Contents
Academic literature on the topic 'Algorithme Génétique (AG)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algorithme Génétique (AG).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algorithme Génétique (AG)"
Nouiri, Issam, and Féthi Lebdi. "Algorithme Génétique (AG) pour le choix optimal des stations d’appoint de chlore sur les réseaux d’eau potable." Revue des sciences de l'eau 19, no. 1 (March 20, 2006): 47–55. http://dx.doi.org/10.7202/012596ar.
Full textDissertations / Theses on the topic "Algorithme Génétique (AG)"
Perez, Gallardo Jorge Raúl. "Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA)." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/10505/1/perez_gallardo_partie_1_sur_2.pdf.
Full textMorales, Mendoza Luis Fernando. "Écoconception de procédés : approche systémique couplant modélisation globale, analyse du cycle de vie et optimisation multiobjectif." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0106/document.
Full textThe objective of this work is to propose an integrated and generic framework for eco-design coupling traditional modelling and flowsheeting simulation tools (HYSYS, COCO, ProSimPlus and Ariane), Life Cycle Assessment, multi-objective optimization based on Genetic Algorithms and multiple criteria decision-making methods MCDM (Multiple Choice Decision Making, such as ELECTRE, PROMETHEE, M-TOPSIS) that generalizes, automates and optimizes the evaluation of the environmental criteria at earlier design stage. The approach consists of three main stages. The first two steps correspond respectively to process inventory analysis based on mass and energy balances and impact assessment phases of LCA methodology. Specific attention is paid to the main issues that can be encountered with database and impact assessment i.e. incomplete or missing information, or approximate information that does not match exactly the real situation that may introduce a bias in the environmental impact estimation. A process simulation tool dedicated to production utilities, Ariane, ProSim SA is used to fill environmental database gap, by the design of specific energy sub modules, so that the life cycle energy related emissions for any given process can be computed. The third stage of the methodology is based on the interaction of the previous steps with process simulation for environmental impact assessment and cost estimation through a computational framework. The use of multi-objective optimization methods generally leads to a set of efficient solutions, the so-called Pareto front. The next step consists in identifying the best ones through MCDM methods. The approach is applied to two processes operating in continuous mode. The capabilities of the methodology are highlighted through these case studies (benzene production by HDA process and biodiesel production from vegetable oils). A multi-level assessment for multi-objective optimization is implemented for both cases, the explored pathways depending on the analysis and antagonist behaviour of the criteria
Lazaar, Nouhaila. "Optimisation des alimentations électriques des Data Centers." Thesis, Normandie, 2021. http://www.theses.fr/2021NORMC206.
Full textData centers, factories housing thousands of computer servers that work permanently to exchange, store, process data and make it accessible via the Internet. With the digital sector development, their energy consumption, which is largely fossil fuel-based, has grown continuously over the last decade, posing a real threat to the environment. The use of renewable energy is a promising way to limit the ecological footprint of data centers. Nevertheless, the intermittent nature of these sources hinders their integration into a system requiring a high reliability degree. The hybridization of several technologies for green electricity production, coupled with storage devices, is currently an effective solution to this problem. As a result, this research work studies a multi-source system, integrating tidal turbines, photovoltaic panels, batteries and a hydrogen storage system to power an MW-scale data center. The main objective of this thesis is the optimization of a data center power supply, both for isolated sites and grid-connected ones. The first axis of this work is the modeling of the system components using the energetic macroscopic representation (EMR). Energy management strategy based on the frequency separation principle is first adopted to share power between storage devices with different dynamic characteristics. The second axis concerns the optimal sizing of the proposed system, in order to find the best configuration that meets the technical constraints imposed at minimum cost, using particle swarm optimization (PSO) and genetic algorithm (GA). Here, a rules-based energy management technique is used for simplicity and reduced computing time purposes. The last axis focuses on the energy management optimization through GA, taking into account the storage systems degradation in order to reduce their operating costs and extend their lifetime. It should be noted that each axis previously discussed has been the subject of a specific sensitivity analysis, which aims to evaluate the performance of the hybrid system under different operating conditions
Pham, Cong Duc. "Détection et localisation de défauts dans les réseaux de distribution HTAen présence de génération d'énergie dispersée." Phd thesis, 2005. http://tel.archives-ouvertes.fr/tel-00164643.
Full textindicateurs de passage de défaut (IPD). Les études ont été effectuées dans le cadre du développement attendu et
croissant des GED (sources de Génération d'Energie Décentralisées).
La première partie du mémoire est consacrée à l'analyse du comportement des IPD. En ce qui concerne
l'influence du contexte de fonctionnement sur la réponse des IPD, une partie est destinée à vérifier le
fonctionnement des modèles IPD développés et les règles d'utilisation des IPD prévus. Une autre analyse
l'influence des GED sur l'utilisation des IPD sur la détection et localisation de défauts. Pour l'amélioration de la
robustesse du diagnostic avec IPD en présence de fausses indications, une méthode de détermination de la
section en défaut (limitée par des IPD) est proposée.
La deuxième partie du mémoire est consacrée à une méthode d'optimisation du placement des IPD dans les
réseaux HTA sur la base d'algorithmes génétiques. Nous avons défini différents critères pour l'optimisation ; ils
sont validés par un programme de calcul des indices de fiabilité. L'influence de la GED dans le départ HTA sur
le placement optimal des IPD est analysée en tenant compte du coût de l'énergie non fournie par la GED et du
fonctionnement envisageable comme un secours de la GED.