Journal articles on the topic 'Algorithms. Convex functions. Programming (Mathematics)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Algorithms. Convex functions. Programming (Mathematics).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kebaili, Zahira, and Mohamed Achache. "Solving nonmonotone affine variational inequalities problem by DC programming and DCA." Asian-European Journal of Mathematics 13, no. 03 (December 17, 2018): 2050067. http://dx.doi.org/10.1142/s1793557120500679.
Full textEckstein, Jonathan. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming." Mathematics of Operations Research 18, no. 1 (February 1993): 202–26. http://dx.doi.org/10.1287/moor.18.1.202.
Full textAwais, Hafiz Muhammad, Tahir Nadeem Malik, and Aftab Ahmad. "Artificial Algae Algorithm with Multi-Light Source Movement for Economic Dispatch of Thermal Generation." Mehran University Research Journal of Engineering and Technology 39, no. 3 (July 1, 2020): 564–82. http://dx.doi.org/10.22581/muet1982.2003.12.
Full textCocan, Moise, and Bogdana Pop. "An algorithm for solving the problem of convex programming with several objective functions." Korean Journal of Computational & Applied Mathematics 6, no. 1 (January 1999): 79–88. http://dx.doi.org/10.1007/bf02941908.
Full textÖstermark, Ralf. "A parallel algorithm for optimizing the capital structure contingent on maximum value at risk." Kybernetes 44, no. 3 (March 2, 2015): 384–405. http://dx.doi.org/10.1108/k-08-2014-0171.
Full textChao, Miantao, Yongxin Zhao, and Dongying Liang. "A Proximal Alternating Direction Method of Multipliers with a Substitution Procedure." Mathematical Problems in Engineering 2020 (April 27, 2020): 1–12. http://dx.doi.org/10.1155/2020/7876949.
Full textDias, Bruno H., André L. M. Marcato, Reinaldo C. Souza, Murilo P. Soares, Ivo C. Silva Junior, Edimar J. de Oliveira, Rafael B. S. Brandi, and Tales P. Ramos. "Stochastic Dynamic Programming Applied to Hydrothermal Power Systems Operation Planning Based on the Convex Hull Algorithm." Mathematical Problems in Engineering 2010 (2010): 1–20. http://dx.doi.org/10.1155/2010/390940.
Full textSUN, YIJUN, SINISA TODOROVIC, and JIAN LI. "REDUCING THE OVERFITTING OF ADABOOST BY CONTROLLING ITS DATA DISTRIBUTION SKEWNESS." International Journal of Pattern Recognition and Artificial Intelligence 20, no. 07 (November 2006): 1093–116. http://dx.doi.org/10.1142/s0218001406005137.
Full textXu, Lei. "One-Bit-Matching Theorem for ICA, Convex-Concave Programming on Polyhedral Set, and Distribution Approximation for Combinatorics." Neural Computation 19, no. 2 (February 2007): 546–69. http://dx.doi.org/10.1162/neco.2007.19.2.546.
Full textPopkov, Alexander S. "Optimal program control in the class of quadratic splines for linear systems." Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes 16, no. 4 (2020): 462–70. http://dx.doi.org/10.21638/11701/spbu10.2020.411.
Full textTang, Chunming, Yanni Li, Xiaoxia Dong, and Bo He. "A Generalized Alternating Linearization Bundle Method for Structured Convex Optimization with Inexact First-Order Oracles." Algorithms 13, no. 4 (April 14, 2020): 91. http://dx.doi.org/10.3390/a13040091.
Full textAlbers, A., H. Weiler, D. Emmrich, and B. Lauber. "A New Approach for Optimization of Sheet Metal Components." Advanced Materials Research 6-8 (May 2005): 255–62. http://dx.doi.org/10.4028/www.scientific.net/amr.6-8.255.
Full textLv, Zheng, Zhiping Qiu, and Qi Li. "An Interval Reduced Basis Approach and its Integrated Framework for Acoustic Response Analysis of Coupled Structural-Acoustic System." Journal of Computational Acoustics 25, no. 03 (September 2017): 1750009. http://dx.doi.org/10.1142/s0218396x17500096.
Full textTormena, F. V., E. G. F. Mercuri, and M. B. Hecke. "A Bone Remodelling Model Based on Generalised Thermodynamic Potentials and Optimisation Applied to a Trabecula with Cyclic Loading." Applied Bionics and Biomechanics 10, no. 4 (2013): 175–88. http://dx.doi.org/10.1155/2013/762867.
Full textWeir, T. "Programming with semilocally convex functions." Journal of Mathematical Analysis and Applications 168, no. 1 (July 1992): 1–12. http://dx.doi.org/10.1016/0022-247x(92)90185-g.
Full textMukherjee, R. N., and S. K. Mishra. "Multiobjective Programming with Semilocally Convex Functions." Journal of Mathematical Analysis and Applications 199, no. 2 (April 1996): 409–24. http://dx.doi.org/10.1006/jmaa.1996.0150.
Full textGoldbach, R. "Some Randomized Algorithms for Convex Quadratic Programming." Applied Mathematics and Optimization 39, no. 1 (January 2, 1999): 121–42. http://dx.doi.org/10.1007/s002459900101.
Full textYang, X. M. "On E-Convex Sets, E-Convex Functions, and E-Convex Programming." Journal of Optimization Theory and Applications 109, no. 3 (June 2001): 699–704. http://dx.doi.org/10.1023/a:1017532225395.
Full textDolatnezhadsomarin, Azam, Esmaile Khorram, and Latif Pourkarimi. "Efficient algorithms for solving nonlinear fractional programming problems." Filomat 33, no. 7 (2019): 2149–79. http://dx.doi.org/10.2298/fil1907149d.
Full textKozma, Attila, Christian Conte, and Moritz Diehl. "Benchmarking large-scale distributed convex quadratic programming algorithms." Optimization Methods and Software 30, no. 1 (May 12, 2014): 191–214. http://dx.doi.org/10.1080/10556788.2014.911298.
Full textLi, Min, Zhikai Jiang, and Zhangjin Zhou. "Dual–primal proximal point algorithms for extended convex programming." International Journal of Computer Mathematics 92, no. 7 (August 13, 2014): 1473–95. http://dx.doi.org/10.1080/00207160.2014.945920.
Full textLiu, Sanming, and Enmin Feng. "Another approach to multiobjective programming problems withF-convex functions." Journal of Applied Mathematics and Computing 17, no. 1-2 (March 2005): 379–90. http://dx.doi.org/10.1007/bf02936063.
Full textStefanov, Stefan M. "Method for solving a convex integer programming problem." International Journal of Mathematics and Mathematical Sciences 2003, no. 44 (2003): 2829–34. http://dx.doi.org/10.1155/s0161171203210516.
Full textAlimohammady, Mohsen, Yeol Je Cho, Vahid Dadashi, and Mehdi Roohi. "Convex sub-differential sum rule via convex semi-closed functions with applications in convex programming." Applied Mathematics Letters 24, no. 8 (August 2011): 1289–94. http://dx.doi.org/10.1016/j.aml.2011.01.046.
Full textTrdlička, Jiří, and Zdeněk Hanzálek. "Distributed Algorithm for Real-Time Energy Optimal Routing Based on Dual Decomposition of Linear Programming." International Journal of Distributed Sensor Networks 8, no. 1 (September 26, 2011): 346163. http://dx.doi.org/10.1155/2012/346163.
Full textChan, Timothy M. "Deterministic Algorithms for 2-d Convex Programming and 3-d Online Linear Programming." Journal of Algorithms 27, no. 1 (April 1998): 147–66. http://dx.doi.org/10.1006/jagm.1997.0914.
Full textLe, Hoai Minh, Hoai An Le Thi, Tao Pham Dinh, and Van Ngai Huynh. "Block Clustering Based on Difference of Convex Functions (DC) Programming and DC Algorithms." Neural Computation 25, no. 10 (October 2013): 2776–807. http://dx.doi.org/10.1162/neco_a_00490.
Full textYin, Jing Ben, and Kun Li. "A Deterministic Method for a Class of Fractional Programming Problems with Coefficients." Key Engineering Materials 467-469 (February 2011): 531–36. http://dx.doi.org/10.4028/www.scientific.net/kem.467-469.531.
Full textLai, H. C., and J. C. Liu. "On Minimax Fractional Programming of Generalized Convex Set Functions." Journal of Mathematical Analysis and Applications 244, no. 2 (April 2000): 442–65. http://dx.doi.org/10.1006/jmaa.2000.6715.
Full textLiao, Jiagen, and Tingsong Du. "On some characterizations of sub-b-s-convex functions." Filomat 30, no. 14 (2016): 3885–95. http://dx.doi.org/10.2298/fil1614885l.
Full textWeir, T., and V. Jeyakumar. "A class of nonconvex functions and mathematical programming." Bulletin of the Australian Mathematical Society 38, no. 2 (October 1988): 177–89. http://dx.doi.org/10.1017/s0004972700027441.
Full textLai, H. C., and J. C. Liu. "Complex Fractional Programming Involving Generalized Quasi/Pseudo Convex Functions." ZAMM 82, no. 3 (March 2002): 159–66. http://dx.doi.org/10.1002/1521-4001(200203)82:3<159::aid-zamm159>3.0.co;2-5.
Full textSkarin, V. D. "Barrier function method and correction algorithms for improper convex programming problems." Proceedings of the Steklov Institute of Mathematics 263, S2 (December 2008): 120–34. http://dx.doi.org/10.1134/s0081543808060126.
Full textLe Thi, Hoai An, Xuan Thanh Vo, and Tao Pham Dinh. "Efficient Nonnegative Matrix Factorization by DC Programming and DCA." Neural Computation 28, no. 6 (June 2016): 1163–216. http://dx.doi.org/10.1162/neco_a_00836.
Full textYANG, XIAONAN, and HONG-KUN XU. "Projection algorithms for composite minimization." Carpathian Journal of Mathematics 33, no. 3 (2017): 389–97. http://dx.doi.org/10.37193/cjm.2017.03.14.
Full textFu, J. Y., and Y. H. Wang. "Arcwise Connected Cone-Convex Functions and Mathematical Programming." Journal of Optimization Theory and Applications 118, no. 2 (August 2003): 339–52. http://dx.doi.org/10.1023/a:1025451422581.
Full textLiu, G. S., J. Y. Han, and J. Z. Zhang. "Exact Penalty Functions for Convex Bilevel Programming Problems." Journal of Optimization Theory and Applications 110, no. 3 (September 2001): 621–43. http://dx.doi.org/10.1023/a:1017592429235.
Full textKhalafi, Delavar, and Bijan Davvaz. "Algebraic hyper-structures associated to convex analysis and applications." Filomat 26, no. 1 (2012): 55–65. http://dx.doi.org/10.2298/fil1201055k.
Full textLiu, Xiaoling, and Dehui Yuan. "Mathematical programming involving B-(Hp,r,α)-generalized convex functions." International Journal of Mathematical Analysis 15, no. 4 (2021): 167–79. http://dx.doi.org/10.12988/ijma.2021.912203.
Full textMonteiro, Renato D. C., and Ilan Adler. "Interior path following primal-dual algorithms. part II: Convex quadratic programming." Mathematical Programming 44, no. 1-3 (May 1989): 43–66. http://dx.doi.org/10.1007/bf01587076.
Full textEmama, Tarek. "Optimality for E-[0,1] convex multi-objective programming." Filomat 31, no. 3 (2017): 529–41. http://dx.doi.org/10.2298/fil1703529e.
Full textGardiner, Bryan, and Yves Lucet. "Convex Hull Algorithms for Piecewise Linear-Quadratic Functions in Computational Convex Analysis." Set-Valued and Variational Analysis 18, no. 3-4 (August 25, 2010): 467–82. http://dx.doi.org/10.1007/s11228-010-0157-5.
Full textYe, Yinyu. "Interior-Point Polynomial Algorithms in Convex Programming (Y. Nesterov and A. Nemirovskii)." SIAM Review 36, no. 4 (December 1994): 682–83. http://dx.doi.org/10.1137/1036175.
Full textAtallah, Mikhail J., and Michael T. Goodrich. "Parallel algorithms for some functions of two convex polygons." Algorithmica 3, no. 1-4 (November 1988): 535–48. http://dx.doi.org/10.1007/bf01762130.
Full textSkarin, V. D. "Approximation and regularization properties of augmented penalty functions in convex programming." Proceedings of the Steklov Institute of Mathematics 269, S1 (July 2010): 266–84. http://dx.doi.org/10.1134/s0081543810060222.
Full textHerzel1, Stefano, and Michael J. Todd. "Two interior-point algorithms for a class of convex programming problems." Optimization Methods and Software 5, no. 1 (January 1995): 27–55. http://dx.doi.org/10.1080/10556789508805601.
Full textJia, Zehui, Ke Guo, and Xingju Cai. "Convergence Analysis of Alternating Direction Method of Multipliers for a Class of Separable Convex Programming." Abstract and Applied Analysis 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/680768.
Full textShen, Feichao, Ying Zhang, and Xueyong Wang. "An Accelerated Proximal Algorithm for the Difference of Convex Programming." Mathematical Problems in Engineering 2021 (April 24, 2021): 1–9. http://dx.doi.org/10.1155/2021/9994015.
Full textGulati, T. R., and M. A. Islam. "Sufficiency and Duality in Multiobjective Programming Involving Generalized F-Convex Functions." Journal of Mathematical Analysis and Applications 183, no. 1 (April 1994): 181–95. http://dx.doi.org/10.1006/jmaa.1994.1139.
Full textYokoyama, Kazunori. "ε-optimality criteria for convex programming problems via exact penalty functions." Mathematical Programming 56, no. 1-3 (August 1992): 233–43. http://dx.doi.org/10.1007/bf01580901.
Full text