Academic literature on the topic 'Aliphatic compounds – Metabolism'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aliphatic compounds – Metabolism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aliphatic compounds – Metabolism"

1

Soong, Chee-Leong, Jun Ogawa, and Sakayu Shimizu. "A Novel Amidase (Half-Amidase) for Half-Amide Hydrolysis Involved in the Bacterial Metabolism of Cyclic Imides." Applied and Environmental Microbiology 66, no. 5 (May 1, 2000): 1947–52. http://dx.doi.org/10.1128/aem.66.5.1947-1952.2000.

Full text
Abstract:
ABSTRACT A novel amidase involved in bacterial cyclic imide metabolism was purified from Blastobacter sp. strain A17p-4. The enzyme physiologically functions in the second step of cyclic imide degradation, i.e., the hydrolysis of monoamidated dicarboxylates (half-amides) to dicarboxylates and ammonia. Enzyme production was enhanced by cyclic imides such as succinimide and glutarimide but not by amide compounds which are conventional substrates and inducers of known amidases. The purified amidase showed high catalytic efficiency toward half-amides such as succinamic acid (Km = 6.2 mM; k cat = 5.76 s−1) and glutaramic acid (Km = 2.8 mM;k cat = 2.23 s−1). However, the substrates of known amidases such as short-chain (C2 to C4) aliphatic amides, long-chain (above C16) aliphatic amides, amino acid amides, aliphatic diamides, α-keto acid amides, N-carbamoyl amino acids, and aliphatic ureides were not substrates for the enzyme. Based on its high specificity toward half-amides, the enzyme was named half-amidase. This half-amidase exists as a monomer with an M r of 48,000 and was strongly inhibited by heavy metal ions and sulfhydryl reagents.
APA, Harvard, Vancouver, ISO, and other styles
2

Valdes, Francisco, Nelson Brown, Alejandro Morales-Bayuelo, Luis Prent-Peñaloza, and Margarita Gutierrez. "Adenosine Derivates as Antioxidant Agents: Synthesis, Characterization, in Vitro Activity, and Theoretical Insights." Antioxidants 8, no. 10 (October 9, 2019): 468. http://dx.doi.org/10.3390/antiox8100468.

Full text
Abstract:
In this work, we present results about the synthesis and the antioxidant properties of seven adenosine derivatives. Four of these compounds were synthesized by substituting the N6-position of adenosine with aliphatic amines, and three were obtained by modification of the ribose ring. All compounds were obtained in pure form using column chromatography, and their structures were elucidated by infrared spectroscopy (IR) and Nuclear Magnetic Resonance (NMR). All adenosine derivatives were further evaluated in vitro as free radical scavengers. Our results show that compounds 1c, 3, and 5 display a potent antioxidant effect compared with the reference compound ascorbic acid. In addition, the absorption, distribution, metabolism and excretion (ADME) calculations show favorable pharmacokinetic parameters for the set of compounds analyzed, which guarantees their suitability as potential antioxidant drugs. Furthermore, theoretical analyses using Molecular Quantum Similarity and reactivity indices were performed in order to discriminate the different reactive sites involved in oxidative processes.
APA, Harvard, Vancouver, ISO, and other styles
3

Kahnert, Antje, Paul Vermeij, Claudia Wietek, Peter James, Thomas Leisinger, and Michael A. Kertesz. "The ssu Locus Plays a Key Role in Organosulfur Metabolism in Pseudomonas putidaS-313." Journal of Bacteriology 182, no. 10 (May 15, 2000): 2869–78. http://dx.doi.org/10.1128/jb.182.10.2869-2878.2000.

Full text
Abstract:
ABSTRACT Pseudomonas putida S-313 can utilize a broad range of aromatic sulfonates as sulfur sources for growth in sulfate-free minimal medium. The sulfonates are cleaved monooxygenolytically to yield the corresponding phenols. miniTn5 mutants of strain S-313 which were no longer able to desulfurize arylsulfonates were isolated and were found to carry transposon insertions in the ssuEADCBF operon, which contained genes for an ATP-binding cassette-type transporter (ssuABC), a two-component reduced flavin mononucleotide-dependent monooxygenase (ssuED) closely related to the Escherichia coli alkanesulfonatase, and a protein related to clostridial molybdopterin-binding proteins (ssuF). These mutants were also deficient in growth with a variety of other organosulfur sources, including aromatic and aliphatic sulfate esters, methionine, and aliphatic sulfonates other than the natural sulfonates taurine and cysteate. This pleiotropic phenotype was complemented by the ssu operon, confirming its key role in organosulfur metabolism in this species. Further complementation analysis revealed that the ssuF gene product was required for growth with all of the tested substrates except methionine and that the oxygenase encoded byssuD was required for growth with sulfonates or methionine. The flavin reductase SsuE was not required for growth with aliphatic sulfonates or methionine but was needed for growth with arylsulfonates, suggesting that an alternative isozyme exists for the former compounds that is not active in transformation of the latter substrates. Aryl sulfate ester utilization was catalyzed by an arylsulfotransferase, and not by an arylsulfatase as in the related species Pseudomonas aeruginosa.
APA, Harvard, Vancouver, ISO, and other styles
4

Kliebenstein, Daniel J., Jonathan Gershenzon, and Thomas Mitchell-Olds. "Comparative Quantitative Trait Loci Mapping of Aliphatic, Indolic and Benzylic Glucosinolate Production in Arabidopsis thaliana Leaves and Seeds." Genetics 159, no. 1 (September 1, 2001): 359–70. http://dx.doi.org/10.1093/genetics/159.1.359.

Full text
Abstract:
Abstract Secondary metabolites are a diverse set of plant compounds believed to have numerous functions in plant-environment interactions. Despite this importance, little is known about the regulation of secondary metabolite accumulation. We are studying the regulation of glucosinolates, a large group of secondary metabolites, in Arabidopsis to investigate how secondary metabolism is controlled. We utilized Ler and Cvi, two ecotypes of Arabidopsis that have striking differences in both the types and amounts of glucosinolates that accumulate in the seeds and leaves. QTL analysis identified six loci determining total aliphatic glucosinolate accumulation, six loci controlling total indolic glucosinolate concentration, and three loci regulating benzylic glucosinolate levels. Our results show that two of the loci controlling total aliphatic glucosinolates map to biosynthetic loci that interact epistatically to regulate aliphatic glucosinolate accumulation. In addition to the six loci regulating total indolic glucosinolate concentration, mapping of QTL for the individual indolic glucosinolates identified five additional loci that were specific to subsets of the indolic glucosinolates. These data show that there are a large number of variable loci controlling glucosinolate accumulation in Arabidopsis thaliana.
APA, Harvard, Vancouver, ISO, and other styles
5

Kitainda, Vivian, and Joseph M. Jez. "Structural Studies of Aliphatic Glucosinolate Chain-Elongation Enzymes." Antioxidants 10, no. 9 (September 21, 2021): 1500. http://dx.doi.org/10.3390/antiox10091500.

Full text
Abstract:
Plants evolved specialized metabolic pathways through gene duplication and functional divergence of enzymes involved in primary metabolism. The results of this process are varied pathways that produce an array of natural products useful to both plants and humans. In plants, glucosinolates are a diverse class of natural products. Glucosinolate function stems from their hydrolysis products, which are responsible for the strong flavors of Brassicales plants, such as mustard, and serve as plant defense molecules by repelling insects, fighting fungal infections, and discouraging herbivory. Additionally, certain hydrolysis products such as isothiocyanates can potentially serve as cancer prevention agents in humans. The breadth of glucosinolate function is a result of its great structural diversity, which comes from the use of aliphatic, aromatic and indole amino acids as precursors and elongation of some side chains by up to nine carbons, which, after the formation of the core glucosinolate structure, can undergo further chemical modifications. Aliphatic methionine-derived glucosinolates are the most abundant form of these compounds. Although both elongation and chemical modification of amino acid side chains are important for aliphatic glucosinolate diversity, its elongation process has not been well described at the molecular level. Here, we summarize new insights on the iterative chain-elongation enzymes methylthioalkylmalate synthase (MAMS) and isopropylmalate dehydrogenase (IPMDH).
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Mingxing, Zhendong Cao, Yue Zhang, and Honghan Wu. "Deciphering the biodegradation of petroleum hydrocarbons using FTIR spectroscopy: application to a contaminated site." Water Science and Technology 80, no. 7 (October 1, 2019): 1315–25. http://dx.doi.org/10.2166/wst.2019.375.

Full text
Abstract:
Abstract The chemical composition of groundwater in a petroleum-contaminated site is determined by the present functional groups and these play a vital role in a feasibility remediation technique. Based on the in situ investigation of a contaminated shallow groundwater in an oilfield, Fourier transform infrared (FTIR) spectroscopy associated with chemometric treatments, principal component analysis (PCA), and simple-to-use interactive self-modeling mixture analysis (SIMPLISMA), were used to decipher the biodegradation process by analyzing the conversion of functional groups. Environmental factors that can influence microbial metabolism were also evaluated for a comprehensive explanation. FTIR spectroscopy and PCA results showed that the contamination in the study area can be divided into three parts based on FTIR spectra: (1) regular contamination plume distribution and biodegradation level to fresh oil, (2) moderate biodegradation area, and (3) intensive biodegradation area. FTIR spectra further revealed the present functional groups as aliphatic, aromatic, and polar family compounds. SIMPLISMA was used to discuss the degree of biodegradation along the flow path quantitatively and qualitatively and elucidated that the aliphatic and aromatic compounds were mainly metabolized into polar compounds with nitrogen, sulfur, and oxygen via microbes. During metabolism, microbial indices, such as the Shannon–Weaver, Simpson, and Pielou indices, indicated that microbial diversity did not greatly change; hence, hydrocarbons were constantly consumed to feed dominant microbes. Dissolved oxygen concentrations decreased from 4.58 ± 0.31 mg/L (in monitoring well Z1) to 3.21 ± 0.26 mg/L (in monitoring well Z16) and then became constant in the down-gradient area, demonstrating that aerobic biodegradation was the dominant process at the up-gradient plume. Results were in accordance with the oxidation index, which continuously increased from 0.028 ± 0.013 (in monitoring well Z1) to 0.669 ± 0.047 (in monitoring well Z10), showing that oxygen was consumed along the flow path. Similarly, concentration changes in Fe2+, Mn2+, and SO42− proved that the down-gradient area was in reduction condition.
APA, Harvard, Vancouver, ISO, and other styles
7

Baranitharan, Mathalaimuthu, Barbara Sawicka, and Jayapal Gokulakrishnan. "Phytochemical Profiling and Larval Control of Erythrina variegata Methanol Fraction against Malarial and Filarial Vector." Advances in Preventive Medicine 2019 (April 16, 2019): 1–9. http://dx.doi.org/10.1155/2019/2641959.

Full text
Abstract:
Erythrina variegata (E. variegata) bioactive chemical has been the potential to be utilized as a good, eco-friendly approach for the control of mosquito population. In the present investigation, methanol extract using insecticidal compounds isolated against mosquito larvae kill assay was carried out. Secondary metabolism was characterized by thin layer chromatography, column chromatography, Fourier transform-infrared spectroscopy, gas chromatography-mass spectral, and identification of compound. Mosquito immature third instar larval, Anopheles stephensi, and Culex quinquefasciatus have been exposed to different concentrations of 50-250 µg/ml. Totally, larvae were death rate 98.2% (significant value 0.001b) from methanol extract and it is significant toxicity against larvae of An. stephensi and Cx. quinquefasciatus with LC50/LC99 values were 157.69/339.55 µg/ml and 137.67/297.33 µg/ml, respectively. FT-IR analysis in the functional groups such as alcohol, amines, amides, alkenes, 1⁎ amines, aromatic amines, aliphatic amines, 1⁎,2⁎ amines, and alkyl halides searched the identity of secondary metabolites, which may act as 12-Octadecenoic acid, methyl ester compound and clearly indicates being phytochemical. Chemical constituents of twenty-five compounds were identified in the methanol extract. The major components were 12-Octadecenoic acid and methyl ester (37.31%). Compound molecules consist of carbon 19 atoms (gray), hydrogen 36 atoms (greenish blue), and oxygen 2 atoms (red), indicated by the different colors. The results were obtained suggesting that, in addition to their pharmaceutical and medicine sources, 12-Octadecenoic acid, methyl ester compound can also serve as a natural mosquito control.
APA, Harvard, Vancouver, ISO, and other styles
8

Peters, Franziska, Michael Rother, and Matthias Boll. "Selenocysteine-Containing Proteins in Anaerobic Benzoate Metabolism of Desulfococcus multivorans." Journal of Bacteriology 186, no. 7 (April 1, 2004): 2156–63. http://dx.doi.org/10.1128/jb.186.7.2156-2163.2004.

Full text
Abstract:
ABSTRACT The sulfate-reducing bacterium Desulfococcus multivorans uses various aromatic compounds as sources of cell carbon and energy. In this work, we studied the initial steps in the aromatic metabolism of this strictly anaerobic model organism. An ATP-dependent benzoate coenzyme A (CoA) ligase (AMP plus PPi forming) composed of a single 59-kDa subunit was purified from extracts of cells grown on benzoate. Specific activity was highest with benzoate and some benzoate derivatives, whereas aliphatic carboxylic acids were virtually unconverted. The N-terminal amino acid sequence showed high similarities with benzoate CoA ligases from Thauera aromatica and Azoarcus evansii. When cultivated on benzoate, cells strictly required selenium and molybdenum, whereas growth on nonaromatic compounds, such as cyclohexanecarboxylate or lactate, did not depend on the presence of the two trace elements. The growth rate on benzoate was half maximal with 1 nM selenite present in the growth medium. In molybdenum- and/or selenium-depleted cultures, growth on benzoate could be induced by addition of the missing trace elements. In extracts of cells grown on benzoate in the presence of [75Se]selenite, three radioactively labeled proteins with molecular masses of ∼100, 30, and 27 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 100- and 30-kDa selenoproteins were 5- to 10-fold induced in cells grown on benzoate compared to cells grown on lactate. These results suggest that the dearomatization process in D. multivorans is not catalyzed by the ATP-dependent Fe-S enzyme benzoyl-CoA reductase as in facultative anaerobes but rather involves unknown molybdenum- and selenocysteine-containing proteins.
APA, Harvard, Vancouver, ISO, and other styles
9

Lasch, Constanze, Nils Gummerlich, Maksym Myronovskyi, Anja Palusczak, Josef Zapp, and Andriy Luzhetskyy. "Loseolamycins: A Group of New Bioactive Alkylresorcinols Produced after Heterologous Expression of a Type III PKS from Micromonospora endolithica." Molecules 25, no. 20 (October 9, 2020): 4594. http://dx.doi.org/10.3390/molecules25204594.

Full text
Abstract:
Natural products are a valuable source of biologically active compounds with potential applications in medicine and agriculture. Unprecedented scaffold diversity of natural products and biocatalysts from their biosynthetic pathways are of fundamental importance. Heterologous expression and refactoring of natural product biosynthetic pathways are generally regarded as a promising approach to discover new secondary metabolites of microbial origin. Here, we present the identification of a new group of alkylresorcinols after transcriptional activation and heterologous expression of the type III polyketide synthase of Micromonospora endolithica. The most abundant compounds loseolamycins A1 and A2 have been purified and their structures were elucidated by NMR. Loseolamycins contain an unusual branched hydroxylated aliphatic chain which is provided by the host metabolism and is incorporated as a starter fatty acid unit. The isolated loseolamycins show activity against gram-positive bacteria and inhibit the growth of the monocot weed Agrostis stolonifera in a germination assay. The biosynthetic pathway leading to the production of loseolamycins is proposed in this paper.
APA, Harvard, Vancouver, ISO, and other styles
10

CROSAS, Bernat, David J. HYNDMAN, Oriol GALLEGO, Sílvia MARTRAS, Xavier PARÉS, T. Geoffrey FLYNN, and Jaume FARRÉS. "Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: consequences for retinoid metabolism." Biochemical Journal 373, no. 3 (August 1, 2003): 973–79. http://dx.doi.org/10.1042/bj20021818.

Full text
Abstract:
Aldo–keto reductases (AKRs) are NAD(P)H-dependent oxidoreductases that catalyse the reduction of a variety of carbonyl compounds, such as carbohydrates, aliphatic and aromatic aldehydes and steroids. We have studied the retinal reductase activity of human aldose reductase (AR), human small-intestine (HSI) AR and pig aldehyde reductase. Human AR and HSI AR were very efficient in the reduction of all-trans-, 9-cis- and 13-cis-retinal (kcat/Km=1100–10300 mM−1·min−1), constituting the first cytosolic NADP(H)-dependent retinal reductases described in humans. Aldehyde reductase showed no activity with these retinal isomers. Glucose was a poor inhibitor (Ki=80 mM) of retinal reductase activity of human AR, whereas tolrestat, a classical AKR inhibitor used pharmacologically to treat diabetes, inhibited retinal reduction by human AR and HSI AR. All-trans-retinoic acid failed to inhibit both enzymes. In this paper we present the AKRs as an emergent superfamily of retinal-active enzymes, putatively involved in the regulation of retinoid biological activity through the assimilation of retinoids from β-carotene and the control of retinal bioavailability.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aliphatic compounds – Metabolism"

1

Gellibert, Françoise. "Synthese d'analogues structuraux a motif captodatif et de nouveaux metabolites de l'acide arachidonique : actions sur la 5-lipoxygenase." Université Louis Pasteur (Strasbourg) (1971-2008), 1988. http://www.theses.fr/1988STR13031.

Full text
Abstract:
La synthese d'inhibiteurs de la biosynthese des leucotrienes a ete developpee selon deux voies: -synthese de metabolites naturels de l'acide arachidonique (monoepoxides) -synthese de produits analogues de l'acide arachidoniques susceptibles de stabiliser l'intermediaire radicalaire forme au cours de la premiere etape de la 5-lipoxygenase
APA, Harvard, Vancouver, ISO, and other styles
2

Micas-Languin, Dominique. "Preparation d'aldehydes alpha-hydroxyles chiraux : application a la synthese de metabolites de l'acide arachidonique et de composes biologiquement actifs." Paris 6, 1987. http://www.theses.fr/1987PA066527.

Full text
Abstract:
La preparation des composes du titre se fait a partir du d-mannitol via la decyclisation par des nucleophiles de diepoxydes; les alpha -hydroxy aldehydes obtenus ont ete utilises pour preparer le leucotriene b**(4) et un de ses homologues en c21
APA, Harvard, Vancouver, ISO, and other styles
3

Gravier-Pelletier, Christine. "Synthese du leucotriene enantiomeriquement pru ltb quatre et d'un analogue a partir du d-manniotol." Paris 6, 1986. http://www.theses.fr/1986PA066507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Young. "Aerobic cometabolism of chlorinated aliphatic hydrocarbons by a butane-grown mixed culture : transformation abilities, kinetics and inhibition." Thesis, 2000. http://hdl.handle.net/1957/33093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fawcett, Kimberly A. "Effects of chlorinated aliphatic hydrocarbon degradation on the metabolic enzymes in Nitrosomonas europaea." Thesis, 1999. http://hdl.handle.net/1957/33654.

Full text
Abstract:
The toxic effects of degrading the chlorinated hydrocarbons trichloroethylene (TCE), chloroform (CF) and cis-1,2-dichloroethylene (cis-1,2-DCE) were studied in the bacterium Nitrosomonas europaea. N europaea is an ammonia-oxidizing bacterium that obtains all of its energy from the oxidation of ammonia to nitrite. This metabolic process involves two enzymes, ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase (HAO). AMO has a broad substrate range and is also capable of oxidizing TCE, CF, and cis-1,2-DCE. Effects of degrading these chlorinated compounds on both AMO and HAO were studied. Cells were inactivated with known inhibitors of both AMO (light) and HAO (hydrogen peroxide) to provide comparison studies. Oxidation of the three chlorinated hydrocarbons did not always result in similar toxic effects to the cells. Whole cell studies indicated that oxidation of TCE and CF resulted in a loss of both NH������- and N���H���- dependent 0��� uptake rates, while in vitro studies indicated that at lower concentrations of both TCE (���0.05 mM) and CF (���0.10 mM) neither AMO or HAO appear to be the primary sites of inactivation. The oxidation of cis-1,2-DCE appeared to specifically inactivate AMO both in in vivo and in vitro assays. N europaea cells were also pretreated with the AMO inhibitor acetylene and incubated with the chlorinated hydrocarbons. Results of both whole cell 0��� uptake rates and the in vitro HAO assay confirms the hypothesis that the chlorinated hydrocarbons must be turned over in order to produce a toxic effect in N. europaea cells.
Graduation date: 1999
APA, Harvard, Vancouver, ISO, and other styles
6

Tovanabootr, Adisorn. "Aerobic cometabolism of chlorinated aliphatic hydrocarbons by subsurface microbes grown on methane, propane and butane from the McCellan Air Force Base." Thesis, 1997. http://hdl.handle.net/1957/34517.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jitnuyanont, Pardi. "Comparison of indigenous and bioaugmented butane and propane-utilizers for transforming 1,1,1-trichloroethane in Moffett Field microcosms." Thesis, 1997. http://hdl.handle.net/1957/33964.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Aliphatic compounds – Metabolism"

1

Tovanabootr, Adisorn. Aerobic cometabolism of chlorinated aliphatic hydrocarbons by subsurface microbes grown on methane, propane and butane from the McCellan Air Force Base. 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Young. Aerobic cometabolism of chlorinated aliphatic hydrocarbons by a butane-grown mixed culture: Transformation abilities, kinetics and inhibition. 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fawcett, Kimberly A. Effects of chlorinated aliphatic hydrocarbon degradation on the metabolic enzymes in Nitrosomonas europaea. 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jitnuyanont, Pardi. Comparison of indigenous and bioaugmented butane and propane-utilizers for transforming 1,1,1-trichloroethane in Moffett Field microcosms. 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Aliphatic compounds – Metabolism"

1

Sposito, Garrison. "Soil Humus." In The Chemistry of Soils. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190630881.003.0007.

Full text
Abstract:
Biomoleculesare compounds synthesized to sustain the life cycles of organisms. In soil humus, they are usually products of litter degradation, root excretion, and microbial metabolism, ranging in molecular structure from simple organic acids to complex biopolymers. Organic acids are among the best-characterized biomolecules. Table 3.1 lists five aliphatic (meaning the C atoms are arranged in open-chain structures) organic acids associated commonly with the soil microbiome. These acids contain the unit R—COOH, where COOH is the carboxyl groupand R represents either H or an organic moiety. The carboxyl group can lose its proton easily within the normal range of soil pH (see the third column of Table 3.1) and so is an example of a Brønsted acid. The released proton, in turn, can attack soil minerals to induce their decomposition (see Eq. 1.2), whereas the carboxylate anion (COO-) can form soluble complexes with metal cations, such as Al3+, that are released by mineral weathering [for example, in Eq. 1.7, rewrite oxalate, C2O42-, as (COO-) 2]. The total concentration of organic acids in the soil solution ranges up to 5 mM. These acids tend to have very short lifetimes because of biocycling, but they abide as a component of soil humus, especially its water-soluble fraction, because they are produced continually by microorganisms and plant roots. Formic acid (methanoic acid), the first entry in Table 3.1, is a monocarboxylic acid produced by bacteria and found in the root exudates of maize. Acetic acid (ethanoic acid) also is produced microbially—especially under anaerobic conditions—and is found in root exudates of grasses and herbs. Formic and acetic acid concentrations in the soil solution range from 2 to 5 mM. Oxalic acid (ethanedioic acid), which is ubiquitous in soils, and tartaric acid (D- 2,3-dihydroxybutanedioic acid) are dicarboxylic acids produced by fungi and excreted by plant roots; their soil solution concentrations range from 0.05 to 1 mM. The tricarboxylic citric acid (2-hydroxypropane- 1,2,3-tricarboxylic acid) is also produced by fungi and excreted by plant roots. Its soil solution concentration is less than 0.05 mM.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aliphatic compounds – Metabolism"

1

Rehse, K., U. Lukens, S. Leibring, V. Schein, and A. Kesselhut. "ANTITHROMBOTIC OLIGOAMINES." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643439.

Full text
Abstract:
We have found that oligoamines of the general formula R2−3X(R=-(CH2)m-NH-(CH2)n-Y) in which X and Y may be aliphatic, alicyc-lic, aromatic or even heterocyclic moieties are a new class of compounds which exhibit platelet aggregation inhibiting and anticoagulant activities in vitro and have antithrombotic properties in vivo. The compound RE 1492 (N,N’,N1’-Tris-4-phenylbutylbenzene-1,3,5-trimethanamine) is chosen as example to demonstrate these effects. In PRP the following IC50 of RE 1492 (inductor in brackets) were measured: 3 ¼mol/L (Collagen), 1 ¼mol/L (ADP, 2ndphase), 7.5 μmol/L (ADP, lstphase), 2,5 μmol/L (A 23187, 2ndphase), 7,5 μmol/L (Ionophor A 23187, lstphase), 30 ¼mol/L (Thrombin). The inhibition of the aggregation Induced by ADP could as well be demonstrated in whole blood. The formation of fibrin was inhibited as shown by the prolongation of the thromboplastin time (Quick) and the partial thromboplastin time (PTT) the first being more sensitive (25% of normal at 50 ymol/L) than the latter (25% of normal at 100 ymol/L). The reason was the inhibition of coagulation factors in the following order: VII (25% of normal at 12.5 ¼mol/L) >WErwnr/IX (25 ¼mol/L) »X (200 μmol/L). The thrombin time remains normal. The antithrombotic properties of RE 1492 were investigated in an in vivo thrombosis model. The formation of platelet thrombi in mesenteric arterioles and venoles of rats (diameterM5 ym) was induced by a laser beam. In controls 1,76±1,14 (SD) shots (50 msec, 50 mW) on the arterioles were necessary for thrombus formation. Twenty minutes after i.v. application of RE 1492 this number rose to 3,18±2,08 (3 mg/kg, p ≤ 0,01, X2-test) and 4,59±1,93 (10 mg/kg, p ≤ 0,01) in arterioles. In venoles of the control animals 1,29±0,45 shots were necessary for thrombus formation. This number rose to 2,11±1,62 (p ≤ 0,05) after 3 mg/kg and 3,28±2,03 (p0,01) after 10 mg/kg. As the number of shots applied was limited to five an average shot number of 5± SD would indicate that no thrombus formation takes place at all. As RE 1492 does neither influence the metabolic pattern of arachidonic acid in platelets nor the activity of phosphodiesterase or adenylatcyclase it is supposed that the oligoamines exert their effects by interaction with phospholipids (PL) resulting in a “membrane stabilization” in platelets and inhibition of PL dependent coagulation factors during fibrin formation.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography