To see the other types of publications on this topic, follow the link: Alkynyl complexes.

Journal articles on the topic 'Alkynyl complexes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Alkynyl complexes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jover, Jesús. "Copper-Catalyzed Eglinton Oxidative Homocoupling of Terminal Alkynes: A Computational Study." Journal of Chemistry 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/430358.

Full text
Abstract:
The copper(II) acetate mediated oxidative homocoupling of terminal alkynes, namely, the Eglinton coupling, has been studied with DFT methods. The mechanism of the whole reaction has been modeled using phenylacetylene as substrate. The obtained results indicate that, in contrast to some classical proposals, the reaction does not involve the formation of free alkynyl radicals and proceeds by the dimerization of copper(II) alkynyl complexes followed by a bimetallic reductive elimination. The calculations demonstrate that the rate limiting-step of the reaction is the alkyne deprotonation and that more acidic substrates provide faster reactions, in agreement with the experimental observations.
APA, Harvard, Vancouver, ISO, and other styles
2

Chakkaradhari, Gomathy, Andrey A. Belyaev, Antti J. Karttunen, Vasily Sivchik, Sergey P. Tunik, and Igor O. Koshevoy. "Alkynyl triphosphine copper complexes: synthesis and photophysical studies." Dalton Transactions 44, no. 29 (2015): 13294–304. http://dx.doi.org/10.1039/c5dt01870f.

Full text
Abstract:
A chelating triphosphine was used to synthesize luminescent mono-, di- and trinuclear copper(i) alkynyl complexes, the photophysical properties of which are determined by the nature of alkynyl groups.
APA, Harvard, Vancouver, ISO, and other styles
3

Humphrey, Mark G. "Ruthenium Alkynyl Complexes in Non-Linear Optics." Australian Journal of Chemistry 71, no. 10 (2018): 731. http://dx.doi.org/10.1071/ch18325.

Full text
Abstract:
Non-linear optical (NLO) materials are able to modify the propagation characteristics of light. Such materials have a range of potential applications in advanced technologies and are therefore of considerable interest. This account summarizes the development of one class of organometallics as potential NLO materials, namely ruthenium alkynyl complexes. These are available in high yields by straightforward synthetic procedures and have good thermal and environmental stability. In studies ranging from small molecules (molecular weights ~1000) to second-generation dendrimers (with molecular weights of more than 20000), the author’s group and collaborators have assayed the NLO effects in complexes with a variety of ‘multipolar’ charge distributions (dipolar, quadrupolar, octupolar), revealing that ruthenium alkynyl complexes can be engineered to display record and near-record values of the parameters responsible for various interesting NLO effects. In particular, recent studies driven by the current focus on optimizing molecular multiphoton absorption cross-sections have afforded several examples with world-record values of these key coefficients. The author’s group has also shown that the fully reversible redox processes undergone by many ruthenium alkynyl complexes are a distinctive feature that can be exploited to afford molecular NLO switches, because the different and reversibly accessible redox forms of the complexes exhibit measurably different NLO responses. This unique type of switching has been extended in two ways to afford molecular switches with multiple accessible NLO states. First, ruthenium alkynyl complexes have been subjected to various ‘orthogonal’ (independent) switching stimuli (specifically oxidation–reduction, protonation–deprotonation, and photoisomerization), affording complexes that function as NLO switches with up to six distinct NLO states. Second, heterobimetallic complexes coupling ruthenium alkynyl and iron alkynyl centres have been prepared that exhibit multiple redox-accessible NLO states.
APA, Harvard, Vancouver, ISO, and other styles
4

Bennett, Martin A., Christopher J. Cobley, David C. R. Hockless, and Thomas Klettke. "Mononuclear and Binuclear Complexes of Platinum(0) Containing (Alkynyl)phenylsilanes." Australian Journal of Chemistry 52, no. 1 (1999): 51. http://dx.doi.org/10.1071/c98135.

Full text
Abstract:
Reaction of bis(cycloocta-1,5-diene)platinum(0) with the (alkynyl)phenylsilanes Ph3SiC2But, Ph2Si(C2But)2 and PhSi(C2But)3 gives, respectively, [Pt (Ph3SiC2But)2] (1b), [Pt {Ph2Si(C2But)}]2 (2b), and [Pt {PhSi(C2But)3}]2 (4b), which contain zerovalent platinum atoms coordinated by two alkyne units. Spectroscopic data indicate that (2b) and (4b) contain two PtC4 and two SiC4 tetrahedra joined at the corners. X-Ray crystallography shows that complex (4b) is isostructural and isomorphous with the known nickel analogue, two of the alkyne units being uncoordinated; the central eight-membered ring comprising two silicon, four alkyne carbon and two platinum atoms has an approximate chair conformation. In contrast, the monomer (1b) is isostructural but not isomorphous with the analogous nickel compound (1a); in the crystal there is evidence for a weak intramolecular phenyl-phenyl interaction.
APA, Harvard, Vancouver, ISO, and other styles
5

Vicente, José, Anshu R. Singhal, and Peter G. Jones. "New Ylide−, Alkynyl−, and Mixed Alkynyl/Ylide−Gold(I) Complexes." Organometallics 21, no. 26 (December 2002): 5887–900. http://dx.doi.org/10.1021/om020753p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schuman, Ashley J., Sarah F. T. Robey, Eileen C. Judkins, Matthias Zeller, and Tong Ren. "A unique series of chromium(iii) mono-alkynyl complexes supported by tetraazamacrocycles." Dalton Transactions 50, no. 14 (2021): 4936–43. http://dx.doi.org/10.1039/d1dt00707f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Wen, and Daniel B. Leznoff. "Phthalocyanine as a redox-active platform for organometallic chemistry." Chemical Communications 54, no. 15 (2018): 1829–32. http://dx.doi.org/10.1039/c7cc08781k.

Full text
Abstract:
The first structurally characterized phthalocyanine (Pc)-based PcM-aryl, PcM–alkynyl, and PcM–Wittig complexes (with any metal centre), and the first PcCr–alkyl complexes spanning three chromium and two Pc-ring oxidation states are presented, illustrating that this classical, redox-active macrocycle can support a wide range of metal–carbon chemistry.
APA, Harvard, Vancouver, ISO, and other styles
8

Kempe, Rhett, Simon Brenner, and Perdita Arndt. "Mononuclear Tris(aminopyridinato)zirconium Alkyl, Aryl, and Alkynyl Complexes." Organometallics 15, no. 3 (January 1996): 1071–74. http://dx.doi.org/10.1021/om9507282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Furfari, Samantha K., Matthew C. Leech, Nicola Trathen, Madeleine C. Levis, and Ian R. Crossley. "Cyaphide–alkynyl complexes: metal–ligand conjugation and the influence of remote substituents." Dalton Transactions 48, no. 23 (2019): 8131–43. http://dx.doi.org/10.1039/c9dt01071h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Schäfer, Martin, Justin Wolf, and Helmut Werner. "Binding Two C2Units to an Electron-Rich Transition-Metal Center: The Interplay of Alkyne(alkynyl), Bisalkynyl(hydrido), Alkynyl(vinylidene), Alkynyl(allene), Alkynyl(olefin), and Alkynyl(enyne) Rhodium Complexes†." Organometallics 23, no. 24 (November 2004): 5713–28. http://dx.doi.org/10.1021/om049389f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Marcos, M. L., M. J. Macazaga, R. M. Medina, C. Moreno, J. A. Castro, J. L. Gomez, S. Delgado, and J. González-Velasco. "Alkynyl cobalt complexes. An electrochemical study." Inorganica Chimica Acta 312, no. 1-2 (January 2001): 249–55. http://dx.doi.org/10.1016/s0020-1693(00)00349-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhang, Pengrong, David J. Berg, Reginald H. Mitchell, Allen Oliver, and Brian Patrick. "Platinum Complexes of Alkynyl-Substituted Dimethyldihydropyrenes." Organometallics 31, no. 23 (November 8, 2012): 8121–34. http://dx.doi.org/10.1021/om3007008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Krivykh, Vasily V., Igor L. Eremenko, Dario Veghini, Irina A. Petrunenko, Dean L. Pountney, Dieter Unseld, and Heinz Berke. "Stable paramagnetic bis(alkynyl) manganese complexes." Journal of Organometallic Chemistry 511, no. 1-2 (April 1996): 111–14. http://dx.doi.org/10.1016/0022-328x(95)05926-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Haque, Ashanul, Linli Xu, Rayya A. Al-Balushi, Mohammed K. Al-Suti, Rashid Ilmi, Zeling Guo, Muhammad S. Khan, Wai-Yeung Wong, and Paul R. Raithby. "Cyclometallated tridentate platinum(ii) arylacetylide complexes: old wine in new bottles." Chemical Society Reviews 48, no. 23 (2019): 5547–63. http://dx.doi.org/10.1039/c8cs00620b.

Full text
Abstract:
Platinum(ii) cyclometallated pincer complexes with an alkynyl ligand in the fourth coordination site display excellent luminescent properties. By manipulation of the pincer and the alkynyl ligand their luminescence can be fine-tuned for opto-electronic applications.
APA, Harvard, Vancouver, ISO, and other styles
15

Onge, Brent, and James Green. "Nicholas Reactions of Alkynyl- and Alkenyltrifluoroborates." Synlett 28, no. 20 (August 17, 2017): 2923–27. http://dx.doi.org/10.1055/s-0036-1588528.

Full text
Abstract:
The Lewis acid mediated Nicholas reaction of potassium alkynyltrifluoroborates and propargyl acetate-hexacarbonyldicobalt complexes affords 1,4-diyne dicobalt hexacarbonyl complexes in good yields. The analogous Nicholas reactions of potassium alkenyltrifluoro­borates give 1,3-enyne dicobalt hexacarbonyl complexes in most cases, although the initial site of reaction can vary. Potassium vinyltrifluoroborate itself affords alkynylcyclopropane complexes.
APA, Harvard, Vancouver, ISO, and other styles
16

Grime, Richard W., and Mark W. Whiteley. "Alkyl, aryl, vinyl, alkynyl and carbene derivatives of cycloheptatrienylmolybdenum complexes." Journal of the Chemical Society, Dalton Transactions, no. 11 (1994): 1671. http://dx.doi.org/10.1039/dt9940001671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Hung, Ling-Ling, Wai Han Lam, Keith Man-Chung Wong, Eddie Chung-Chin Cheng, Nianyong Zhu, and Vivian Wing-Wah Yam. "Synthesis, luminescence and electrochemical properties of luminescent dinuclear mixed-valence gold complexes with alkynyl bridges." Inorganic Chemistry Frontiers 2, no. 5 (2015): 453–66. http://dx.doi.org/10.1039/c5qi00017c.

Full text
Abstract:
A series of luminescent dinuclear mixed-valence gold alkynyl complexes was synthesized. Their photophysical properties can be tuned by varying the nature of the alkynyl bridges, as supported by computational studies.
APA, Harvard, Vancouver, ISO, and other styles
18

Wilson, Gleason L. O., Medhanei Abraha, Jeanette A. Krause, and Hairong Guan. "Reactions of phenylacetylene with nickel POCOP-pincer hydride complexes resulting in different outcomes from their palladium analogues." Dalton Transactions 44, no. 27 (2015): 12128–36. http://dx.doi.org/10.1039/c5dt00161g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Matsuo, Yutaka, and Eiichi Nakamura. "Ruthenium(II) Complexes of Pentamethylated [60]Fullerene. Alkyl, Alkynyl, Chloro, Isocyanide, and Phosphine Complexes." Organometallics 22, no. 13 (June 2003): 2554–63. http://dx.doi.org/10.1021/om0302387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Armitt, David J., Michael I. Bruce, Brian W. Skelton, and Allan H. White. "Reactions of cyano(alkynyl)ethenes with some alkynyl- and diynyl-ruthenium complexes." Journal of Organometallic Chemistry 693, no. 24 (November 2008): 3571–81. http://dx.doi.org/10.1016/j.jorganchem.2008.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Albertin, Gabriele, Stefano Antoniutti, Emilio Bordignon, Elena Del Ministro, Sandra Ianelli, and Giancarlo Pelizzi. "Bis(alkynyl) and alkynyl–vinylidene iron(II) complexes with monodentate phosphite ligands." J. Chem. Soc., Dalton Trans., no. 11 (1995): 1783–89. http://dx.doi.org/10.1039/dt9950001783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Santos, Amelia, Javier Lopez, Lluisa Matas, Josep Ros, Amalia Galan, and Antonio M. Echavarren. "Synthesis of butenynylruthenium complexes from hydrido, alkenyl, or alkynyl complexes." Organometallics 12, no. 10 (October 1993): 4215–18. http://dx.doi.org/10.1021/om00034a070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yamazaki, Shinsaku. "ChemInform Abstract: Transition Metal Complexes Bridged by Alkyne and Alkynyl Ligands." ChemInform 31, no. 6 (June 11, 2010): no. http://dx.doi.org/10.1002/chin.200006257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Weishäupl, Michael, Christian Robl, Wolfgang Weigand, Sebastian Kowalski, and Fabian Mohr. "Gold(I) alkynyl complexes containing a flexible, biphenyl-derived bis(alkyne)." Inorganica Chimica Acta 374, no. 1 (August 2011): 171–74. http://dx.doi.org/10.1016/j.ica.2011.03.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Adams, Harry, Matthew T. Atkinson, and Michael J. Morris. "Addition of diphenylphosphine to molybdenum alkynyl complexes." Journal of Organometallic Chemistry 633, no. 1-2 (August 2001): 125–30. http://dx.doi.org/10.1016/s0022-328x(01)01042-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ipaktschi, Junes, Katja Reimann, Michael Serafin, and Ansgar Dülmer. "η1-Alkynyl and vinylidene transition metal complexes." Journal of Organometallic Chemistry 670, no. 1-2 (March 2003): 66–74. http://dx.doi.org/10.1016/s0022-328x(02)02132-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Antiñolo, Antonio, Cristina Garcı́a-Yebra, Mariano Fajardo, Isabel del Hierro, Carmen López-Mardomingo, Isabel López-Solera, Antonio Otero, Yolanda Pérez, and Sanjiv Prashar. "Synthesis and reactivity of alkynyl niobocene complexes." Journal of Organometallic Chemistry 670, no. 1-2 (March 2003): 123–31. http://dx.doi.org/10.1016/s0022-328x(02)02150-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bruce, Michael I., Martyn Jevric, Christian R. Parker, Wyona Patalinghug, Brian W. Skelton, Allan H. White, and Natasha N. Zaitseva. "Iodo-alkynyl- and iodo-butadiynyl-ruthenium complexes." Journal of Organometallic Chemistry 693, no. 17 (August 2008): 2915–20. http://dx.doi.org/10.1016/j.jorganchem.2008.06.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hill, Anthony F., Alexander G. Hulkes, Andrew J. P. White, and David J. Williams. "Selenolatovinylidene Complexes: Metal-Mediated Alkynyl Selenoether Rearrangements." Organometallics 19, no. 4 (February 2000): 371–73. http://dx.doi.org/10.1021/om990939x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Long, Nicholas J., and Charlotte K. Williams. "Metal Alkynyl σ Complexes: Synthesis and Materials." Angewandte Chemie International Edition 42, no. 23 (June 16, 2003): 2586–617. http://dx.doi.org/10.1002/anie.200200537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Menéndez, Carmen, Dolores Morales, Julio Pérez, Víctor Riera, and Daniel Miguel. "New Types of (Arene)ruthenium Alkynyl Complexes†." Organometallics 20, no. 13 (June 2001): 2775–81. http://dx.doi.org/10.1021/om000834q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Connelly, Neil G., Maria Pilar Gamasa, Jose Gimeno, Claude Lapinte, Elena Lastra, John P. Maher, Nathalie Le Narvor, Anne L. Rieger, and Philip H. Rieger. "17-Electron alkynyl complexes of cyclopentadienyliron(III)." Journal of the Chemical Society, Dalton Transactions, no. 17 (1993): 2575. http://dx.doi.org/10.1039/dt9930002575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Venâncio, A. I. F., L. M. D. R. S. Martins, and A. J. L. Pombeiro. "Electrochemical Study of Alkynyl Fe(II) Complexes." Portugaliae Electrochimica Acta 21, no. 1 (2003): 85–90. http://dx.doi.org/10.4152/pea.200301085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Green, Katy A., Marie P. Cifuentes, Marek Samoc, and Mark G. Humphrey. "Metal alkynyl complexes as switchable NLO systems." Coordination Chemistry Reviews 255, no. 21-22 (November 2011): 2530–41. http://dx.doi.org/10.1016/j.ccr.2011.02.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wilhelmi, Caroline, Maximilian Gaffga, Yu Sun, Gereon Niedner-Schatteburg, and Werner R. Thiel. "A Novel Bifunctional Ligand for the Synthesis of Polynuclear Alkynyl Complexes." Zeitschrift für Naturforschung B 69, no. 11-12 (December 1, 2014): 1290–98. http://dx.doi.org/10.5560/znb.2014-4164.

Full text
Abstract:
Abstract The synthesis of 2-(1-(prop-2-yn-1-yl)-1H-pyrazol-3-yl)pyridine is presented. This ligand contains both, an alkynyl function being suitable for metal-carbon bond formation with electron-rich late transition metal sites, and a pyrazolylpyridine unit, which is well-known to undergo chelation reactions similar to 2,2′-bipyridine. This strategy allows building up polynuclear complexes with broad combinations of different metal sites. Two platinum alkynyl complexes were structurally characterized, and a trinuclear Ru2Pt complex was indentified by means of NMR spectroscopy and ESI mass spectrometry.
APA, Harvard, Vancouver, ISO, and other styles
36

Chin, Chong Shik, Mieock Kim, and Hyungeui Lee. "Iridium Complexes Containing Four and Five Ir−C Bonds: Alkyl-Bis(alkenyl)-Alkynyl and Carbonyl-Alkyl-Bis(alkenyl)-Alkynyl Iridium." Organometallics 21, no. 8 (April 2002): 1679–83. http://dx.doi.org/10.1021/om010999e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Koutsantonis, George A., Paul J. Low, Campbell F. R. Mackenzie, Brian W. Skelton, and Dmitry S. Yufit. "Coordinating Tectons: Bimetallic Complexes from Bipyridyl Terminated Group 8 Alkynyl Complexes." Organometallics 33, no. 18 (August 6, 2014): 4911–22. http://dx.doi.org/10.1021/om500172r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Barluenga, José, Ramón Bernardo de la Rúa, Diana de Sáa, Alfredo Ballesteros, and Miguel Tomás. "Formal Alkyne Insertion into Alkoxycarbene Complexes: Simple Access to Enantiopure Group 6 Alkynyl(alkoxy)carbene Complexes." Angewandte Chemie International Edition 44, no. 31 (August 5, 2005): 4981–83. http://dx.doi.org/10.1002/anie.200501400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Barluenga, José, Ramón Bernardo de la Rúa, Diana de Sáa, Alfredo Ballesteros, and Miguel Tomás. "Formal Alkyne Insertion into Alkoxycarbene Complexes: Simple Access to Enantiopure Group 6 Alkynyl(alkoxy)carbene Complexes." Angewandte Chemie 117, no. 31 (August 5, 2005): 5061–63. http://dx.doi.org/10.1002/ange.200501400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Werner, Helmut, and Uwe Brekau. "Synthese und Reaktivität von Vinyliden-Rhodiumkomplexen mit C=CHtBu und C=CHCO2Me als Liganden [1] / Synthesis and Reactivity of Vinylidene Rhodium Complexes Containing C=CHtBu and C=CHCO2Me as Ligands [1]." Zeitschrift für Naturforschung B 44, no. 11 (November 1, 1989): 1438–46. http://dx.doi.org/10.1515/znb-1989-1119.

Full text
Abstract:
Square-planar alkyne rhodium complexes trans-[RhCl(RC=CCO2Me)(PiPr3)2] (4-6) bearing at least one electron withdrawing substituent at the C=C triple bond are prepared from [RhCl(PiPr3)2] (3) and RC=CCO2Me. Reaction of 3 with tBuC≡CH gives the isomeric alkyne (7) and alkynyl hydrido (8) rhodium complexes in a stepwise fashion. 8 can be trapped with pyridine to produce [RhH(C2tBu)Cl(PiPr3)2(NC5H5)] (10). Thermal rearrangement of 6 (R = H) and 8 leads to the formation of the vinylidene complexes trans-[RhCl(=C=CHR)(PiPr3)2] (9,12) which react with NaC5H5 in THF to give the cyclopentadienyl derivatives C5H5Rh(=C=CHR)(PiPr3) (13, 14). Reactions of 13 and 14 with sulfur afford the thioketene rhodium compounds C5H5Rh(η2-S=C=CHR)(PiPr3) which on methylation with CF3SO3CH3 in the presence of NH4PF6 give the ionic complexes [C5H5Rh(η2-SCH3=C= CHR)(PiPr3)]PF6 (18,19).
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Yuzhen, Cory E. Hauke, Matthew R. Crawley, Bradley E. Schurr, Cressa Ria P. Fulong, and Timothy R. Cook. "Increasing phosphorescent quantum yields and lifetimes of platinum-alkynyl complexes with extended conjugation." Dalton Transactions 46, no. 30 (2017): 9794–800. http://dx.doi.org/10.1039/c7dt01817g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Haas, Thomas, Katrin Kaspar, Konstanze Forner, Matthias Drexler, and Helmut Fischer. "Nickel alkynyl and allenylidene complexes: Synthesis and properties." Journal of Organometallic Chemistry 696, no. 4 (February 2011): 946–55. http://dx.doi.org/10.1016/j.jorganchem.2010.10.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Grelaud, Guillaume, Marie P. Cifuentes, Frédéric Paul, and Mark G. Humphrey. "Group 8 metal alkynyl complexes for nonlinear optics." Journal of Organometallic Chemistry 751 (February 2014): 181–200. http://dx.doi.org/10.1016/j.jorganchem.2013.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hill, Anthony F., A. David Rae, Madeleine Schultz, and Anthony C. Willis. "Bis(alkynyl), Metallacyclopentadiene, and Diphenylbutadiyne Complexes of Ruthenium." Organometallics 26, no. 6 (March 2007): 1325–38. http://dx.doi.org/10.1021/om060888l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Caldwell, Lorraine M., Anthony F. Hill, Alexander G. Hulkes, Caitlin M. A. McQueen, Andrew J. P. White, and David J. Williams. "Alkynyl Selenolate Complexes of Iron, Nickel, and Molybdenum." Organometallics 29, no. 23 (December 13, 2010): 6350–58. http://dx.doi.org/10.1021/om100694f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Takei, Fumie, Shaopo Tung, Koichi Yanai, Kiyotaka Onitsuka, and Shigetoshi Takahashi. "Polymerization of aryl isocyanides by cyclopentadienylnickel–alkynyl complexes." Journal of Organometallic Chemistry 559, no. 1-2 (May 1998): 91–96. http://dx.doi.org/10.1016/s0022-328x(98)00423-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Olbrich, Falk, J�rgen Kopf, and Erwin Weiss. "Novel Alkynylcopper(I) Complexes and Lithium Alkynyl Cuprates." Angewandte Chemie International Edition in English 32, no. 7 (July 1993): 1077–79. http://dx.doi.org/10.1002/anie.199310771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Malaba, Dennis, Michal Sabat, and Russell N. Grimes. "Alkynyl Substitution and Linkage in Cobaltacarborane Sandwich Complexes." European Journal of Inorganic Chemistry 2001, no. 10 (September 2001): 2557–62. http://dx.doi.org/10.1002/1099-0682(200109)2001:10<2557::aid-ejic2557>3.0.co;2-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

MANNA, J., K. D. JOHN, and M. D. HOPKINS. "ChemInform Abstract: The Bonding of Metal-Alkynyl Complexes." ChemInform 27, no. 7 (August 12, 2010): no. http://dx.doi.org/10.1002/chin.199607300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Casey, Charles P., Stefan Kraft, and Douglas R. Powell. "[1,3]-Metal Shifts in Rhenium Alkynyl Carbene Complexes." Organometallics 20, no. 13 (June 2001): 2651–53. http://dx.doi.org/10.1021/om0103299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography