Journal articles on the topic 'Alkali-activated Portland composite cement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Alkali-activated Portland composite cement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rovnaník, Pavel, Ivo Kusák, Pavel Schmid, and Patrik Bayer. "A Comparison of the Resistance- and Capacitance-Based Sensing of Geopolymer and Cement Composites with Graphite Filler Under Compression." Materials 18, no. 4 (2025): 750. https://doi.org/10.3390/ma18040750.
Full textSmirnova, Olga M., Ignacio Menendez Pidal, Aleksandr V. Alekseev, Dmitry N. Petrov, and Mikhail G. Popov. "Strain Hardening of Polypropylene Microfiber Reinforced Composite Based on Alkali-Activated Slag Matrix." Materials 15, no. 4 (2022): 1607. http://dx.doi.org/10.3390/ma15041607.
Full textBoháčová, Jana, and Lukáš Janalík. "Preparation and Verification of Properties of Alkali-Activated Composite." Solid State Phenomena 296 (August 2019): 209–14. http://dx.doi.org/10.4028/www.scientific.net/ssp.296.209.
Full textKrivenko, Pavel V., Myroslav Sanytsky, and Tetiana Kropyvnytska. "The Effect of Nanosilica on the Early Strength of Alkali-Activated Portland Composite Cements." Solid State Phenomena 296 (August 2019): 21–26. http://dx.doi.org/10.4028/www.scientific.net/ssp.296.21.
Full textRovnaník, Pavel, and Ivo Kusák. "Electrical Properties of Steel Fibre Reinforced Alkali-Activated Slag Composite." Key Engineering Materials 760 (January 2018): 55–60. http://dx.doi.org/10.4028/www.scientific.net/kem.760.55.
Full textFilazi, Ahmet, Nesrin Kurtoğlu, and Fatih Kural. "The Production of Rice Husk Ash and Blast Furnace Slag-Based Alkali-Activated Composites under High-Temperature Effects." Journal of Advanced Applied Sciences 3, no. 2 (2024): 66–78. https://doi.org/10.61326/jaasci.v3i2.318.
Full textSithole, Thandiwe, Nelson Tsotetsi, and Tebogo Mashifana. "Synthesis of Ambient Cured GGBFS Based Alkali Activated Binder Using a Sole Alkaline Activator: A Feasibility Study." Applied Sciences 11, no. 13 (2021): 5887. http://dx.doi.org/10.3390/app11135887.
Full textHung, Chi-Che, Yuan-Chieh Wu, Wei-Ting Lin, Jiang-Jhy Chang, and Wei-Chung Yeih. "Effect of Mixture Variables on Durability for Alkali-Activated Slag Cementitious." Materials 11, no. 11 (2018): 2252. http://dx.doi.org/10.3390/ma11112252.
Full textSalas Montoya, Andres, Loth I. Rodríguez-Barboza, Fabiola Colmenero Fonseca, Javier Cárcel-Carrasco, and Lauren Y. Gómez-Zamorano. "Composite Cements Using Ground Granulated Blast Furnace Slag, Fly Ash, and Geothermal Silica with Alkali Activation." Buildings 13, no. 7 (2023): 1854. http://dx.doi.org/10.3390/buildings13071854.
Full textRanger, Maxime, and Marianne Tange Hasholt. "Relationship between Chloride Migration, Bulk Electrical Conductivity and Formation Factor of Blended Cement Pastes." Nordic Concrete Research 69, no. 2 (2023): 33–53. http://dx.doi.org/10.2478/ncr-2023-0009.
Full textAmiraliyev, Baurzhan, Bakhitzhan Taimasov, Ekaterina Potapova, et al. "Heat Treatment of Clay Shales and Their Utilization as Active Mineral Additives for the Production of Composite Cements." Journal of Composites Science 9, no. 6 (2025): 269. https://doi.org/10.3390/jcs9060269.
Full textBonilla, Ashley, Mónica A. Villaquirán-Caicedo, and Ruby Mejía de Gutiérrez. "Novel Alkali-Activated Materials with Photocatalytic and Bactericidal Properties Based on Ceramic Tile Waste." Coatings 12, no. 1 (2021): 35. http://dx.doi.org/10.3390/coatings12010035.
Full textThomsen, René Mossing, Sergio Ferreiro Garzón, Duncan Herfort, Jørgen Skibsted, and Yuanzheng Yue. "Physical performances of alkali-activated portland cement-glass-limestone blends." Journal of the American Ceramic Society 100, no. 9 (2017): 4159–72. http://dx.doi.org/10.1111/jace.14955.
Full textKaefer, Lucas, Letícia Andreolli Dias, Alice Helena Meinhart, et al. "Evaluation of the Alkali-Aggregate Reaction Mitigation Potential of Alkali-Activated Fly Ash-Based Matrices Containing Different Reactive Aggregates." Key Engineering Materials 948 (June 6, 2023): 117–28. http://dx.doi.org/10.4028/p-u9f987.
Full textKothari, Ankit, Karin Habermehl-Cwirzen, Hans Hedlund, and Andrzej Cwirzen. "A Review of the Mechanical Properties and Durability of Ecological Concretes in a Cold Climate in Comparison to Standard Ordinary Portland Cement-Based Concrete." Materials 13, no. 16 (2020): 3467. http://dx.doi.org/10.3390/ma13163467.
Full textKharchenko, Alexey I., Vyacheslav A. Alekseev, Igor Ya Kharchenko, and Andrey A. Alekseev. "Application of slag-alkali binders in jet cement grouting for soil consolidation." Vestnik MGSU, no. 6 (June 2019): 680–89. http://dx.doi.org/10.22227/1997-0935.2019.6.680-689.
Full textMintsaev, Magomed, Sayd-Alvi Murtazaev, Madina Salamanova, et al. "Structural Formation of Alkali-Activated Materials Based on Thermally Treated Marl and Na2SiO3." Materials 15, no. 19 (2022): 6576. http://dx.doi.org/10.3390/ma15196576.
Full textGandel, R., J. Jeřábek, Z. Marcalíková, and P. Ćmiel. "The effect of NaOH and KOH on the strength-mechanical properties of alkali-activated composites based on granulated blast-furnace slag." Journal of Physics: Conference Series 2792, no. 1 (2024): 012001. http://dx.doi.org/10.1088/1742-6596/2792/1/012001.
Full textWu, Ting, Si Tang, Yao-Rong Dong, and Jiang-Hua Luo. "A Review of the Thermal and Mechanical Characteristics of Alkali-Activated Composites at Elevated Temperatures." Buildings 15, no. 5 (2025): 738. https://doi.org/10.3390/buildings15050738.
Full textEmmanuel, Opara Uchechukwu, Aldi Kuqo, and Carsten Mai. "Non-conventional mineral binder-bonded lignocellulosic composite materials: A review." BioResources 16, no. 2 (2021): 4606–48. http://dx.doi.org/10.15376/biores.16.2.emmanuel.
Full textManzi, Stefania, Luisa Molari, Maria Chiara Bignozzi, Giulia Masi, and Andrea Saccani. "Geopolymeric Composites Containing Industrial Waste Reinforced with Arundo donax Fibers." Buildings 14, no. 5 (2024): 1191. http://dx.doi.org/10.3390/buildings14051191.
Full textNalewajko, Marta. "Research on cement-free composites based on alkaline-activated waste materials." Economics and Environment 86, no. 3 (2023): 453–67. http://dx.doi.org/10.34659/eis.2023.86.3.678.
Full textManzi, Stefania, Luca Baldazzi, and Andrea Saccani. "Formulating Geopolymer Mortars through Construction and Demolition Waste (CDW) Recycling: A Comprehensive Case Study." Materials 16, no. 23 (2023): 7304. http://dx.doi.org/10.3390/ma16237304.
Full textDener, Murat, Mehmet Karatas, and Mehrzad Mohabbi. "High temperature resistance of self compacting alkali activated slag/portland cement composite using lightweight aggregate." Construction and Building Materials 290 (July 2021): 123250. http://dx.doi.org/10.1016/j.conbuildmat.2021.123250.
Full textLemougna, Patrick Ninla, Guillermo Meza Hernandez, Nicole Dilissen, Felicite Kingne, Jun Gu, and Hubert Rahier. "Alkali-Activated Copper Slag with Carbon Reinforcement: Effects of Metakaolinite, OPC and Surfactants." Applied Sciences 14, no. 5 (2024): 2081. http://dx.doi.org/10.3390/app14052081.
Full textMahmoud Abo El-Wafa. "Comparative evaluation of high- and low-calcium fly ash in alkali-activated slag composites under steam curing conditions." World Journal of Advanced Engineering Technology and Sciences 14, no. 3 (2025): 392–98. https://doi.org/10.30574/wjaets.2025.14.3.0150.
Full textSaccani, Andrea, Luca Baldazzi, and Stefania Manzi. "Effects of Biochar Addition on the Properties of Alkali-Activated Materials." Materials 18, no. 3 (2025): 486. https://doi.org/10.3390/ma18030486.
Full textLalinde, Luis Felipe, Ana Mellado, María Victoria Borrachero, José Monzó, and Jordi Payá. "Durability of Glass Fiber Reinforced Cement (GRC) Containing a High Proportion of Pozzolans." Applied Sciences 12, no. 7 (2022): 3696. http://dx.doi.org/10.3390/app12073696.
Full textAllahverdi, A., M. Akhondi, and M. Mahinroosta. "A composite cement of high magnesium sulphate resistance." Materiales de Construcción 68, no. 330 (2018): 154. http://dx.doi.org/10.3989/mc.2018.11316.
Full textZhao, Yanbing, Caiqian Yang, Kefeng Li, Jing Yang, Zhiren Wu, and Chengyu Yan. "Mechanical Performances and Frost Resistance of Alkali-Activated Coal Gangue Cementitious Materials." Buildings 12, no. 12 (2022): 2243. http://dx.doi.org/10.3390/buildings12122243.
Full textBondarenko, N., D. Bondarenko, and E. Evtushenko. "STUDY OF THE CHEMICAL INTERACTION OF GLASS FIBER WITH CEMENT HYDRATION PRODUCTS." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 5, no. 12 (2021): 119–25. http://dx.doi.org/10.34031/2071-7318-2020-5-12-119-125.
Full textKocot, Agnieszka, Andrzej Ćwirzeń, Tomasz Ponikiewski, and Jacek Katzer. "Strength Characteristics of Alkali-Activated Slag Mortars with the Addition of PET Flakes." Materials 14, no. 21 (2021): 6274. http://dx.doi.org/10.3390/ma14216274.
Full textÖzkan, Ömer, and Mehmet Sarıbıyık. "ALKALI SILICA REACTION OF BOF AND BFS WASTES COMBINATION IN CEMENT." Journal of Civil Engineering and Management 19, no. 1 (2013): 113–20. http://dx.doi.org/10.3846/13923730.2012.734854.
Full textBalun, Bilal, and Mehmet Karataş. "Influence of curing conditions on pumice-based alkali activated composites incorporating Portland cement." Journal of Building Engineering 43 (November 2021): 102605. http://dx.doi.org/10.1016/j.jobe.2021.102605.
Full textŠimonová, Hana, Libor Topolář, Pavel Rovnaník, Pavel Schmid, and Zbyněk Keršner. "Crack Initiation of Alkali-Activated Slag Based Composites with Graphite Filler." Key Engineering Materials 761 (January 2018): 57–60. http://dx.doi.org/10.4028/www.scientific.net/kem.761.57.
Full textSeitl, Stanislav, Vlastimil Bílek, Hana Šimonová, and Zbyněk Keršner. "Mechanical and Fatigue Parameters of Two Types of Alkali-Activated Concrete." Key Engineering Materials 665 (September 2015): 129–32. http://dx.doi.org/10.4028/www.scientific.net/kem.665.129.
Full textSalamanova, Madina, Sayd-Alvi Murtazaev, Magomed Saidumov, Arbi Alaskhanov, Tamara Murtazaeva, and Roman Fediuk. "Recycling of Cement Industry Waste for Alkali-Activated Materials Production." Materials 15, no. 19 (2022): 6660. http://dx.doi.org/10.3390/ma15196660.
Full textAl Bakri Abdullah, Mohd Mustafa, Ahmad Mohd Izzat, M. T. Muhammad Faheem, et al. "Feasibility of Producing Wood Fibre-Reinforced Geopolymer Composites (WFRGC)." Advanced Materials Research 626 (December 2012): 918–25. http://dx.doi.org/10.4028/www.scientific.net/amr.626.918.
Full textKraft, Bettina, Rebecca Achenbach, Horst-Michael Ludwig, and Michael Raupach. "Hydration and Carbonation of Alternative Binders." Corrosion and Materials Degradation 3, no. 1 (2022): 19–52. http://dx.doi.org/10.3390/cmd3010003.
Full textYoon, Seyoon, and Inhwan Park. "Micropore Structures in Cenosphere-Containing Cementitious Materials Using Micro-CT." Advances in Materials Science and Engineering 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/3892683.
Full textProcházka, Lukáš, and Jana Boháčová. "Possibilities of Processing of Slag Aggregate from Heap Koněv." Solid State Phenomena 292 (June 2019): 79–84. http://dx.doi.org/10.4028/www.scientific.net/ssp.292.79.
Full textKraft, Bettina, Matthias Müller, Rebecca Achenbach, Horst‐Michael Ludwig, and Michael Raupach. "Carbonation behaviour of concretes with alternative binders at different CO2 concentrations." ce/papers 6, no. 6 (2023): 1334–41. http://dx.doi.org/10.1002/cepa.3000.
Full textDieckmann, Phoebe, Dirk Mohn, Matthias Zehnder, Thomas Attin, and Tobias T. Tauböck. "Light Transmittance and Polymerization of Bulk-Fill Composite Materials Doped with Bioactive Micro-Fillers." Materials 12, no. 24 (2019): 4087. http://dx.doi.org/10.3390/ma12244087.
Full textAzevedo, Adriano, Carolina Lombardi, Luis Tonholo, and Kurt Strecker. "PRODUCTION AND PROPERTIES OF LOW-DENSITY ALKALI-ACTIVATED COMPOSITES BY INCORPORATION OF EXPANDED POLYSTYRENE (EPS)." Rev. LatinAm. Metal. Mat. 42, no. 1 (2022): 3–19. https://doi.org/10.5281/zenodo.7213553.
Full textBarabash, І. V., I. N. Babiy, and K. O. Streltsov. "INTENSIVE SEPARATE TECHNOLOGY AND ITS INFLUENCE ON THE PROPERTIES OF CEMENT-WATER COMPOSITIONS, SOLUTIONS AND CONCRETES ON THEIR BASIS." Modern construction and architecture, no. 2 (December 28, 2022): 44–51. http://dx.doi.org/10.31650/2786-6696-2022-2-44-51.
Full textCho, Chang Geun, and Hyun Jin Lim. "Experiments of Green High-Ductile Fiber Low Cementitious Composites." Applied Mechanics and Materials 316-317 (April 2013): 979–82. http://dx.doi.org/10.4028/www.scientific.net/amm.316-317.979.
Full textZhao, Wenhua, Ceyao Ji, Qi Sun, and Qi Gu. "Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill." Materials 15, no. 13 (2022): 4397. http://dx.doi.org/10.3390/ma15134397.
Full textAzevedo, Afonso, Thuany Lima, Noan Simonassi, Matheus Pereira Ribeiro, Fabio Garcia Filho, and Sergio Monteiro. "Piassava Fiber: A Novel Reinforcement for Cement-Based Matrix Composites." Concilium 22, no. 1 (2022): 379–90. http://dx.doi.org/10.53660/clm-150-166.
Full textShіshkina, Aleхandra, and Andriy Domnichev. "Ensuring uniformity of strength of fine-grained concrete based on modified composite cement." Eastern-European Journal of Enterprise Technologies 1, no. 6 (127) (2024): 47–53. http://dx.doi.org/10.15587/1729-4061.2024.296898.
Full textŠimonová, Hana, Barbara Kucharczyková, Vlastimil Bílek, Lucie Malíková, Petr Miarka, and Martin Lipowczan. "Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humidity." Applied Sciences 11, no. 1 (2020): 259. http://dx.doi.org/10.3390/app11010259.
Full text