Academic literature on the topic 'Alignment of images'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alignment of images.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Alignment of images"
Lamprinou, Nefeli, Nikolaos Nikolikos, and Emmanouil Z. Psarakis. "Groupwise Image Alignment via Self Quotient Images." Sensors 20, no. 8 (April 19, 2020): 2325. http://dx.doi.org/10.3390/s20082325.
Full textHaselgrove, John, Lou Fodor, and Lee Peachey. "Automatic alignment of stereo images." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 502–3. http://dx.doi.org/10.1017/s0424820100170244.
Full textMohammad Khidher Mohammed A. M. Al-taee, Israa. "Creating Image Mosaics using Statistical Methods for Images Alignment." JOURNAL OF EDUCATION AND SCIENCE 24, no. 1 (March 1, 2011): 93–107. http://dx.doi.org/10.33899/edusj.2011.51409.
Full textWang, C. W., and H. C. Chen. "Improved image alignment method in application to X-ray images and biological images." Bioinformatics 29, no. 15 (May 29, 2013): 1879–87. http://dx.doi.org/10.1093/bioinformatics/btt309.
Full textWang, Guan-An, Tianzhu Zhang, Yang Yang, Jian Cheng, Jianlong Chang, Xu Liang, and Zeng-Guang Hou. "Cross-Modality Paired-Images Generation for RGB-Infrared Person Re-Identification." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 07 (April 3, 2020): 12144–51. http://dx.doi.org/10.1609/aaai.v34i07.6894.
Full textMonro, D. M., and D. M. Simpson. "Alignment blur in coherently averaged images." IEEE Transactions on Signal Processing 44, no. 6 (June 1996): 1596–601. http://dx.doi.org/10.1109/78.506630.
Full textSAXTON, W. O. "Accurate alignment of sets of images." Journal of Microscopy 174, no. 2 (May 1994): 61–68. http://dx.doi.org/10.1111/j.1365-2818.1994.tb03449.x.
Full textRadermacher, Michael, and Teresa Ruiz. "On cross-correlations, averages and noise in electron microscopy." Acta Crystallographica Section F Structural Biology Communications 75, no. 1 (January 1, 2019): 12–18. http://dx.doi.org/10.1107/s2053230x18014036.
Full textNagumo, Kent, Tomohiro Kobayashi, Kosuke Oiwa, and Akio Nozawa. "Face Alignment in Thermal Infrared Images Using Cascaded Shape Regression." International Journal of Environmental Research and Public Health 18, no. 4 (February 12, 2021): 1776. http://dx.doi.org/10.3390/ijerph18041776.
Full textWinz, M. L., K. Rohr, and S. Wörz. "Geometric Alignment of 2D Gel Electrophoresis Images." Methods of Information in Medicine 48, no. 04 (2009): 320–23. http://dx.doi.org/10.3414/me9229.
Full textDissertations / Theses on the topic "Alignment of images"
Gieffers, Amy Christina 1975. "Image alignment algorithms for ultrasound images with contrast." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/46193.
Full textIncludes bibliographical references (leaves 70-74).
by Amy Christina Gieffers.
M.Eng.
Melbourne, A. "Alignment of contrast enhanced medical images." Thesis, University College London (University of London), 2009. http://discovery.ucl.ac.uk/15846/.
Full textNoble, Nicholas Michael Ian. "Information alignment and extraction from cardiac magnetic resonance images." Thesis, King's College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415344.
Full textMatos, Luís Miguel de Oliveira. "Lossless compression algorithms for microarray images and whole genome alignments." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/14273.
Full textNowadays, in the 21st century, the never-ending expansion of information is a major global concern. The pace at which storage and communication resources are evolving is not fast enough to compensate this tendency. In order to overcome this issue, sophisticated and efficient compression tools are required. The goal of compression is to represent information with as few bits as possible. There are two kinds of compression, lossy and lossless. In lossless compression, information loss is not tolerated so the decoded information is exactly the same as the encoded one. On the other hand, in lossy compression some loss is acceptable. In this work we focused on lossless methods. The goal of this thesis was to create lossless compression tools that can be used in two types of data. The first type is known in the literature as microarray images. These images have 16 bits per pixel and a high spatial resolution. The other data type is commonly called Whole Genome Alignments (WGA), in particularly applied to MAF files. Regarding the microarray images, we improved existing microarray-specific methods by using some pre-processing techniques (segmentation and bitplane reduction). Moreover, we also developed a compression method based on pixel values estimates and a mixture of finite-context models. Furthermore, an approach based on binary-tree decomposition was also considered. Two compression tools were developed to compress MAF files. The first one based on a mixture of finite-context models and arithmetic coding, where only the DNA bases and alignment gaps were considered. The second tool, designated as MAFCO, is a complete compression tool that can handle all the information that can be found in MAF files. MAFCO relies on several finite-context models and allows parallel compression/decompression of MAF files.
Hoje em dia, no século XXI, a expansão interminável de informação é uma grande preocupação mundial. O ritmo ao qual os recursos de armazenamento e comunicação estão a evoluir não é suficientemente rápido para compensar esta tendência. De forma a ultrapassar esta situação, são necessárias ferramentas de compressão sofisticadas e eficientes. A compressão consiste em representar informação utilizando a menor quantidade de bits possível. Existem dois tipos de compressão, com e sem perdas. Na compressão sem perdas, a perda de informação não é tolerada, por isso a informação descodificada é exatamente a mesma que a informação que foi codificada. Por outro lado, na compressão com perdas alguma perda é aceitável. Neste trabalho, focámo-nos apenas em métodos de compressão sem perdas. O objetivo desta tese consistiu na criação de ferramentas de compressão sem perdas para dois tipos de dados. O primeiro tipo de dados é conhecido na literatura como imagens de microarrays. Estas imagens têm 16 bits por píxel e uma resolução espacial elevada. O outro tipo de dados é geralmente denominado como alinhamento de genomas completos, particularmente aplicado a ficheiros MAF. Relativamente às imagens de microarrays, melhorámos alguns métodos de compressão específicos utilizando algumas técnicas de pré-processamento (segmentação e redução de planos binários). Além disso, desenvolvemos também um método de compressão baseado em estimação dos valores dos pixéis e em misturas de modelos de contexto-finito. Foi também considerada, uma abordagem baseada em decomposição em árvore binária. Foram desenvolvidas duas ferramentas de compressão para ficheiros MAF. A primeira ferramenta, é baseada numa mistura de modelos de contexto-finito e codificação aritmética, onde apenas as bases de ADN e os símbolos de alinhamento foram considerados. A segunda, designada como MAFCO, é uma ferramenta de compressão completa que consegue lidar com todo o tipo de informação que pode ser encontrada nos ficheiros MAF. MAFCO baseia-se em vários modelos de contexto-finito e permite compressão/descompressão paralela de ficheiros MAF.
Queimadelas, Cátia Cristina Arranca. "Automated segmentation, tracking and evaluation of bacteria in microscopy images." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8435.
Full textMost of the investigation in microbiology relies on microscope imaging and needs to be complemented with reliable methods of computer assisted image processing, in order to avoid manual analysis. In this work, a method to assist the study of the in vivo kinetics of protein expression from Escherichia coli cells was developed. Confocal fluorescence microscopy (CFM) and Differential Interference Contrast (DIC) microscopy images were acquired and processed using the developed method. This method comprises two steps: the first one is focused on the cells detection using DIC images. The latter aligns both DIC and CFM images and computes the fluorescence level emitted by each cell. For the first step, the Gradient Path Labelling (GPL) algorithm was used which produces a moderate over-segmented DIC image. The proposed algorithm, based on decision trees generated by the Classification and Regression Trees (CART) algorithm, discards the backgrounds regions and merges the regions belonging to the same cell. To align DIC/fluorescence images an exhaustive search of the relative position and scale parameters that maximizes the fluorescence inside the cells is made. After the cells have been located on the CFM images, the fluorescence emitted by each cell is evaluated. The discard classifier performed with an error rate of 1:81% 0:98% and the merge classifier with 3:25% 1:37%. The segmentation algorithm detected 93:71% 2:06% of the cells in the tested images. The tracking algorithm correctly followed 64:52% 16:02% of cells and the alignment method successfully aligned all the tested images.
Härd, Victoria. "Automatic Alignment of 2D Cine Morphological Images Using 4D Flow MRI Data." Thesis, Linköpings universitet, Datorseende, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-131470.
Full textBergnéhr, Leo. "Segmentation and Alignment of 3-D Transaxial Myocardial Perfusion Images and Automatic Dopamin Transporter Quantification." Thesis, Linköping University, Department of Biomedical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11716.
Full textNukleärmedicinska bilder som exempelvis SPECT (Single Photon Emission Tomogra-phy) är en bildgenererande teknik som ofta används i många applikationer vid mätning av fysiologiska egenskaper i den mänskliga kroppen. En vanlig sorts undersökning som använder sig av SPECT är myokardiell perfusion (blodflöde i hjärtvävnaden), som ofta används för att undersöka t.ex. en möjlig hjärtinfarkt. För att göra det möjligt för läkare att ställa en kvalitativ diagnos baserad på dessa bilder, måste bilderna först segmenteras och roteras av en biomedicinsk analytiker. Detta utförs på grund av att hjärtat hos olika patienter, eller hos patienter vid olika examinationstillfällen, inte är lokaliserat och roterat på samma sätt, vilket är ett väsentligt antagande av läkaren vid granskning
av bilderna. Eftersom olika biomedicinska analytiker med olika mängd erfarenhet och expertis roterar bilderna olika uppkommer variation av de slutgiltiga bilder, vilket ofta kan vara ett problem vid diagnostisering.
En annan sorts nukleärmedicinsk undersökning är vid kvantifiering av dopaminreceptorer i de basala ganglierna i hjärnan. Detta utförs ofta på patienter som visar symptom av Parkinsons sjukdom, eller liknande sjukdomar. För att kunna bestämma graden av sjukdomen används ofta ett utförande för att räkna ut olika kvoter mellan områden runt dopaminreceptorerna. Detta är ett tröttsamt arbete för personen som utför kvantifieringen och trots att de insamlade bilderna är tredimensionella, utförs kvantifieringen allt för ofta endast på en eller flera skivor av bildvolymen. I likhet med myokardiell perfusionsundersökningar är variation mellan kvantifiering utförd av olika personer en möjlig felkälla.
I den här rapporten presenteras en ny metod för att automatiskt segmentera hjärtats vänstra kammare i SPECT-bilder. Segmenteringen är baserad på en intensitetsinvariant lokal-fasbaserad lösning, vilket eliminerar svårigheterna med den i myokardiella perfusionsbilder ofta varierande intensiteten. Dessutom används metoden för att uppskatta vinkeln hos hjärtats vänstra kammare. Efter att metoden sedan smått justerats används den som ett förslag på ett nytt sätt att automatiskt kvantifiera dopaminreceptorer i de basala ganglierna, vid användning av den radioaktiva lösningen DaTSCAN.
Nuclear medical imaging such as SPECT (Single Photon Emission Tomography) is an imaging modality which is readily used in many applications for measuring physiological properties of the human body. One very common type of examination using SPECT is when measuring myocardial perfusion (blood flow in the heart tissue), which is often used to examine e.g. a possible myocardial infarction (heart attack). In order for doctors to give a qualitative diagnose based on these images, the images must first be segmented and rotated by a medical technologist. This is performed due to the fact that the heart of different patients, or for patients at different times of examination, is not situated and rotated equally, which is an essential assumption for the doctor when examining the images. Consequently, as different technologists with different amount of experience and expertise will rotate images differently, variability between operators arises and can often become a problem in the process of diagnosing.
Another type of nuclear medical examination is when quantifying dopamine transporters in the basal ganglia in the brain. This is commonly done for patients showing symptoms of Parkinson’s disease or similar diseases. In order to specify the severity of the disease, a scheme for calculating different fractions between parts of the dopamine transporter area is often used. This is tedious work for the person performing the quantification, and despite the acquired three dimensional images, quantification is too often performed on one or more slices of the image volume. In resemblance with myocardial perfusion examinations, variability between different operators can also here present a possible source of errors.
In this thesis, a novel method for automatically segmenting the left ventricle of the heart in SPECT-images is presented. The segmentation is based on an intensity-invariant local-phase based approach, thus removing the difficulty of the commonly varying intensity in myocardial perfusion images. Additionally, the method is used to estimate the angle of the left ventricle of the heart. Furthermore, the method is slightly adjusted, and a new approach on automatically quantifying dopamine transporters in the basal ganglia using the DaTSCAN radiotracer is proposed.
Kesler, Joseph Michael. "Automated Alignment of Aircraft Wing Radiography Images Using a Modified Rotation, Scale, and Translation Invariant Phase Correlation Algorithm Employing Local Entropy for Peak Detection." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1218604857.
Full textPetrovic, Aleksandar. "Connectivity driven registration of magnetic resonance images of the human brain." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:fd95c6d4-06d2-41b4-b6f2-5cbd73cb83a9.
Full textRamírez, Orozco Raissel. "High dynamic range content acquisition from multiple exposures." Doctoral thesis, Universitat de Girona, 2016. http://hdl.handle.net/10803/371162.
Full textEl limitado rango dinámico de las imágenes digitales puede ampliarse mezclando varias imágenes adquiridas con diferentes valores de exposición. Esta tesis incluye un detallado resumen del estado del arte y tres métodos diferentes para alinear las imágenes y corregir el efecto ’ghosting’ en imágenes HDR. El primer método está centrado en detectar las áreas afectadas por el movimiento y registrar los objetos dinámicos sobre una imagen de referencia de modo que se logre recuperar información a lo largo de toda la imagen. Nuestra segunda propuesta es un método para obtener imágenes HDR multiscópicas a partir de diferentes exposiciones LDR. Está basado en un algoritmo de ’patch match’ que ha sido adaptado para aprovechar las ventajas de las restricciones de la geometría epipolar de imágenes estéreo. Por último proponemos reemplazar los píxeles saturados en la imagen de referencia usando valores correctos de otras imágenes de la secuencia.
Books on the topic "Alignment of images"
Franklin, Eric N. Dynamic alignment through imagery. 2nd ed. Champaign, IL: Human Kinetics, 2012.
Find full textVerghese, Gilbert. Perspective alignment back-projection for real-time monocular three-dimensional model-based computer vision. Toronto: Dept. of Computer Science, University of Toronto, 1995.
Find full textJacquet, Wolfgang. Focus Mutual Information for Medical Image Alignment in Dentistry, Orthodontics and Craniofacial Surgery. Academic & Scientific Publishers, 2010.
Find full textVerghese, Gilbert. Perspective alignment back-projection for real-time monocular three-dimensional model-based computer vision. 1995.
Find full textGillam, Barbara. Subjective Contours. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199794607.003.0098.
Full textBook chapters on the topic "Alignment of images"
Luo, Bin, and Edwin R. Hancock. "Procrustes Alignment with the EM Algorithm." In Computer Analysis of Images and Patterns, 623–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48375-6_74.
Full textHuang, Y., U. Knorr, H. Steinmetz, and R. J. Seitz. "Accurate Alignment and Reslicing of PET Images." In Computer Assisted Radiology / Computergestützte Radiologie, 788. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-49351-5_163.
Full textWachinger, Christian, and Nassir Navab. "Alignment of Viewing-Angle Dependent Ultrasound Images." In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, 779–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04268-3_96.
Full textMohamed, Waleed, A. Ben Hamza, and Khaled Gharaibeh. "Graph-Theoretic Image Alignment Using Topological Features." In Computational Modeling of Objects Represented in Images, 199–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12712-0_18.
Full textOishi, Takeshi, Atsushi Nakazawa, Ryo Kurazume, and Katsushi Ikeuchi. "A Fast Simultaneous Alignment of Multiple Range Images." In Digitally Archiving Cultural Objects, 89–107. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-75807_6.
Full textPerperidis, Dimitrios, Anil Rao, Maria Lorenzo-Valdés, Raad Mohiaddin, and Daniel Rueckert. "Spatio-temporal Alignment of 4D Cardiac MR Images." In Functional Imaging and Modeling of the Heart, 205–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44883-7_21.
Full textToews, Matthew, Lilla Zöllei, and William M. Wells. "Feature-Based Alignment of Volumetric Multi-modal Images." In Lecture Notes in Computer Science, 25–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38868-2_3.
Full textGabrani, Maria, and Oleh J. Tretiak. "Cross individual model-based alignment of volumetric images." In Noblesse Workshop on Non-Linear Model Based Image Analysis, 3–8. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1597-7_1.
Full textOishi, Takeshi, Atsushi Nakazawa, Ryo Kurazume, Katsushi Ikeuchi, and Ryusuke Sagawa. "Parallel Alignment of a Large Number of Range Images." In Digitally Archiving Cultural Objects, 109–26. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-75807_7.
Full textOvergaard, Niels Chr, and Jan Erik Solem. "An Analysis of Variational Alignment of Curves in Images." In Lecture Notes in Computer Science, 480–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11408031_41.
Full textConference papers on the topic "Alignment of images"
Li, Ang, Jianzhong Qi, Rui Zhang, Xingjun Ma, and Kotagiri Ramamohanarao. "Generative Image Inpainting with Submanifold Alignment." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/114.
Full textCheng, Li-Chang, and Joerg Meyer. "Volumetric Image Alignment Utilizing Particle Swarm Optimization." In ASME 2009 4th Frontiers in Biomedical Devices Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/biomed2009-83084.
Full textMustra, Mario, Mislav Grgic, and Branka Zovko-Cihlar. "Alignment of X-ray bone images." In 2014 X International Symposium on Telecommunications (BIHTEL). IEEE, 2014. http://dx.doi.org/10.1109/bihtel.2014.6987650.
Full textPires, B. E., and P. M. Q. Aguiar. "Featureless global alignment of multiple images." In 2005 International Conference on Image Processing. IEEE, 2005. http://dx.doi.org/10.1109/icip.2005.1529686.
Full textHuang, Gary B., Vidit Jain, and Erik Learned-Miller. "Unsupervised Joint Alignment of Complex Images." In 2007 IEEE 11th International Conference on Computer Vision. IEEE, 2007. http://dx.doi.org/10.1109/iccv.2007.4408858.
Full textGonzalez, Diego Marcos, Gustau Camps-Valls, and Devis Tuia. "Weakly supervised alignment of multisensor images." In IGARSS 2015 - 2015 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2015. http://dx.doi.org/10.1109/igarss.2015.7326341.
Full textXi Yin, Xiaoming Liu, Jin Chen, and David M. Kramer. "Multi-leaf alignment from fluorescence plant images." In 2014 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2014. http://dx.doi.org/10.1109/wacv.2014.6836067.
Full textBose, A., S. K. Shah, G. P. Reece, M. A. Crosby, E. K. Beahm, M. C. Fingeret, M. K. Markey, and F. A. Merchant. "Automated spatial alignment of 3D torso images." In 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6092086.
Full textPoleg, Yair, and Shmuel Peleg. "Alignment and mosaicing of non-overlapping images." In 2012 IEEE International Conference on Computational Photography (ICCP). IEEE, 2012. http://dx.doi.org/10.1109/iccphot.2012.6215214.
Full textHomola, Tomas, Vlastislav Dohnal, and Pavel Zezula. "Searching for Sub-images Using Sequence Alignment." In 2011 IEEE International Symposium on Multimedia (ISM). IEEE, 2011. http://dx.doi.org/10.1109/ism.2011.19.
Full textReports on the topic "Alignment of images"
Shields, Janet E., Richard W. Johnson, Monette E. Karr, Richard A. Weymouth, and David S. Sauer. Delivery and Development of a Day/Night Whole Sky Imager with Enhanced Angular Alignment for Full 24 Hour Cloud Distribution Assessment. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada333269.
Full text