Academic literature on the topic 'Aliphatic nucleophilic substitution'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aliphatic nucleophilic substitution.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aliphatic nucleophilic substitution"

1

Christoffers, Jens, and Mathias S. Wickleder. "Synthesis of Aromatic and Aliphatic Di-, Tri-, and Tetrasulfonic Acids." Synlett 31, no. 10 (March 17, 2020): 945–52. http://dx.doi.org/10.1055/s-0039-1691745.

Full text
Abstract:
Oligosulfonic acids are promising linker compounds for coordination polymers and metal-organic frameworks, however, compared to their carboxylic acid congeners, often not readily accessible by established synthetic routes. This Account highlights the synthesis of recently developed aromatic and aliphatic di-, tri- and tetrasulfonic acids. While multiple electrophilic sulfonations of aromatic substrates are rather limited, the nucleophilic aromatic substitution including an intramolecular variant, the Newman–Kwart rearrangement, allows the flexible introduction of up to four sulfur-containing moieties at an aromatic ring. Sulfonic acids are then accessed by oxidation of thiols, thioethers, or thioesters either directly with hydrogen peroxide or in two steps with chlorine (generated in situ from N-chlorosuccinimide/hydrochloric acid) to furnish sulfochlorides which are subsequently hydrolyzed. In the aliphatic series, secondary alcohols as starting materials are converted into thioethers, thioesters, or thiocarbonates by nucleophilic substitutions, which are also subsequently oxidized to furnish sulfonic acids.1 Introduction2 Electrophilic Aromatic Substitution3 Nucleophilic Aromatic Substitution3.1 Intermolecular SNAr3.2 Intermolecular with Subsequent Oxidation3.3 Intramolecular with Subsequent Oxidation4 Nucleophilic Aliphatic Substitution with Subsequent Oxidation5 Oxidation5.1 Oxidation of Thiocarbonates5.2 Oxidation of Thioethers5.3 Oxidation of Thioesters6 Thermolysis of Neopentylsulfonates7 Functionalization via Diazonium Ions8 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
2

SHORTER, J. "ChemInform Abstract: Nucleophilic Aliphatic Substitution." ChemInform 22, no. 35 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199135300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

SHORTER, J. "ChemInform Abstract: Nucleophilic Aliphatic Substitution." ChemInform 26, no. 36 (August 17, 2010): no. http://dx.doi.org/10.1002/chin.199536314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shorter, J. "ChemInform Abstract: Nucleophilic Aliphatic Substitution." ChemInform 33, no. 50 (May 18, 2010): no. http://dx.doi.org/10.1002/chin.200250265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

SHORTER, J. "ChemInform Abstract: Nucleophilic Aliphatic Substitution." ChemInform 24, no. 2 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199302305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shorter, J. "ChemInform Abstract: Nucleophilic Aliphatic Substitution." ChemInform 31, no. 16 (June 9, 2010): no. http://dx.doi.org/10.1002/chin.200016307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lund, Henning, Kim Daasbjerg, Torben Lund, and Steen U. Pedersen. "On Electron Transfer in Aliphatic Nucleophilic Substitution." Accounts of Chemical Research 28, no. 7 (July 1995): 313–19. http://dx.doi.org/10.1021/ar00055a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abramov, Michael A., Suzanne Toppet, and Wim Dehaen. "Regiospecific Nucleophilic Substitution of Fluorine in Fused Tetrafluoroquinolines with N- and O-Nucleophiles." Journal of Chemical Research 2002, no. 8 (August 2002): 357–58. http://dx.doi.org/10.3184/030823402103172455.

Full text
Abstract:
5,6,7,8-Tetrafluoro-1,2-azolo[3,4- b;4′,3′- e]quinolines react regiospecifically with aliphatic and aromatic amines, alcohols and phenols yielding 7-substituted 5,6,8-trifluoro-1,2-azolo[3,4- b;4′,3′- e]quinolines.
APA, Harvard, Vancouver, ISO, and other styles
9

SHORTER, J. "ChemInform Abstract: Nucleophilic Aliphatic Substitution (Organic Reaction Mechanisms)." ChemInform 22, no. 45 (August 22, 2010): no. http://dx.doi.org/10.1002/chin.199145328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Katritzky, Alan R., and Bogumil E. Brycki. "The mechanisms of nucleophilic substitution in aliphatic compounds." Chemical Society Reviews 19, no. 2 (1990): 83. http://dx.doi.org/10.1039/cs9901900083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Aliphatic nucleophilic substitution"

1

Schory, David Henry. "Quantum Chemical Investigations of Nucleophilic Aromatic Substitution Reactions and Acid Dissociations of Aliphatic Carboxylic Acids." Wright State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=wright1253480264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chamseddine, Yssam. "Sondes mecanistiques chirales et/ou regioselectivement deuteriees : application a l'etude de quelques processus de substitution nucleophile." Paris 6, 1988. http://www.theses.fr/1988PA066133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dlubala, Alain. "Etude de la reactivite de dianions formes par double deprotonation de dithioesters beta-thiosubstitues." Caen, 1987. http://www.theses.fr/1987CAEN2010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alvarez, Gonzalez Eleuterio. "Substitution d'ethers et d'alcools allyliques par differents nucleophiles en presence de complexes de nickel(0) : synthese stereoselective des dienes-1,4 a partir des sulfones dieniques avec le chlorure d'isopropylmagnesium en presence de sels de." Paris 6, 1987. http://www.theses.fr/1987PA066064.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Aliphatic nucleophilic substitution"

1

Knipe, A. C. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms · 2014, 367–98. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781118941829.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Westaway, K. C. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms · 2006, 231–76. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669587.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knipe, A. C. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms · 2008, 203–24. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470979525.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Westaway, K. C. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms Series, 303–37. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118560273.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Westaway, K. C. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms Series, 275–310. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119972471.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shorter, J. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms Series, 261–95. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470022051.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shorter, J. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms 2001, 261–90. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470866748.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Westaway, K. C. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms Series, 229–64. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119941910.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Westaway, K. C. "Nucleophilic Aliphatic Substitution." In Organic Reaction Mechanisms Series, 201–38. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9780470975800.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nelson, Jade D. "Aliphatic Nucleophilic Substitution." In Practical Synthetic Organic Chemistry, 1–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118093559.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aliphatic nucleophilic substitution"

1

Peixoto, Bárbara Pereira, José Walkimar de M. Carneiro, and Rodolfo Goetze Fiorot. "Substituição nucleofílica alifática: qual o mecanismo preferencial? Estudo computacional dos efeitos da estrutura do substrato e solvente." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020122.

Full text
Abstract:
Nucleophilic aliphatic substitution reactions constitute important steps in the synthesis of substances with biological activity and industrial appeal, beyond to participating in steps in biosynthetic routes of natural products. Unimolecular (SN1) and bimolecular (SN2) pathways can be understood as limiting cases of a mechanistic continuum. In between them, borderline mechanisms are proposed. The preference for one path over another depends on several factors, such as the structure of the substrate, the nucleophile and the solvent used. This plurality is still a topic of discussion and needs further understanding. In this context, the present work aims to rationalize the preferential reaction pathway for nucleophilic aliphatic substitutions, whose substrates do not fit only in the uni- and bimolecular models, by identifying lower energy reaction pathways due to the structural and electronic characteristics. The evaluation was carried out by molecular modeling at the Density Functional Theory (DFT) level, simulating substrates with the nucleofuge (Cl and NH3 + ) connected to secondary carbon atoms, with the computational method M06-2X/aug-cc-pVTZ, previously validated according to geometrical and energetic parameters. Besides, we checked the effect of a polar solvent with high dielectric constant in the reaction pathways. The analyzed substrates demonstrated preference for the bimolecular mechanism and the influence of a solvent in these reactions was evident.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography