets of Eigenpairs and Singular Triplets." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215685.
Full textKyoto University (京都大学)
0048
新制・課程博士
博士(情報学)
甲第19858号
情博第609号
新制||情||106(附属図書館)
32894
京都大学大学院情報学研究科数理工学専攻
(主査)教授 中村 佳正, 教授 梅野 健, 教授 中島 浩
学位規則第4条第1項該当
Pecatte, Timothée. "Bornes inférieures et algorithmes de reconstruction pour des sommes de puissances affines." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN029/document.
Full textThe general framework of this thesis is the study of polynomials as objects of models of computation. This approach allows to define precisely the evaluation complexity of a polynomial, and then to classify families of polynomials depending on their complexity. In this thesis, we focus on the study of the model of sums of affine powers, that is polynomials that can be written as $f = \sum_{i = 1}^s \alpha_i \ell_i^{e_i}$, with $\deg \ell_i = 1$.This model is quite natural, as it extends both the Waring model $f = \sum \alpha_i \ell_i^d$ , and the sparsest shift model $f = \sum \alpha_i \ell^{e_i}$, but it is still not well known.In this work, we obtained structural results for the univariate variant of this model, which allow us to obtain lower bounds and reconstruction algorithms, that solve the following problem : given $f = \sum \alpha_i (x-a_i)^{e_i}$ as a list of its coefficient, find the values of the $\alpha_i$’s, $e_i$’s and $a_i$’s in the optimal decomposition of $f$.We also studied the multivariate case and obtained several reconstruction algorithms that work whenever the number of terms in the optimal expression is small in terms of the number of variable or the degree of the polynomial
Zhang, Weijian. "Evolving graphs and similarity-based graphs with applications." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/evolving-graphs-and-similaritybased-graphs-with-applications(66a23d3d-1ad0-454b-9ba0-175b566af95d).html.
Full textDénès, Maxime. "Étude formelle d'algorithmes efficaces en algèbre linéaire." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00945775.
Full textSidhom, Lilia. "Sur les différentiateurs en temps réel : algorithmes et applications." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00701576.
Full textRémy, Adrien. "Solving dense linear systems on accelerated multicore architectures." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112138/document.
Full textIn this PhD thesis, we study algorithms and implementations to accelerate the solution of dense linear systems by using hybrid architectures with multicore processors and accelerators. We focus on methods based on the LU factorization and our code development takes place in the context of the MAGMA library. We study different hybrid CPU/GPU solvers based on the LU factorization which aim at reducing the communication overhead due to pivoting. The first one is based on a communication avoiding strategy of pivoting (CALU) while the second uses a random preconditioning of the original system to avoid pivoting (RBT). We show that both of these methods outperform the solver using LU factorization with partial pivoting when implemented on hybrid multicore/GPUs architectures. We also present new solvers based on randomization for hybrid architectures for Nvidia GPU or Intel Xeon Phi coprocessor. With this method, we can avoid the high cost of pivoting while remaining numerically stable in most cases. The highly parallel architecture of these accelerators allow us to perform the randomization of our linear system at a very low computational cost compared to the time of the factorization. Finally we investigate the impact of non-uniform memory accesses (NUMA) on the solution of dense general linear systems using an LU factorization algorithm. In particular we illustrate how an appropriate placement of the threads and data on a NUMA architecture can improve the performance of the panel factorization and consequently accelerate the global LU factorization. We show how these placements can improve the performance when applied to hybrid multicore/GPU solvers
Tisseur, Françoise. "Méthodes numériques pour le calcul d'éléments spectraux : étude de la précision, la stabilité et la parallélisation." Saint-Etienne, 1997. http://www.theses.fr/1997STET4006.
Full textSeiller, Thomas. "Logique dans le facteur hyperfini : Géométrie de l' interaction et complexité." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4064.
Full textThis work is a study of the geometry of interaction in the hyperfinite factor introduced by Jean-Yves Girard, and of its relations with ancient constructions. We start by showing how to obtain purely geometrical adjunctions as an identity between sets of cycles appearing between graphs. It is then possible, by chosing a function that measures those cycles, to obtain a numerical adjunction. We then show how to construct, on the basis of such a numerical adjunction, a geometry of interaction for multiplicative additive linear logic where proofs are interpreted as graphs. We also explain how to define from this construction a denotational semantics for MALL, and a notion of truth. We extend this setting in order to deal with exponential connectives and show a full soundness result for a variant of elementary linear logic (ELL). Since the constructions on graphs we define are parametrized by a function that measures cycles, we then focus our study to two particular cases. The first case turns out to be a combinatorial version of GoI5, and we thus obtain a geometrical caracterisation of its orthogonality which is based on Fuglede-Kadison determinant. The second particular case we study will giveus a refined version of older constructions of geometry of interaction, where orthogonality is based on nilpotency. This allows us to show how these two versions of GoI, which seem quite different, are related and understand that the respective adjunctions are both consequences of a unique geometrical property. In the last part, we study the notion of subjective truth
Sedoglavic, Alexandre. "Méthodes seminumériques en algèbre différentielle; applications à l'étude des propriétés structurelles de systèmes différentiels algébriques en automatique." Phd thesis, Ecole Polytechnique X, 2001. http://tel.archives-ouvertes.fr/tel-00401888.
Full textLe problème de l'observabilité algébrique locale consiste à décider si les variables d'état intervenant dans un modèle peuvent être déterminées en fonction des entrées et des sorties supposées parfaitement connues.
Nous présentons un algorithme probabiliste de complexité arithmétique polynomiale en la taille de l'entrée permettant de tester l'observabilité algébrique locale en déterminant les variables non observables. L'utilisation du calcul modulaire permet d'obtenir pour ce test une complexité binaire elle aussi polynomiale. Cette complexité dépend linéairement de la probabilité de succès qui peut être arbitrairement fixée. Une implantation de cet algorithme permet de traiter des problèmes inaccessibles jusqu'à présent.
À partir de ces méthodes mêlant calcul symbolique et calcul numérique, nous proposons une généralisation de la notion de platitude différentielle à certains modèles non linéaires décrits par des équations aux dérivées partielles. Un système différentiel ordinaire est différentiellement plat si ses solutions peuvent être localement paramétrées bijectivement par des fonctions arbitraires.
Pour étudier certains systèmes d'équations aux dérivées partielles non linéaires, on se ramène à un système d'équations différentielles ordinaires par discrétisation ; notre approche consiste à chercher des discrétisations plates telles que les paramétrages associés convergent lorsque le pas de discrétisation tend vers zéro. Cette méthode est illustrée par l'étude du problème de planification de trajectoire réalisée pour trois modèles non linéaires de dimension infinie : l'équation de la chaleur semilinéaire, l'équation de Burger avec diffusion et un modèle non linéaire de tige flexible.
Bientinesi, Paolo. "Mechanical derivation and systematic analysis of correct linear algebra algorithms." Thesis, 2006. http://hdl.handle.net/2152/2679.
Full textTropp, Joel Aaron. "Topics in sparse approximation." Thesis, 2004. http://hdl.handle.net/2152/1272.
Full textTropp, Joel Aaron Dhillon Inderjit S. Gilbert Anna C. "Topics in sparse approximation." 2004. http://wwwlib.umi.com/cr/utexas/fullcit?p3143480.
Full textGunnels, Joseph Andrew. "A systematic approach to the design and analysis of linear algebra algorithms." 2001. http://hdl.handle.net/2152/10503.
Full textYamamoto, Yusaku. "High performance algorithms for numerical linear algebra." Thesis, 2003. http://hdl.handle.net/2237/6641.
Full text