Contents
Academic literature on the topic 'Algèbres homogènes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algèbres homogènes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algèbres homogènes"
Micali, Artibano, and Philippe Revoy. "Sur les algèbres gamétiques." Proceedings of the Edinburgh Mathematical Society 29, no. 2 (June 1986): 187–97. http://dx.doi.org/10.1017/s0013091500017570.
Full textPottier, Antonin. "Stabilité de la propriété de Koszul pour les algèbres homogènes vis-à-vis du produit semi-croisé." Comptes Rendus Mathematique 343, no. 3 (August 2006): 161–64. http://dx.doi.org/10.1016/j.crma.2006.06.023.
Full textMoeglin, C., and R. Rentschler. "Sous-corps commutatifs ad-stables des anneaux de fractions des quotients des algèbres enveloppantes; espaces homogènes et induction de Mackey." Journal of Functional Analysis 69, no. 3 (December 1986): 307–96. http://dx.doi.org/10.1016/0022-1236(86)90095-9.
Full textBlind, Bruno. "Distributions homogènes sur une algèbre de Jordan." Bulletin de la Société mathématique de France 125, no. 4 (1997): 493–528. http://dx.doi.org/10.24033/bsmf.2315.
Full textBlind, Bruno. "Distributions vectorielles homogènes sur une algèbre de Jordan." Journal of Functional Analysis 208, no. 2 (March 2004): 482–507. http://dx.doi.org/10.1016/s0022-1236(03)00219-2.
Full textAguiar, Marcelo, and Aaron Lauve. "Convolution Powers of the Identity." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AS,..., Proceedings (January 1, 2013). http://dx.doi.org/10.46298/dmtcs.2365.
Full textAlbenque, Marie, and Philippe Nadeau. "Growth function for a class of monoids." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AK,..., Proceedings (January 1, 2009). http://dx.doi.org/10.46298/dmtcs.2728.
Full textDissertations / Theses on the topic "Algèbres homogènes"
Ayadi, Imen. "Super-algèbres non associatives avec des structures homogènes." Thesis, Metz, 2011. http://www.theses.fr/2011METZ002S/document.
Full textThe goal of my thesis is to study some non associative superalgebra with homogeneous structures.In the first part, we studied homogeneous symmetric associative superalgebras. We generalized the double extensions of symmetric associative algebras introduced by A. Aubert to the case of associative superalgebras. We used a particular case of this double extension to study even symmetric Novikov superalgebras and we gave its inductive description. Next, we proved that every simple associative superalgebra admits a homogeneous symmetric structure. More precisely, we gave explicitly a homogeneous structure on every simple associative superalgebra. This result, allowed us to give a completely inductive description of associative superalgebras with homogeneous symmetric structures. We ended this part by giving an inductive description of associative super-commutative superalgebras with homogeneous symmetric homogeneous symplectic structures.In the second part of this thesis, we studied the structures of even (resp. odd)-quadratic odd (resp. even)-symplectic Lie superalgebras and odd-quadratic odd-symplectic Lie superalgebras and we gave its inductive descriptions in terms of quadratic generalized double extensions and odd quadratic generalized double extensions. This study complete the inductive descriptions of homogeneous quadratic symplectic Lie superalgebras started by E. Barriero and S. Benayadi. In addition, using different types of double extensions introduced in the first and second parts, we introduced the notion of double extension of homogeneous quadratic homogeneous symplectic Poisson superalgebras and we gave its inductive descriptions
Abbaci, Mohamed. "Espaces homogènes de Poisson." Lyon 1, 1986. http://www.theses.fr/1986LYO11705.
Full textChevalier, Nicolas. "Algèbres amassées et positivité totale." Caen, 2012. http://www.theses.fr/2012CAEN2024.
Full textThis thesis uses homological tools and develops combinatorial tools to give a better understanding of partial ag varieties attached to a simply laced Lie group. Lusztig dened remarkable geometrical subsets of these varieties: their totally non-negative counterparts. Rietsch introduced a stratication of this totally non-negative part. Fomin and Zelevinsky have initiated the combinatorial study of this part, and it led them to the notion of cluster algebras. They had the idea that each cell of the partial ag variety should carry a cluster algebra structure, which gives rise to an optimal total positivity criterion. Through the process of categorication, Geiss, Leclerc and Schroer have constructed a cluster algebra structure on the big cell of the ag variety. The category used is a subcategory of modules over the preprojective algebra associated to the simply laced Lie group. We use their construction to give total positivity criteria for the big cell. Then, we would like to extend the previous results to the small cells of the ag variety. We therefore study other subcategories of modules over the preprojective algebra and prove, by relying on the work of Buan, Iyama, Reiten and Scott, that those categories carry a cluster structure. We explain why the corresponding abstract cluster algebras should be isomorphic to coordinate rings of small cells of the ag variety. For the type A Grassmannian, we describe an explicit quiver for an initial seed of this abstract cluster algebra structure we have built
Diatta, André. "Géométrie de Poisson et de contact des espaces homogènes." Montpellier 2, 2000. http://www.theses.fr/2000MON20068.
Full textRoydor, Jean. "Sous-espaces des C*-algèbres sous-homogènes et sous-espaces complètement 1-complémentés des espaces de Schatten." Besançon, 2006. http://www.theses.fr/2006BESA2080.
Full textThe framework of this thesis is operator space theory, (non-selfadjoint) operator algebras and noncommutative Lp-spaces. It is divided into two parts. In the first one we study a special class of operator spaces, more precisely the subspaces of subhomogeneous C*-algebras. In the second part, we consider the Schatten space Sp as an operator space. We will describe the subspaces of Sp which are the image of a completely contractive projection
De, Clercq Charles. "Vers une classification des décompositions motiviques d'espaces homogènes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00653272.
Full textOhayon, Jonathan. "Quantification des sous-algèbres de Lie coisotropes." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20040/document.
Full textThe aim of this thesis is the study of quantization of coisotropic Lie subalgebras of Lie bialgebras.A coisotropic Lie subalgebra of a Lie bialgebra is a Lie subalgebra which is also a Lie coideal. The problem of quantization of coisotropic Lie subalgebra was set forth by V. Drinfeld, in his study of quantization of Poisson homogeneous spaces G/C. These problems are closely related to the duality principle established by N. Ciccoli and F. Gavarini.In this thesis, we search for an answer to this quantization problem in different settings. Firstly, we show that a quantization exists for simple Lie bialgebras by constructing a quantization of examples provided by M. Zambon. We then establish a link between the quantization which we constructed and a classification of subalgebras right coideals established by I. Heckenberger and S. Kolb. Secondly, we find an obstruction to the quantization in the universal setting by using a third-order quantization constructed by V. Drinfeld. We show that this obstruction vanishes in the examples studied earlier. Finally, we generalize a result of P. Etingof and D. Kazhdan on the quantization of poisson homogeneous spaces, linked to Lagrangian Lie subalgebras of Drinfeld's double
Popov, Todor. "Application de l'homologie généralisée." Paris 11, 2003. http://www.theses.fr/2003PA112106.
Full textIn this thesis we deal with graded algebras, finitely generated in degree one with relations concentrated in degree N which are reffered to as homogeneous algebras of degree N or N-homogeneous algebras. A quadratic algebra is special case of homogeneous algebra (of degree N = 2). The homological properties of the N-homogeneous algebras are encoded in the (generalization of) chain and cochain Koszul complexes. After a general presentation of the main homological notions for a N-homogeneous algebras we concentrate on the applications of the homogeneous algebras in parastatictics and combinatorics. We study two particular examples of 3-homogeneous algebras: 1. The algebra generated by the creation operators of a parastatistics system with finite number degrees of freedom, 2. The algebra of the plactic monoid which is an algebra of Young tableaux. Using q-deformed Young projectors we construct a q-deformation of the algebra of parafermionic (parabosonic) creation operators B+(q)(B(̄q)). It turns out that the q-deformed algebra B+(q) in the "absolute zero" limit q = 0 coincides with the algebra of the plactic monoid. The limit q = 0 of B(̄q) gives rise to a "super"-plactic algebra. Thus by means of quantum group technics we reveal a surprising connection between parastatistics and combinatorics: the algebraic structure with combinatorial nature, namely the algebra of Young tableaux lies behind the parastatistics Fock spaces
Frédéric, Holweck. "Lieu singulier des variétés duales : approche géométrique et applications aux variétés homogènes." Phd thesis, Université Paul Sabatier - Toulouse III, 2004. http://tel.archives-ouvertes.fr/tel-00737441.
Full textDoray, Franck. "Calculs explicites dans les groupes de Grotendieck et de Chow des variétés homogènes projectives." Phd thesis, Université Joseph Fourier (Grenoble), 2006. http://tel.archives-ouvertes.fr/tel-00120949.
Full textont une géométrie assez simple. La décomposition de Bruhat fournit, en
effet, une décomposition cellulaire de ces variétés. Il en résulte que
l'anneau de Chow de telles variétés admet une base formée des classes
des adhérences de ces cellules, appelées variétés de Schubert.
Il en est de même pour l'anneau de Grothendieck de telles variétés.
Cela entraîne en particulier que ces deux anneaux sont sans torsion.
Plus précisément, la base ainsi obtenue pour l'anneau de Grothendieck
fournit la filtration topologique de cette anneau et redonne
la base de l'anneau de Chow par passage au gradué. D'autre part,
il existe une seconde base due à Pittie et Steinberg de l'anneau
de Grothendieck de ces variétés, invariante sous l'action du groupe de Galois.
Le Chapitre II de la thèse revient, dans le cas des drapeaux complets
associés à un espace vectoriel, sur les résultats connus concernant
la combinatoire donnant les expressions des faisceaux structuraux des
variétés de Schubert dans l'anneau de Grothendieck, ce qui permet, en
suivant les travaux de Lascoux notamment, d'exprimer combinatoirement
la matrice de changement de bases entre les deux bases ci-dessus. Dans
le cas de la variété de drapeaux complets d'un espace vectoriel de
dimension trois, nous donnons des résolutions explicites des faisceaux
structuraux des variétés de Schubert en termes des fibrés de la base
de Pittie.
Les groupes de Chow sont connus en codimension un et ont été étudiés
en codimension deux par Karpenko dans le cas des variétés de
Severi-Brauer. Le calcul des motifs des varietés homogènes projectives
sous le groupe projectif linéaire d'une algébre simple centrale sur un
corps se ramène sous certaines conditions au calcul de motifs de
variétés de Severi-Brauer généralisées, formes de grassmaniennes,
comme l'ont montré Calmès, Petros, Semenov et Zainouline. Dans le
chapitre II, nous construisons des isomorphismes de variétés
explicites qui permettent de ramener le calcul des groupes de Chow de
ces variétés au calcul de groupes de Chow de variétés de Severi-Brauer
généralisées.
Les techniques décrites dans le chapitre III sont réutilisées au
chapitre IV pour redémontrer un résultat de Karpenko sur la
décomposition du motif de Chow de variétés de Severi-Brauer associée
à une algèbre de matrices à coefficients dans une algèbre simple
centrale.
Books on the topic "Algèbres homogènes"
Mimura, M. Topology of lie groups, I and II. Providence, R.I: American Mathematical Society, 1991.
Find full text