Academic literature on the topic 'Algorithme LMS (Least Mean Square)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Algorithme LMS (Least Mean Square).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Algorithme LMS (Least Mean Square)"
Ibrahim Khan, Muhammad, Muhammad Juanid Mughal, and Rana Liaqat Ali. "Cosine Least Mean Square Algorithm for Adaptive Beamforming." International Journal of Engineering & Technology 7, no. 3.16 (July 26, 2018): 94. http://dx.doi.org/10.14419/ijet.v7i3.16.16191.
Full textRahman, Aviv Yuniar, Mamba’us Sa’adah, and Istiadi. "Noise Reduction in RTL-SDR using Least Mean Square and Recursive Least Square." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 4, no. 2 (April 19, 2020): 286–95. http://dx.doi.org/10.29207/resti.v4i2.1667.
Full textTanpreeyachaya, Jirasak, Ichi Takumi, and Masayasu Hata. "A New Partial-normalized Least Mean Square Algorithm." IEEJ Transactions on Electronics, Information and Systems 116, no. 1 (1996): 57–65. http://dx.doi.org/10.1541/ieejeiss1987.116.1_57.
Full textKalkar, Purvika, and John Sahaya Rani Alex. "FIELD PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF A VARIABLE LEAKY LEAST MEAN SQUARE ADAPTIVE ALGORITHM." Asian Journal of Pharmaceutical and Clinical Research 10, no. 13 (April 1, 2017): 69. http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19566.
Full textJaved, Shazia, and Noor Atinah Ahmad. "A Stochastic Total Least Squares Solution of Adaptive Filtering Problem." Scientific World Journal 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/625280.
Full textPanigrahi, T., P. M. Pradhan, G. Panda, and B. Mulgrew. "Block Least Mean Squares Algorithm over Distributed Wireless Sensor Network." Journal of Computer Networks and Communications 2012 (2012): 1–13. http://dx.doi.org/10.1155/2012/601287.
Full textMartinek, Radek, Jaroslav Rzidky, Rene Jaros, Petr Bilik, and Martina Ladrova. "Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control." Energies 12, no. 8 (April 24, 2019): 1545. http://dx.doi.org/10.3390/en12081545.
Full textXu, Fangmin, Chenyang Zheng, and Haiyan Cao. "Memory Distributed LMS for Wireless Sensor Networks." Mathematical Problems in Engineering 2018 (2018): 1–8. http://dx.doi.org/10.1155/2018/9831378.
Full textPavanKalyan, I., G. Jaya Santosh, K. H. K. Prasad, and Durgesh Nandan. "Study of Echo Cancellation approach by using Least Mean Square (LMS) Algorithm." Journal of Physics: Conference Series 1714 (January 2021): 012053. http://dx.doi.org/10.1088/1742-6596/1714/1/012053.
Full textFang, Yubin, Xiaojin Zhu, Zhiyuan Gao, Jiaming Hu, and Jian Wu. "New feedforward filtered-x least mean square algorithm with variable step size for active vibration control." Journal of Low Frequency Noise, Vibration and Active Control 38, no. 1 (November 14, 2018): 187–98. http://dx.doi.org/10.1177/1461348418812326.
Full textDissertations / Theses on the topic "Algorithme LMS (Least Mean Square)"
Wang, Dongmei. "Least mean square algorithm implementation using the texas instrument digital signal processing board." Ohio University / OhioLINK, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1175279376.
Full textLovstedt, Stephan P. "Improving Performance of the Filtered-X Least Mean Square Algorithm for Active Control of Noise Contatining Multiple Quasi-Stationary Tones." Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2290.pdf.
Full textCallahan, Michael J. "Estimating Channel Identification Quality in Passive Radar Using LMS Algorithms." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1503508289044109.
Full textYapici, Yavuz. "A Bidirectional Lms Algorithm For Estimation Of Fast Time-varying Channels." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613220/index.pdf.
Full textGao, Wei. "Kernel LMS à noyau gaussien : conception, analyse et applications à divers contextes." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4076/document.
Full textThe main objective of this thesis is to derive and analyze the Gaussian kernel least-mean-square (LMS) algorithm within three frameworks involving single and multiple kernels, real-valued and complex-valued, non-cooperative and cooperative distributed learning over networks. This work focuses on the stochastic behavior analysis of these kernel LMS algorithms in the mean and mean-square error sense. All the analyses are validated by numerical simulations. First, we review the basic LMS algorithm, reproducing kernel Hilbert space (RKHS), framework and state-of-the-art kernel adaptive filtering algorithms. Then, we study the convergence behavior of the Gaussian kernel LMS in the case where the statistics of the elements of the so-called dictionary only partially match the statistics of the input data. We introduced a modified kernel LMS algorithm based on forward-backward splitting to deal with $\ell_1$-norm regularization. The stability of the proposed algorithm is then discussed. After a review of two families of multikernel LMS algorithms, we focus on the convergence behavior of the multiple-input multikernel LMS algorithm. More generally, the characteristics of multikernel LMS algorithms are analyzed theoretically and confirmed by simulation results. Next, the augmented complex kernel LMS algorithm is introduced based on the framework of complex multikernel adaptive filtering. Then, we analyze the convergence behavior of algorithm in the mean-square error sense. Finally, in order to cope with the distributed estimation problems over networks, we derive functional diffusion strategies in RKHS. The stability of the algorithm in the mean sense is analyzed
Tajany, Mostafa. "Égalisation adaptative de multitrajets dans des liaisons de télémesure à haut débit." Nantes, 1996. http://www.theses.fr/1996NANT2002.
Full textDeyneka, Alexander. "Metody ekvalizace v digitálních komunikačních systémech." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-218963.
Full textCavalcanti, Bruno Jácome. "Análise de modelos de predição de perdas de propagação em redes de comunicações LTE e LTE-Advanced usando técnicas de inteligência artificial." PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO, 2017. https://repositorio.ufrn.br/jspui/handle/123456789/25061.
Full textApproved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2018-04-16T20:46:19Z (GMT) No. of bitstreams: 1 BrunoJacomeCavalcanti_TESE.pdf: 5397909 bytes, checksum: 5a245eec570a69adf8ca5d791aaddf70 (MD5)
Made available in DSpace on 2018-04-16T20:46:19Z (GMT). No. of bitstreams: 1 BrunoJacomeCavalcanti_TESE.pdf: 5397909 bytes, checksum: 5a245eec570a69adf8ca5d791aaddf70 (MD5) Previous issue date: 2017-10-20
A perfeita funcionalidade dos sistemas de comunicações de 3ª. e 4ª. gerações requerem, entre outras coisas, do conhecimento dos valores numéricos da predição das perdas de propagação dos sinais propagantes nos ambientes urbano, suburbano e rural. Portanto, o estudo das condições de propagação em um ambiente qualquer sempre será uma preocupação dos engenheiros projetistas. A análise e desenvolvimento de modelos robustos de predição de perdas de propagação em redes de comunicações Long Term Evolution (LTE) e Long Term Evolution Advanced (LTE-A) usando técnicas de Inteligência Artificial são realizadas neste trabalho. Os procedimentos metodológicos empregados foram aplicados no melhoramento da predição dos modelos de perda de propagação empíricos SUI, ECC-33, Ericsson 9999, TR 36.942 e o modelo do Espaço Livre, aplicados em redes LTE e LTE-A nas frequências de 800 MHz, 1800 MHz e 2600 MHz, para ambientes suburbanos em cidades de porte médio do nordeste do Brasil. Assim, nesta tese propõem-se dois modelos de Redes Neurais Artificiais (RNA): (i) o modelo de rede neural com entradas baseadas em erro (RNBE), utilizando como principal alimentador da rede o erro entre dados medidos e simulados, e, (ii) o modelo de rede neural com entradas baseadas no terreno (RNBT). O desempenho desses modelos foram comparados com os modelos de propagação considerados no trabalho e também as versões otimizadas utilizando Algoritmos Genéticos (AG) e o Método dos Mínimos Quadrados (LMS). Também foram realizadas comparações com valores medidos, obtidos a partir de uma campanha de medição realizada na cidade de Natal, Estado do Rio Grande do Norte. Os resultados finais obtidos através de simulações e medições apresentaram boas concordâncias métricas, com destaque para a performance do modelo RNBE. A principal contribuição dessa tese é que, ao utilizar essas técnicas que fazem uso de maneira mais eficiente dos modelos de propagação empíricos, pode-se estimar sinais propagantes realistas, evitando erros no planejamento e implementações de redes sem fio LTE e LTE-A em áreas suburbanas.
The perfect functionality of the 3rd and 4th generation of wireless systems requires, among other parameters, knowledge of the numerical values of the prediction of loss of propagation of propagation signals in urban, suburban and rural environments. Therefore, the study of propagation conditions in any environment will always be a concern of design engineers. The analysis and development of robust propagation loss prediction models in Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A) communications networks using Artificial Intelligence techniques is performed in this work. The methodologies used were applied to improve the prediction of loss of empirical propagation SUI, ECC-33, Ericsson 9999, TR 36.942 models and the Free Space model applied in LTE and LTE-A networks in the frequencies of 800 MHz, 1800 MHz and 2600 MHz, for suburban environments in mid-sized cities in northeastern Brazil. Thus, in these thesis two models of Artificial Neural Networks (RNA) are proposed: (i) the neural network model with inputs based on error (RNBE) using as main feeder of the network the error between measured and simulated data, and (ii) the neural network model with land-based inputs (RNBT). The performance of these models was compared with the models of propagation considered in the work and also the versions optimized using Genetic Algorithms (AG) and the Least Square Method (LMS). Comparisons were also made with measured values, obtained from a measurement campaign carried out in the city of Natal, state of Rio Grande do Norte. The final results obtained through simulations and measurements presented good metric concordances, with emphasis on the performance of the RNBE model. Thus, the main contribution of this thesis is that, by using these techniques that make more efficient use of empirical propagation models, we can estimate realistic propagation signals, avoiding errors in the planning and implementations of LTE and LTE- A wireless networks in suburban areas.
Kim, Taeho, and Monika Ivantysynova. "Active Vibration Control of Axial Piston Machine using Higher Harmonic Least Mean Square Control of Swash Plate." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199412.
Full textGribaudo, Michael Louis. "Development of a system model and least mean square (LMS) filter for the Naval Postgraduate School (NPS) Infrared Search and Target Designation (IRSTD) system." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26990.
Full textBooks on the topic "Algorithme LMS (Least Mean Square)"
Gribaudo, Michael Louis. Development of a system model and least mean square (LMS) filter for the Naval Postgraduate School (NPS) Infrared Search and Target Designation (IRSTD) system. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textBook chapters on the topic "Algorithme LMS (Least Mean Square)"
Ramirez, Paulo Sergio. "The Least-Mean-Square (LMS) Algorithm." In The Kluwer International Series in Engineering and Computer Science, 79–138. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3637-3_3.
Full textDiniz, Paulo S. R. "The Least-Mean-Square (LMS) Algorithm." In Adaptive Filtering, 1–54. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68606-6_3.
Full textDiniz, Paulo S. R. "The Least-Mean-Square (LMS) Algorithm." In Adaptive Filtering, 79–135. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-4106-9_3.
Full textDiniz, Paulo S. R. "The Least-Mean-Square (LMS) Algorithm." In Adaptive Filtering, 61–102. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29057-3_3.
Full textDiniz, Paulo Sergio Ramirez. "The Least-Mean-Square (LMS) Algorithm." In Adaptive Filtering, 71–131. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4419-8660-3_3.
Full textWagner, Kevin, and Miloš Doroslovački. "LMS Analysis Techniques." In Proportionate-Type Normalized Least Mean Square Algorithms, 13–27. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118579558.ch2.
Full textUllah, Farooq Kifayat. "Evaluation of Dc/Dc Buck Converter Controlled by LMS (Least Mean Square) Algorithm for Different Values of Load Capacitor." In Communications in Computer and Information Science, 532–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28962-0_50.
Full textHassibi, Babak. "On the Robustness of LMS Filters." In Least-Mean-Square Adaptive Filters, 105–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471461288.ch4.
Full textHänsler, Eberhard, and Gerhard Uwe Schmidt. "Control of LMS-Type Adaptive Filters." In Least-Mean-Square Adaptive Filters, 175–240. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471461288.ch6.
Full textButterweck, Hans J. "Traveling-Wave Model of Long LMS Filters." In Least-Mean-Square Adaptive Filters, 35–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471461288.ch2.
Full textConference papers on the topic "Algorithme LMS (Least Mean Square)"
Wang, Wei, Chuankun Mu, Hongru Song, and Miao Yu. "Improved Adaptive Convex Combination of Least Mean Square (LMS) Algorithm." In 2010 International Conference on Computational and Information Sciences (ICCIS). IEEE, 2010. http://dx.doi.org/10.1109/iccis.2010.145.
Full textZuo, Lei, and Samir A. Nayfeh. "Adaptive Least-Mean Square Feed-Forward Control With Actuator Saturation by Direct Minimization." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85494.
Full textGupta, Saurav, Ajit Kumar Sahoo, and Upendra Kumar Sahoo. "Parameter estimation of Wiener nonlinear model using least mean square (LMS) algorithm." In TENCON 2017 - 2017 IEEE Region 10 Conference. IEEE, 2017. http://dx.doi.org/10.1109/tencon.2017.8228077.
Full textBudihal, Suneeta V., and R. M. Banakar. "Performance Analysis of Adaptive Decision Feedback Turbo Equalization (ADFTE) Using Recursive Least Square (RLS) Algorithm over Least Mean Square (LMS) Algorithm." In International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007). IEEE, 2007. http://dx.doi.org/10.1109/iccima.2007.81.
Full textMansoor, Umair bin, and Syed Muhammad Asad. "A Robust, Iteration Dependent Variable Step-Size (RID-VSS) Least-Mean Square (LMS) Adaptive Algorithm." In 2020 International Conference on Engineering and Emerging Technologies (ICEET). IEEE, 2020. http://dx.doi.org/10.1109/iceet48479.2020.9048197.
Full textOgunfunmi, Tokunbo. "Implementation of the Hartley-Transform-Based Block LMS Algorithm." In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0091.
Full textTokhi, M. O., M. S. Alam, and F. M. Aldebrez. "Adaptive IIR Filtering Techniques for Dynamic Modeling of a Twin Rotor System." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58237.
Full textElasha, Faris, Cristobal Ruiz-Carcel, and David Mba. "Bearing Natural Degradation Detection in a Gearbox: A Comparative Study of the Effectiveness of Adaptive Filter Algorithms and Spectral Kurtosis." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20244.
Full textFei, J. "Adaptive Feedforward Vibration Control of Flexible Structure With Discrete Sliding Mode Controller." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13276.
Full textChen, Zhao Bo, Jia Xing Li, and Ying Hou Jiao. "The Active Control of Vibration and Power Flow in the Crossing-Shaped Plate Structure." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63954.
Full text