Academic literature on the topic 'Alkany'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Alkany.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Alkany"

1

Koch, Daniel J., Mike M. Chen, Jan B. van Beilen, and Frances H. Arnold. "In Vivo Evolution of Butane Oxidation by Terminal Alkane Hydroxylases AlkB and CYP153A6." Applied and Environmental Microbiology 75, no. 2 (November 14, 2008): 337–44. http://dx.doi.org/10.1128/aem.01758-08.

Full text
Abstract:
ABSTRACT Enzymes of the AlkB and CYP153 families catalyze the first step in the catabolism of medium-chain-length alkanes, selective oxidation of the alkane to the 1-alkanol, and enable their host organisms to utilize alkanes as carbon sources. Small, gaseous alkanes, however, are converted to alkanols by evolutionarily unrelated methane monooxygenases. Propane and butane can be oxidized by CYP enzymes engineered in the laboratory, but these produce predominantly the 2-alkanols. Here we report the in vivo-directed evolution of two medium-chain-length terminal alkane hydroxylases, the integral membrane di-iron enzyme AlkB from Pseudomonas putida GPo1 and the class II-type soluble CYP153A6 from Mycobacterium sp. strain HXN-1500, to enhance their activity on small alkanes. We established a P. putida evolution system that enables selection for terminal alkane hydroxylase activity and used it to select propane- and butane-oxidizing enzymes based on enhanced growth complementation of an adapted P. putida GPo12(pGEc47ΔB) strain. The resulting enzymes exhibited higher rates of 1-butanol production from butane and maintained their preference for terminal hydroxylation. This in vivo evolution system could be useful for directed evolution of enzymes that function efficiently to hydroxylate small alkanes in engineered hosts.
APA, Harvard, Vancouver, ISO, and other styles
2

Lyu, Ruihe, Mohammed S. Alam, Christopher Stark, Ruixin Xu, Zongbo Shi, Yinchang Feng, and Roy M. Harrison. "Aliphatic carbonyl compounds (C<sub>8</sub>–C<sub>26</sub>) in wintertime atmospheric aerosol in London, UK." Atmospheric Chemistry and Physics 19, no. 4 (February 20, 2019): 2233–46. http://dx.doi.org/10.5194/acp-19-2233-2019.

Full text
Abstract:
Abstract. Three groups of aliphatic carbonyl compounds, the n-alkanals (C8–C20), n-alkan-2-ones (C8–C26), and n-alkan-3-ones (C8–C19), were measured in both particulate and vapour phases in air samples collected in London from January to April 2017. Four sites were sampled including two rooftop background sites, one ground-level urban background site, and a street canyon location on Marylebone Road in central London. The n-alkanals showed the highest concentrations, followed by the n-alkan-2-ones and the n-alkan-3-ones, the latter having appreciably lower concentrations. It seems likely that all compound groups have both primary and secondary sources and these are considered in light of published laboratory work on the oxidation products of high-molecular-weight n-alkanes. All compound groups show a relatively low correlation with black carbon and NOx in the background air of London, but in street canyon air heavily impacted by vehicle emissions, stronger correlations emerge, especially for the n-alkanals. It appears that vehicle exhaust is likely to be a major contributor for concentrations of the n-alkanals, whereas it is a much smaller contributor to the n-alkan-2-ones and n-alkan-3-ones. Other primary sources such as cooking or wood burning may be contributors for the ketones but were not directly evaluated. It seems likely that there is also a significant contribution from the photo-oxidation of n-alkanes and this would be consistent with the much higher abundance of n-alkan-2-ones relative to n-alkan-3-ones if the formation mechanism were through the oxidation of condensed-phase alkanes. Vapour–particle partitioning fitted the Pankow model well for the n-alkan-2-ones but less well for the other compound groups, although somewhat stronger relationships were seen at the Marylebone Road site than at the background sites. The former observation gives support to the n-alkane-2-ones being a predominantly secondary product, whereas primary sources of the other groups are more prominent.
APA, Harvard, Vancouver, ISO, and other styles
3

Serebrennikova, Ol'ga Viktorovna, Evgeniya Borisovna Strel’nikova, and Irina Vladimirovna Russkikh. "FEATURES OF LIPID COMPOSITION OF SPHAGNUM AND TRUE MOSSES FROM VARIOUS NATURAL CLI-MATIC ZONES." chemistry of plant raw material, no. 3 (April 12, 2019): 225–34. http://dx.doi.org/10.14258/jcprm.2019034558.

Full text
Abstract:
A composition of 16 lipid samples of sphagnum and true mosses (Bryales) growing at an average annual temperature ranging from -9.1 °C to 1.5 °C is investigated by gas chromatography-mass spectrometry. The individual composition and content of n-alkanes, fatty n-acids and their esters, n-alkane-2-ones, aldehydes, farnesylfuranes, polycyclic aromatic hydrocarbons (PAHs), tocopherols, squalene, steroids, sesqui-, di- and triterpenoids of these mosses are determined. True mosses differ from sphagnum mosses in their lower content of n-alkanes, n-alkan-2-ones, n-aldehydes, tocopherols and cyclic terpenoids, and a higher content of PAHs. Campesterol prevails among steroids of true mosses, while stigmasterol and sitosterol dominate in sphagnum mosses. Sitosterol prevails in sphagnum mosses growing in areas with a negative average annual temperature. An increase in the temperature of the habitat results in a decrease in the relative content of n-alkanes with odd number of carbon atoms in the molecule in true mosses, and a slight decrease in their average chain length in sphagnum mosses. It is shown that terpenoids are the most dependent on natural habitat conditions of mosses. This is indicated by the content of squalene, sesqui- and diterpenoids, the ratio of hydrocarbons to oxygen-containing structures of cyclic triterpenoids, and that of compounds from series of perhydropicene and cyclopentapeperhydrochryzene. The increased humidity of habitat of a moss eliminates the effect of temperature. The stability of composition of n-alkanes and n-alkan-2-ones of sphagnum mosses developing under various conditions makes it possible to consider these compounds as potential chemotaxonomic markers of sphagnum mosses in peat deposits.
APA, Harvard, Vancouver, ISO, and other styles
4

Shu, Bin, Lijun Lin, Yingjun Zhang, Hai Wang, and Hailing Luo. "N-alkane profiles of common rangeland species in northern China and the influence of drying method on their concentrations." Canadian Journal of Plant Science 88, no. 1 (January 1, 2008): 137–41. http://dx.doi.org/10.4141/cjps07008.

Full text
Abstract:
Plant wax alkanes have been used as internal markers to estimate diet composition of grazing animals. However, alkane contents in samples may vary depending on the drying method used. This study was undertaken to determine the alkane profiles and concentrations of 17 common range land species in northern China with two different drying methods. The results showed that regardless of drying methods, the odd-chain alkanes, particular C29 and C33, predominated in cuticular wax in all 17 common species and their component plant parts. The alkane patterns of plant species within the same genus were relatively similar and the differences in alkanes between stem and leaf were generally smaller than those between inflorescences and leaf or stem. The influence of drying methods on alkane concentrations varied depending on family and individual alkane. The effect of drying methods on C29 seemed to be smaller than other alkanes in all the samples. The oven-dry method produced higher concentrations (P < 0.05) in the three major alkanes (C23, C31 and C33) in the Gramineae family than the freeze-dry method. Therefore, studies dealing with alkane concentrations should use the same drying method for all samples. Key words: Alkane pattern, steppe grassland, oven-dry, freeze-dry
APA, Harvard, Vancouver, ISO, and other styles
5

Mayes, R. W., C. S. Lamb, and Patricia M. Colgrove. "The use of dosed and herbage n-alkanes as markers for the determination of herbage intake." Journal of Agricultural Science 107, no. 1 (August 1986): 161–70. http://dx.doi.org/10.1017/s0021859600066910.

Full text
Abstract:
SUMMARYThe recovery in the faeces of the n-alkanes of herbage (odd-chain, C27–C35) and of dosed artificial alkanes (even-chain, C28 and C32) was studied in twelve 4-month-old castrated male lambs. The lambs received three levels of cut, fresh perennial ryegrass or a mixed diet of perennial ryegrass (0·70) and a barley-based concentrate (0·30) (500–900 g D.M./day). C28 and C32 n-alkanes (130 mg each), absorbed onto shredded paper, were given once daily for 17 days to test whether the recoveries of herbage and dosed alkanes were similar to enable their use as markers for determining the herbage intake of grazing sheep. Stearic and palmitic acids (130 mg each) were given with the dosed alkanes to half of the animals with the objective of facilitating emulsification of the dosed alkanes within the digestive tract.With the exception of C27 n-alkane, the faecal recoveries of all alkanes were unaffected by diet, feeding level or emulsifying agent. Faecal recovery of odd- chain herbage n-alkanes increased with increasing C-chain length. The recovery of the dosed C28 n-alkane was slightly greater than the recoveries of both C27, and C29 n-alkanes of herbage. The recoveries of the dosed C32 n-alkane and the herbage C33-alkane were the same.The mean herbage intake estimated using C33 and C32 n-alkanes was identical to the actual herbage intake. Other alkane pairs gave slight underestimates of herbage intake ranging from 3·5% for the C28–C29 pair to 7·6% for the C27–C28 pair. No cyclical pattern of n-alkane excretion throughout the day was observed. Examination of daily variations in faecal alkane concentrations indicated that the start of alkane dosing should precede the sampling of faeces by at least 6 days.These results suggest that accurate estimation of herbage intake in grazing sheep is possible from the simultaneous use of dosed C32 and herbage C33 n-alkanes as markers.The method may be particularly useful in enabling unbiased estimates of herbage intake to be made in animals receiving supplementary feed.
APA, Harvard, Vancouver, ISO, and other styles
6

Smits, Theo H. M., Stefanie B. Balada, Bernard Witholt, and Jan B. van Beilen. "Functional Analysis of Alkane Hydroxylases from Gram-Negative and Gram-Positive Bacteria." Journal of Bacteriology 184, no. 6 (March 15, 2002): 1733–42. http://dx.doi.org/10.1128/jb.184.6.1733-1742.2002.

Full text
Abstract:
ABSTRACT We have cloned homologs of the Pseudomonas putida GPo1 alkane hydroxylase from Pseudomonas aeruginosa PAO1, Pseudomonas fluorescens CHA0, Alcanivorax borkumensis AP1, Mycobacterium tuberculosis H37Rv, and Prauserella rugosa NRRL B-2295. Sequence comparisons show that the level of protein sequence identity between the homologs is as low as 35%, and that the Pseudomonas alkane hydroxylases are as distantly related to each other as to the remaining alkane hydroxylases. Based on the observation that rubredoxin, an electron transfer component of the GPo1 alkane hydroxylase system, can be replaced by rubredoxins from other alkane hydroxylase systems, we have developed three recombinant host strains for the functional analysis of the novel alkane hydroxylase genes. Two hosts, Escherichia coli GEc137 and P. putida GPo12, were equipped with pGEc47ΔB, which encodes all proteins necessary for growth on medium-chain-length alkanes (C6 to C12), except a functional alkane hydroxylase. The third host was an alkB knockout derivative of P. fluorescens CHA0, which is no longer able to grow on C12 to C16 alkanes. All alkane hydroxylase homologs, except the Acinetobacter sp. ADP1 AlkM, allowed at least one of the three hosts to grow on n-alkanes.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, W., J. M. Scott, G. J. Blair, and R. D. B. Lefroy. "Using plant cuticular alkanes to study plant-animal interactions on pastures." Canadian Journal of Animal Science 79, no. 4 (December 1, 1999): 553–56. http://dx.doi.org/10.4141/a99-046.

Full text
Abstract:
Two experiments were conducted to validate an approach of using plant cuticular alkanes to estimate diet composition and fecal output. In the first experiment, n-alkane patterns of the four major pasture species were determined and compared and a further two sets of pasture mixtures were prepared to validate the use of plant n-alkane patterns to estimate species composition. In the second experiment, estimates of daily fecal output of grazing sheep were compared using controlled-released devices containing either Cr2O3 or alkanes. There were considerable differences in odd-numbered alkanes and in their total content between species. Results from the first experiment, where two sets of pasture mixtures were analyzed suggest that it is feasible to separate species composition using differences in n-alkane pattern. The second experiment showed that accurate estimation of daily fecal output can also be obtained using capsules containing alkanes. Key words: n-alkane, pasture, diet composition, fecal output
APA, Harvard, Vancouver, ISO, and other styles
8

Baldwin, Robert L., and George D. Rose. "How the hydrophobic factor drives protein folding." Proceedings of the National Academy of Sciences 113, no. 44 (October 17, 2016): 12462–66. http://dx.doi.org/10.1073/pnas.1610541113.

Full text
Abstract:
How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki–Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484–7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473] for the number of waters in alkane hydration shells.
APA, Harvard, Vancouver, ISO, and other styles
9

LIN, L. J., H. L. LUO, Y. J. ZHANG, and B. SHU. "The effects, in sheep, of dietary plant species and animal live weight on the faecal recovery rates of alkanes and the accuracy of intake and diet composition estimates obtained using alkanes as faecal markers." Journal of Agricultural Science 145, no. 1 (November 14, 2006): 87–94. http://dx.doi.org/10.1017/s002185960600654x.

Full text
Abstract:
Alkanes can be used as natural markers for estimating diet composition, but a factor should be used to correct for incomplete recovery in faeces. Faecal alkane recovery rates may be influenced by diet and animal factors. However, little research has been conducted to evaluate the effects of herbage species and live weight of animals on faecal alkane recoveries. In the current study, faecal recoveries of alkanes were determined in sheep in four different live weight groups (from 20 to 40 kg) fed three plant species (Elymus sibiricum, Leymus chinensis and L. dasystachys). In a second experiment, the accuracy of intake and diet composition estimates, using alkanes as faecal markers, was assessed by feeding known amounts of the same plant species as a three-component mixture. The results showed that faecal alkane recoveries were influenced significantly by herbage species (P<0·01), but no effect of live weight of animals was observed. Total dry matter intake was estimated correctly based on either C31:C32 or C29:C32 alkane pairs. With respect to estimators of E. sibiricum intake, reasonable results could only be obtained if the faecal alkane concentration was corrected based on diet-specific faecal recovery. More accurate estimations were obtained only if the alkanes found in relatively higher concentrations were used in diet composition estimates instead of using all available alkanes. Due to lower alkane concentrations or similar alkane patterns of L. chinensis and L. dasystachys in the diet, estimates of diet composition of these two herbage species were significantly different from the actual ones (P<0·05), implying that other markers need to be used for accurate estimation.
APA, Harvard, Vancouver, ISO, and other styles
10

Hendricksen, R. E., M. M. Reich, R. F. Roberton, D. J. Reid, C. Gazzola, J. A. Rideout, and R. A. Hill. "Estimating the voluntary intake and digestibility of buffel-grass and lucerne hays offered to Brahman-cross cattle using n-alkanes." Animal Science 74, no. 3 (June 2002): 567–77. http://dx.doi.org/10.1017/s1357729800052723.

Full text
Abstract:
AbstractThe n-alkane method was developed in temperate areas as a tool to estimate voluntary intake (VI) at pasture. The present study aimed to investigate the performance of n-alkanes as markers for estimating VI of steers (mean live weight 213 kg) offered a range of tropical grass hays and lucerne. Tropical and temperate forages have different n-alkane profiles and little is known about the issues which affect the accuracy of the method under tropical conditions. In two pen experiments (no. = 20 and no. = 24) n-alkanes were dosed using intraruminal controlled-release devices. Actual mean voluntary dry matter intakes for the diets ranged from 3·12 to 4·60 kg/day and actual mean dry-matter digestibility varied between 439 and 620 g/kg. n-Alkane profiles (C30 to C36) of the diets and the faeces for each animal were determined using gas chromatography. The recovery of each n-alkane was determined for each animal. Recoveries of n-alkanes were highly variable and generally varied between diets and between experiments. When adjacent n-alkanes were used to estimate VI (ratio method), agreement with actual VI was often poor. Despite this, where the recoveries of n-alkane pairs were similar, group mean VI were accurately estimated. From these data, it is concluded that estimation of VI in cattle offered tropical grass hays or lucerne hay, requires measured recoveries of both dosed and natural plant n-alkanes. The dosed and natural n-alkane pairs having the most similar recoveries should be used in the ratio method to estimate VI.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Alkany"

1

Mahelová, Zora. "Charakterizace chemického složení dehtu po zplyňování biomasy." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2016. http://www.nusl.cz/ntk/nusl-240964.

Full text
Abstract:
Biomass is a renewable source of energy and represents an acceptable alternative to fosil fuels. Usable methods of energetic use of biomass are combustion and gasification. Main interest is focused on gasification in last years. Gasification is based on conversion of organic material to usable gaseous product called syngas, which can be used as a fuel for energy production. Large amount of tar is formed as a by-product of incineration and gasification of biomass. Tar is composed by various mixture of organic substances, has a negative effect on operating conditions and is a potential threat to environment. Experimental part of this study was focused on analysis of tar obtained by gasification of various kind of biomass. Selected groups of hydrocarbons and oxygen compounds were identified in analysed samples. Individual biomass samples were compared regarding to determined relative content of selected substances. Analysis was done by complete twodimensional gas chromatography with mass spectrometric detection (GCxGC/TOF-MS).
APA, Harvard, Vancouver, ISO, and other styles
2

Peter, Sebastian. "Oxyfunctionalization of alkanes, alkenes and alkynes by unspecific peroxygenase (EC 1.11.2.1)." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-113321.

Full text
Abstract:
Unspecific peroxygenase (EC 1.11.2.1) represents a group of secreted hemethiolate proteins that are capable of catalyzing the selective mono-oxygenation of diverse organic compounds using only H2O2 as a cosubstrate. In this study, the peroxygenase from Agrocybe aegerita (AaeUPO) was found to catalyze the hydroxylation of various linear (e.g n-hexane), branched (e.g. 2,3-dimethylbutane) and cyclic alkanes (e.g. cyclohexane). The size of n-alkane substrates converted by AaeUPO ranged from gaseous propane (C3) to n-hexadecane (C16). They were mono-hydroxylated mainly at the C2 and C3 position, rather than at the terminal carbon, and the corresponding ketones were formed as a result of overoxidation. In addition, a number of alkenes were epoxidized by AaeUPO, including linear terminal (e.g. 1-heptene), branched (2-methyl-2-butene) and cyclic alkenes (e.g. cyclopentene), as well as linear and cyclic dienes (buta-1,3-diene, cyclohexa-1,4-diene). Furthermore, the conversion of terminal alkynes (e.g. 1- octyne) gave the corresponding 1-alkyn-3-ol in low yield. Some of the reactions proceeded with complete regioselectivity and - in the case of linear alkanes, terminal linear alkenes and alkynes - with moderate to high stereoselectivity. The conversion of n-octane gave (R)-3-octanol with 99% enantiomeric excess (ee) and the preponderance of the (S)-enantiomer reached up to 72% ee of the epoxide product for the conversion of 1-heptene. Catalytic efficiencies (kcat/ Km) determined for the hydroxylation and respectively epoxidation of the model compounds cyclohexane and 2-methyl-2-butene were 2.0 × 103 M-1 s-1 and 2.5 × 105 M−1 s−1. The results obtained in the deuterium isotope effect experiment with semideuterated n-hexane and the radical clock experiment with norcarane clearly demonstrated that the hydroxylation of alkanes proceeds via hydrogen abstraction, the formation of a substrate radical and a subsequent oxygen rebound mechanism. Moreover, stopped-flow experiments and substrate kinetics proved the involvement of a porphyrin radical cation species (compound I; AaeUPO-I) as reactive intermediate in the catalytic cycle of AaeUPO, similar to other hemethiolate enzymes (e.g. cytochrome P450 monooxygenases, P450s)
Die Gruppe der Unspezifischen Peroxygenasen (EC 1.11.2.1) umfasst extrazelluläre Häm-Thiolat-Enzyme, die mittels H2O2 als Cosubstrat die selektive Monooxygenierung unterschiedlicher organischer Verbindungen katalysieren. In der vorliegenden Arbeit konnte gezeigt werden, dass die von Agrocybe aegerita sekretierte Peroxygenase (AaeUPO) verschiedene lineare (z. B. n-Hexan), verzweigte (z. B. 2,3-Dimethylbutan) und zyklische Alkane (z. B. Cyclohexan) hydroxyliert. Die Größe der von der AaeUPO umgesetzten Substrate reichte vom gasförmigen Propan (C3) bis hin zu n-Hexadekan (C16). Die Alkane wurden bevorzugt am zweiten und dritten Kohlenstoffatom (C2 und C3) hydroxyliert; eine Hydroxylierung am terminalen Kohlenstoff konnte nur vereinzelt und in geringem Umfang beobachtet werden. Die Überoxidationen der primär gebildeten, sekundären Alkohole führte außerdem zur Entstehung der entsprechenden Ketonderivate. Darüber hinaus wurde eine Vielzahl linearer terminaler (z. B. 1-Hepten), verzweigter (z. B. 2-Methyl-2-Buten) und zyklischer Alkene (z. B. Cyclopenten) sowie linearer und zyklischer Diene (1,3-Butadien, 1,4-Cyclohexadien) durch die AaeUPO epoxidiert. Die Umsetzung terminaler Alkine (z. B. 1-Octin) führte zur Entstehung der jeweiligen 1-Alkin-3-ole. Manche dieser Reaktionen verliefen ausgeprägt regioselektiv und, im Falle der linearen Alkane sowie der linearen terminalen Alkene und Alkine, mit mittlerer bis hoher Stereoselektivität. So ergab beispielsweise die Umsetzung von n-Octan einen Enantiomerenüberschuss größer 99% für (R)-3-Octanol; die Epoxidierung von 1-Hepten lieferte einen Enatiomeerenüberschuss (ee) von bis zu 72% für das (S)-Enantiomer. Die katalytischen Effizienzen, die für die Hydroxylierung bzw. Epoxidierung der Modellverbindungen Cyclohexan und 2-Methyl-2-Buten ermittelt wurden, betragen 2.0 × 103 M-1 s-1 und 2.5 × 105 M−1 s−1. Der ausgeprägte Deuterium-Isotopen-Effekt, der im Zuge der Umsetzung von semideuteriertem n-Hexan beobachtet wurde sowie die Ergebnisse des Radical-Clock-Experiments mit Norcarane als Substrat bestätigten, dass die Hydroxylierung von Alkanen über Wasserstoffabstraktion, die Bildung eines Substratradikals und anschließende direkte Sauerstoffrückbindung verläuft. Die Stopped-Flow-Experimente belegen zudem das Auftreten eines Porphyrin-Kationradikal-Intermediates (Compound I; AaeUPO-I) im katalytischen Zyklus der AaeUPO (vergleichbar mit dem reaktiven Intermediat der P450-Monooxygenasen)
APA, Harvard, Vancouver, ISO, and other styles
3

Haak, Edgar. "Titankatalysatoren für die intermolekulare Hydroaminierung von Alkinen und Alkenen." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964517639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

George, Darren Shawn Allen. "Alkyne and alkynyl complexes of rhodium and iridium." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0025/NQ39530.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Groaz, Elisabetta. "Alkene and alkyne metathesis reactions using ruthenium initiators." Thesis, King's College London (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Ruiping. "Indenyl nickel complexes bearing alkynyl, alkenyl and triflate ligands." [Montréal] : Université de Montréal, 2003. http://wwwlib.umi.com/cr/umontreal/fullcit?pNQ82764.

Full text
Abstract:
Thèse (Ph. D.)--Université de Montréal, 2003.
"NQ-82764." "Thèse présentée à la faculté des études supérieures en vue de l'obtention du grade de philosophiae doctor (Ph. D.) en chimie." Version électronique également disponible sur Internet.
APA, Harvard, Vancouver, ISO, and other styles
7

Mehta, Brinda Mayank. "Green Resins based on Alkene- and Alkyne-containing Triglycerides." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1468795161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shoai, Shiva. "Regioselective rhodium-catalyzed alkyne hydrothiolation with alkane thiols : substrate scope and mechanistic investigations." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/27028.

Full text
Abstract:
The optimization and substrate scope of ClRh(PPh₃)₃-catalyzed alkyne hydrothiolation with alkane thiols producing E-linear vinyl sulfides is presented. The reactions generally proceed in good yields with good selectivities for a variety of alkane thiols and alkynes. Bulky aliphatic alkynes result in the best selectivity, while aryl alkynes with para-substituted electron donating groups give the best yields. The presence of coordinating functional groups in either the substrate or solvent negatively affects the reaction both in yield and selectivity. Deuterium-labeling studies indicate that the reaction proceeds via thiol oxidative addition, migratory alkyne insertion into the Rh-H bond, followed by reductive elimination. Investigations into the mechanism of Tp*Rh(PPh₃)₂-catalyzed alkyne hydrothiolation are discussed. Five mechanisms are identified as being the most likely for this process; experiments were designed to support or refute each of these possibilities. Two mechanisms are definitively dismissed and another is dismissed as highly unlikely. The results cannot distinguish between the remaining two. The product distribution of hydrothiolation is analyzed and compared to other precatalysts. Stoichiometric reactivity of Tp*Rh(PPh₃)₂ with benzyl thiol is presented. Two new complexes, proposed to be Tp*Rh(PPh₃)₂(HSBn) and Tp*Rh(H)(SBn)(PPh₃), are generated. Presumed Tp*Rh(H)(SBn)(PPh₃), prepared in situ, does not catalyze alkyne hydrothiolation. Kinetic analysis was complicated by reaction inhibition at high thiol concentrations and competing side-reactions at high alkyne concentrations. Kinetic isotope effect experiments indicate that the alkyne is not involved in the rate-determining step; however, differences in the reactivity of several para-substituted phenyl acetylenes suggest that the rate-determining step is influenced by alkyne electronics. Overall, the reaction appears to obey the following rate law under normal catalytic reaction conditions rate = k[Tp*Rh(PPh₃)₂]¹[thiol]¹[alkyne]⁰. The reaction is hypothesized to proceed by thiol oxidative addition, migratory alkyne insertion into the Rh-S bond, followed by reductive elimination.
APA, Harvard, Vancouver, ISO, and other styles
9

Lamberto, Massimiliano. "Thiol mediated radical cyclisations of isocyanides : synthesis of #NU# heterocycles." Thesis, University of Southampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZHENG, TAO. "MOLECULAR SIMULATION OF DIFFUSION AND SORPTION OF ALKANES AND ALKANE MIXTURES IN POLY[1-(TRIMETHYLSILYL)-1-PROPYNE]." University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin973701057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Alkany"

1

Reisinger, Attila. Alkony. Budapest: Littera Nova Kiadó, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pombeiro, Armando J. L., and M. Fátima C. Guedes da Silva, eds. Alkane Functionalization. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119379256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Horváth, Imre. Alkony Várad felett: Válogatott versek. Budapest: Noran, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhasin, Madan M., and D. W. Slocum, eds. Methane and Alkane Conversion Chemistry. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1807-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sirdeshmukh, D. B., L. Sirdeshmukh, and K. G. Subhadra. Alkali Halides. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04341-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Grampa's Alkali. Red Deer, Alta: Red Deer College Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kunze, Eric. Charles Valentin Alkan: A discography. [S.l: E. Kunze, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kunze, Eric. Charles Valentin Alkan: A discography. [Seattle, Wash: University of Washington, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gábor, Kozma. Vörös alkony: Vas megye, 1988-1990. Szombathely: Savaria Tourist, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tauginas, Darius. Alkanos sielos: Romanas. Vilnius: Alma littera, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Alkany"

1

Latscha, Hans Peter, Uli Kazmaier, and Helmut Alfons Klein. "Ungesättigte Kohlenwasserstoffe (Alkene, Alkine)." In Organische Chemie, 63–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46180-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Latscha, Hans Peter, Uli Kazmaier, and Helmut Alfons Klein. "Ungesättigte Kohlenwasserstoffe (Alkene, Alkine)." In Chemie für Pharmazeuten, 382–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56066-8_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Latscha, Hans Peter, Uli Kazmaier, and Helmut Alfons Klein. "Ungesättigte Kohlenwasserstoffe (Alkene, Alkine)." In Chemie für Biologen, 411–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-06236-4_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Latscha, Hans Peter, Uli Kazmaier, and Helmut Alfons Klein. "Ungesättigte Kohlenwasserstoffe (Alkene, Alkine)." In Organische Chemie, 61–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77107-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moloney, Mark G. "Alkene and Alkyne Chemistry." In How to Solve Organic Reaction Mechanisms, 32–63. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118698532.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Latscha, Hans Peter, Uli Kazmaier, and Helmut Alfons Klein. "Ungesättigte Kohlenwasserstoffe (Alkene, Alkine)." In Organische Chemie, 61–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-09138-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Latscha, Hans Peter, and Uli Kazmaier. "Ungesättigte Kohlenwasserstoffe (Alkene, Alkine)." In Chemie für Biologen, 411–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47784-7_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Latscha, Hans Peter, Uli Kazmaier, and Helmut Alfons Klein. "Additionen an Alkene und Alkine." In Organische Chemie, 77–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46180-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Latscha, Hans Peter, Helmut Alfons Klein, and Rainer Mosebach. "Ungesättigte Kohlenwasserstoffe: Alkene und Alkine." In Heidelberger Taschenbücher, 49–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-97065-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Latscha, Hans Peter, and Helmut Alfons Klein. "Ungesättigte Kohlenwasserstoffe: Alkene und Alkine." In Springer-Lehrbuch, 359–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-97539-4_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Alkany"

1

Yin, Sudong, Yanglin Pan, and Zhongchao Tan. "Catalytic Hydrothermal Conversion of Glucose to Light Petroleum Alkanes." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90433.

Full text
Abstract:
The production of carbon-neutral liquid fuels from renewable biomass has attracted worldwide interest in an age of depletion of fossil fuel reserves and pollutions caused by utilization of fossil petroleum. Currently, commercial bio-oil production technologies include bio-ethanol, bio-diesel and pyrolysis bio-oil. But, these bio-oils mainly consist of alcohols and aromatic chemicals rather than alkanes of the main components of gasoline and diesel. Direct utilization of these bio-oils can corrode car engines as well as emitting large unburned hydrocarbons particles through automotive combustion system. Therefore, in this study, catalytic hydrothermal conversion (CHTC) of glucose to alkanes in a single batch reactor was investigated with respect to effects of conversion parameters such as initial pressure of process gas H2, pH level of aqueous solution and catalysts on alkane yields and compositions. Results showed that the highest alkane yield of 21.6% (based on the mol of the input glucose) was obtained at 265 °C, with 300 psi of H2 process gas, 0.5 g catalyst of 1w%. Pt/Al2O3 and a residence time of 15 h. The alkane yield was significantly influenced by the initial pressure of H2, which increased with increasing H2 pressure. On the other hand, the alkane yields first increased and then decreased with pH levels. Also, more alkanes were produced by Pt/Al2O3 than Pd/Al2O3. Regarding alkane compositions, high initial pressure of H2 favored the production of relatively heavy C3–4 alkanes. With 300 psi of initial H2, C3H8 and C4H10 accounted for 75% of the total produced alkanes. All of the experimental data in this study lead to one conclusion that petroleum alkanes can be directly produced from glucose.
APA, Harvard, Vancouver, ISO, and other styles
2

Reuter, Christopher B., and Timothy Ombrello. "Ozone-Enhanced Flame Propagation of Alkane/Alkene/Air Mixtures." In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-0179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Coskuner, Yakup Berk, Elio Dean, Xiaolong Yin, and Erdal Ozkan. "Water Alternating Alkane Injection: A Molecular Dynamics Simulation Study." In SPE Improved Oil Recovery Conference. SPE, 2022. http://dx.doi.org/10.2118/209363-ms.

Full text
Abstract:
Abstract In a recent study, we observed that the diffusion coefficient of common hydrocarbons in crude oils are more affected by the presence of different hydrocarbon components than the effect of confinement. Based on our previous observations, in this study, we investigated the efficiency of smaller-chain alkane injection into oil-soaked sandstone pores to dilute the oil with alkane. We used molecular dynamics simulations of C2, C3, C4 and C5 as well as a mixture of C3 and C4 to rank the effects of different alkanes on the diffusion and distribution of oil molecules in pore. As water-alternating-alkane injection would bring water into the pores, our simulations included water. Our results indicate that alkane injection into sandstone reservoirs has a significant potential due to the fact that it effectively dilutes the oil. Water always wets quartz surface relative to the oils. Injection of water therefore should be effective in detaching oil molecules on the surface. Presence of water layers did not affect the diffusion coefficients of oil molecules.
APA, Harvard, Vancouver, ISO, and other styles
4

Al Shoaibi, Ahmed, and Anthony M. Dean. "Kinetic Analysis of C4 Alkane and Alkene Pyrolysis: Implications for SOFC Operation." In ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65033.

Full text
Abstract:
Pyrolysis experiments of isobutane, isobutylene, and 1-butene were performed over a temperature range of 550–750 °C and a pressure of ∼ 0.8 atm. The residence time was ∼ 5 s. The fuel conversion and product selectivity were analyzed at these temperatures. The pyrolysis experiments were performed to simulate the gas phase chemistry that occurs in the anode channel of a solid-oxide fuel cell. The experimental results confirm that molecular structure has a substantial impact on pyrolysis kinetics. The experimental data show considerable amounts of C5 and higher species (∼2.8 mole % with isobutane at 750 °C, ∼7.5 mole % with isobutylene at 737.5 °C, and ∼7.4 mole % with 1-butene at 700 °C). The C5+ species are likely deposit precursors. The results confirm that hydrocarbon gas phase kinetics have substantial impact on SOFC operation.
APA, Harvard, Vancouver, ISO, and other styles
5

Grohmann, Jasper, Wolfgang Meier, and Manfred Aigner. "Gas Turbine Model Combustor Emissions of Liquid Single-Component Fuels." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63182.

Full text
Abstract:
Alternative liquid fuels can contain hydrocarbons of different types and chain lengths and the fuel composition has an influence on combustion behavior. In this study, the influence of liquid single-component fuels on exhaust gas emissions of a gas turbine model combustor for swirl-stabilized spray flames was investigated under atmospheric pressure. The nozzle exhibited a dual-swirl geometry and a prefilming airblast atomizer. The spray was characterized by Phase Doppler Anemometry (PDA) and Mie scattering measurements and the flame CH* chemiluminescence was measured. Six single-component hydrocarbons were chosen: three linear alkanes (n-hexane, n-nonane, n-dodecane), one cyclic alkane (cyclohexane), one branched alkane (iso-octane) and one aromatic hydrocarbon (toluene). Kerosene Jet A-1 was used as a technical reference. Results show minor differences in CO emissions and significant differences in NOx emissions of the various fuels at comparable flow conditions and adiabatic flame temperatures. The measurements indicate a correlation between the nitric oxide emissions and the spray quality.
APA, Harvard, Vancouver, ISO, and other styles
6

Ingebrigtsen, S., N. Bonifaci, A. Denat, and O. Lesaint. "Spectral analysis of light emitted from streamers in chlorinated alkane & alkene liquids." In 2008 IEEE International Conference on Dielectric Liquids (ICDL 2008). IEEE, 2008. http://dx.doi.org/10.1109/icdl.2008.4622485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lowry, William, Jaap de Vries, Michael Krejci, Eric Petersen, Zeynep Serinyel, Wayne Metcalfe, Henry Curran, and Gilles Bourque. "Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-23050.

Full text
Abstract:
Alkanes such as methane, ethane, and propane make up a large portion of most natural gas fuels. Natural gas is the primary fuel used in industrial gas turbines for power generation. Because of this, a fundamental understanding of the physical characteristics such as the laminar flame speed is necessary. Most importantly, this information is needed at elevated pressures to have the most relevance to the gas turbine industry for engine design. This study includes experiments performed at elevated pressures, up to 10-atm initial pressure, and investigates the fuels in a pure form as well as in binary blends. Flame speed modeling was done using an improved version of the kinetics model that the authors have been developing over the past few years. Modeling was performed for a wide range of conditions, including elevated pressures. Experimental conditions include pure methane, pure ethane, 80/20 mixtures of methane/ethane, and 60/40 mixtures of methane/ethane at initial pressures of 1, 5, and 10 atm. Also included in this study are pure propane and 80/20 methane/propane mixtures at 1 and 5 atm. The laminar flame speed and Markstein Length measurements were obtained from a high-pressure flame speed facility using a constant-volume vessel. The facility includes optical access, a high-speed camera, a schlieren optical setup, a mixing manifold, and an isolated control room. The experiments were performed at room temperature, and the resulting images were analyzed using linear regression. The experimental and modeling results are presented and compared to previously published data. The data herein agree well with the published data. In addition, a hybrid correlation was created to perform a rigorous uncertainty analysis. This correlation gives the total uncertainty of the experiment with respect to the true value rather than reporting the standard deviation of a repeated experiment. Included in the data set are high-pressure results at conditions where in many cases for the single-component fuels few data existed and for the binary blends no data existed prior to this study. Overall, the agreement between the model and data is excellent.
APA, Harvard, Vancouver, ISO, and other styles
8

KANG, JEONG WON, CHUNG HOON KWON, CHUL SOO LEE, and KI-PUNG YOO. "EXCESS MOLAR ENTHALPIES FOR BINARY SYSTEMS OF N-ALKANE +1-ALKANOL SYSTEMS AT 313.15 K." In Proceedings of the 4th International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702623_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aguilar, Enrique, Alexandra Pérez-Anes, Patricia García-García, and Manuel Fernández-Rodríguez. "Microwave-Accelerated Multi-Component Cascade Reactions Involving Fischer Alkoxy Alkynyl Carbene Complexes." In The 12th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2008. http://dx.doi.org/10.3390/ecsoc-12-01264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

LIFI, Mohamed, Eduardo ATANASIO MONTERO, Laurent DESHAYES, Natalia MUNOZ-RUJAS, Younes CHHITI, Fatima Ezzahrae M'HAMDI ALAOUI, and Fernando AGUILAR ROMERO. "Measurement and modeling of excess enthalpies of hydrocarbon mixtures: Alkene + Alkane or + Cycloalkane at 313.15 K." In 2020 5th International Conference on Renewable Energies for Developing Countries (REDEC). IEEE, 2020. http://dx.doi.org/10.1109/redec49234.2020.9163877.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Alkany"

1

Crabtree, R. H. (Alkane photoreactions with mercury vapor). Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6454222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stambuli, James P., and S. M. Whittemore. Site-selective Alkane Dehydrogenation of Fatty Acids. Fort Belvoir, VA: Defense Technical Information Center, December 2011. http://dx.doi.org/10.21236/ada566294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fallik, Elazar, Robert Joly, Ilan Paran, and Matthew A. Jenks. Study of the Physiological, Molecular and Genetic Factors Associated with Postharvest Water Loss in Pepper Fruit. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7593392.bard.

Full text
Abstract:
The fruit of pepper (Capsicum annuum) commonly wilts (or shrivels) during postharvest storage due to rapid water loss, a condition that greatly reduces its shelf life and market value. The fact that pepper fruit are hollow, and thus have limited water content, only exacerbates this problem in pepper. The collaborators on this project completed research whose findings provided new insight into the genetic, physiological, and biochemical basis for water loss from the fruits of pepper (Capsicum annuum and related Capsicum species). Well-defined genetic populations of pepper were used in this study, the first being a series of backcross F₁ and segregating F₂, F₃, and F₄ populations derived from two original parents selected for having dramatic differences in fruit water loss rate (very high and very low water loss). The secondly population utilized in these studies was a collection of 50 accessions representing world diversity in both species and cultivar types. We found that an unexpectedly large amount of variation was present in both fruit wax and cutin composition in these collections. In addition, our studies revealed significant correlations between the chemical composition of both the fruit cuticular waxes and cutin monomers with fruit water loss rate. Among the most significant were that high alkane content in fruit waxes conferred low fruit water loss rates and low permeability in fruit cuticles. In contrast, high amounts of terpenoids (plus steroidal compounds) were associated with very high fruit water loss and cuticle permeability. These results are consistent with our models that the simple straight chain alkanes pack closely together in the cuticle membrane and obstruct water diffusion, whereas lipids with more complex 3-dimensional structure (such as terpenoids) do not pack so closely, and thus increase the diffusion pathways. The backcross segregating populations were used to map quantitative trait loci (QTLs) associated with water loss (using DART markers, Diversity Arrays Technology LTD). These studies resulted in identification of two linked QTLs on pepper’s chromosome 10. Although the exact genetic or physiological basis for these QTLs function in water loss is unknown, the genotypic contribution in studies of near-isogenic lines selected from these backcross populations reveals a strong association between certain wax compounds, the free fatty acids and iso-alkanes. There was also a lesser association between the water loss QTLs with both fruit firmness and total soluble sugars. Results of these analyses have revealed especially strong genetic linkages between fruit water loss, cuticle composition, and two QTLs on chromosome 10. These findings lead us to further speculate that genes located at or near these QTLs have a strong influence on cuticle lipids that impact water loss rate (and possibly, whether directly or indirectly, other traits like fruit firmness and sugar content). The QTL markers identified in these studies will be valuable in the breeding programs of scientists seeking to select for low water loss, long lasting fruits, of pepper, and likely the fruits of related commodities. Further work with these newly developed genetic resources should ultimately lead to the discovery of the genes controlling these fruit characteristics, allowing for the use of transgenic breeding approaches toward the improvement of fruit postharvest shelf life.
APA, Harvard, Vancouver, ISO, and other styles
4

Cesar, J. R., and O. H. Ardakani. Organic geochemistry of the Montney Formation: new insights about the source of hydrocarbons, their accumulation history and post accumulation processes. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/329788.

Full text
Abstract:
This study consists of a non-traditional molecular and stable isotope approach to analyze organic matter (soluble bitumen and produced oil/condensate) from the Montney Formation low-permeability reservoirs, with the purpose of identifying source(s) of hydrocarbons, accumulation history and post accumulation processes. The same approach bases on the distribution of compound classes such as aromatic carotenoids, polycyclic aromatic hydrocarbons (PAHs), bicyclic alkanes, and oxygen-polar compounds. The geochemical screening has been enhanced with performing compound specific isotope analysis (CSIA) of n-alkanes and selected aromatic hydrocarbons. Widely spread PAHs, the presence of molecular indicators of euxinia, and hydrocarbon mixtures identified using CSIA profiles, are some of the key findings from this research, which will improve our understanding of the Montney petroleum system(s).
APA, Harvard, Vancouver, ISO, and other styles
5

Chio, Y. I., E. Choi, and H. G. Lorsch. Thermal analysis of n-alkane phase change material mixtures. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/6619165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scott Han. Millisecond Oxidation of Alkanes. Office of Scientific and Technical Information (OSTI), September 2011. http://dx.doi.org/10.2172/1025808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Skone, Timothy J. Brine Chlor-alkali Processing. Office of Scientific and Technical Information (OSTI), July 2014. http://dx.doi.org/10.2172/1508996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weinberg, W. H. Alkane activation and reactivity on iridium, platinum, and ruthenium surfaces. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6905440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Struble, Leslie J. Alkali-silica reaction in concrete. Gaithersburg, MD: National Bureau of Standards, 1985. http://dx.doi.org/10.6028/nbs.ir.85-3116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lyons, J. E. Catalytic conversion of light alkanes. Office of Scientific and Technical Information (OSTI), June 1992. http://dx.doi.org/10.2172/7090637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography