Journal articles on the topic 'All-Copper Redox Flow Battery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'All-Copper Redox Flow Battery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Schaltin, Stijn, Yun Li, Neil R. Brooks, et al. "Towards an all-copper redox flow battery based on a copper-containing ionic liquid." Chemical Communications 52, no. 2 (2016): 414–17. http://dx.doi.org/10.1039/c5cc06774j.
Full textPeljo, Pekka, David Lloyd, Nguyet Doan, Marko Majaneva, and Kyösti Kontturi. "Towards a thermally regenerative all-copper redox flow battery." Physical Chemistry Chemical Physics 16, no. 7 (2014): 2831. http://dx.doi.org/10.1039/c3cp54585g.
Full textCross, Nicholas R., Renaldo E. Springer, Matthew J. Rau, et al. "Membrane Transport and Performance in the All-Aqueous Copper Thermally Regenerative Battery." ECS Meeting Abstracts MA2022-02, no. 1 (2022): 8. http://dx.doi.org/10.1149/ma2022-0218mtgabs.
Full textD'Adamo, Mirko, Wouter Badenhorst, Lasse Murtomäki, et al. "Modeling an All-Copper Redox Flow Battery for Microgrid Applications: Impact of Current and Flow Rate on Capacity Fading and Deposition." Energies 18, no. 8 (2025): 2084. https://doi.org/10.3390/en18082084.
Full textD’Adamo, Mirko, Wouter Badenhorst, Lasse Murtomäki, et al. "Modeling an All-Copper Redox Flow Battery for Microgrid Applications: Impact of Current and Flow Rate on Capacity Fading and Deposition." Energies 18, no. 8 (2025): 2084. https://doi.org/10.3390/en18082084.
Full textSanz, Laura, David Lloyd, Eva Magdalena, Jesús Palma, and Kyösti Kontturi. "Description and performance of a novel aqueous all-copper redox flow battery." Journal of Power Sources 268 (December 2014): 121–28. http://dx.doi.org/10.1016/j.jpowsour.2014.06.008.
Full textZhang, Jing, Gaopeng Jiang, Pan Xu, et al. "An all-aqueous redox flow battery with unprecedented energy density." Energy & Environmental Science 11, no. 8 (2018): 2010–15. http://dx.doi.org/10.1039/c8ee00686e.
Full textGong, Ke, Fei Xu, Jonathan B. Grunewald, et al. "All-Soluble All-Iron Aqueous Redox-Flow Battery." ACS Energy Letters 1, no. 1 (2016): 89–93. http://dx.doi.org/10.1021/acsenergylett.6b00049.
Full textBadenhorst, Wouter Dirk, Kuldeep, Laura Sanz, Catia Arbizzani, and Lasse Murtomäki. "Performance improvements for the all-copper redox flow battery: Membranes, electrodes, and electrolytes." Energy Reports 8 (November 2022): 8690–700. http://dx.doi.org/10.1016/j.egyr.2022.06.075.
Full textLi, Yun, Jeroen Sniekers, João Malaquias, et al. "A non-aqueous all-copper redox flow battery with highly soluble active species." Electrochimica Acta 236 (May 2017): 116–21. http://dx.doi.org/10.1016/j.electacta.2017.03.039.
Full textBadenhorst, Wouter, Christian M. Jensen, Uffe Jakobsen, Zahra Esfahani, and Lasse Murtomäki. "Control-Oriented Electrochemical Model and Parameter Estimation for an All-Copper Redox Flow Battery." Batteries 9, no. 5 (2023): 272. http://dx.doi.org/10.3390/batteries9050272.
Full textLloyd, David, Eva Magdalena, Laura Sanz, Lasse Murtomäki, and Kyösti Kontturi. "Preparation of a cost-effective, scalable and energy efficient all-copper redox flow battery." Journal of Power Sources 292 (October 2015): 87–94. http://dx.doi.org/10.1016/j.jpowsour.2015.04.176.
Full textLloyd, David, Tuomas Vainikka, and Kyösti Kontturi. "The development of an all copper hybrid redox flow battery using deep eutectic solvents." Electrochimica Acta 100 (June 2013): 18–23. http://dx.doi.org/10.1016/j.electacta.2013.03.130.
Full textJia, Chuankun, Feng Pan, Yun Guang Zhu, Qizhao Huang, Li Lu, and Qing Wang. "High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane." Science Advances 1, no. 10 (2015): e1500886. http://dx.doi.org/10.1126/sciadv.1500886.
Full textLi, Heyao, Zhuqian Zhang, Haojie Zhang, and Yuchen Zhou. "Exploring the Flow and Mass Transfer Characteristics of an All-Iron Semi-Solid Redox Flow Battery." Batteries 11, no. 4 (2025): 166. https://doi.org/10.3390/batteries11040166.
Full textMorais, William Gomes, Emanuele Maria Groiss, Valentina La Valle, and Edoardo Gino Macchi. "Electrochemical Characterization of Stable Cu(II)/Cu(I) Electrolytes for Redox Flow Battery." ECS Meeting Abstracts MA2023-02, no. 8 (2023): 3338. http://dx.doi.org/10.1149/ma2023-0283338mtgabs.
Full textGerber, Fischer, Pinkwart, and Tübke. "Segmented Printed Circuit Board Electrode for Locally-resolved Current Density Measurements in All-Vanadium Redox Flow Batteries." Batteries 5, no. 2 (2019): 38. http://dx.doi.org/10.3390/batteries5020038.
Full textZhang, Shu Di, and Yu Chun Zhai. "Study on the Stability of all Vanadium Redox Flow Battery Electrolyte." Applied Mechanics and Materials 281 (January 2013): 461–64. http://dx.doi.org/10.4028/www.scientific.net/amm.281.461.
Full textLee, Chi-Yuan, Chin-Lung Hsieh, Chia-Hung Chen, Yen-Pu Huang, Chong-An Jiang, and Pei-Chi Wu. "A Flexible 5-In-1 Microsensor for Internal Microscopic Diagnosis of Vanadium Redox Flow Battery Charging Process." Sensors 19, no. 5 (2019): 1030. http://dx.doi.org/10.3390/s19051030.
Full textBae*, Chulheung, Edward Pelham Lindfield Roberts, Mohammed Harun Chakrabarti, and Muhammad Saleem. "All-Chromium Redox Flow Battery for Renewable Energy Storage." International Journal of Green Energy 8, no. 2 (2011): 248–64. http://dx.doi.org/10.1080/15435075.2010.549598.
Full textRychcik, M., and M. Skyllas-Kazacos. "Characteristics of a new all-vanadium redox flow battery." Journal of Power Sources 22, no. 1 (1988): 59–67. http://dx.doi.org/10.1016/0378-7753(88)80005-3.
Full textPark, Dong-Jun, Kwang-Sun Jeon, Cheol-Hwi Ryu, and Gab-Jin Hwang. "Performance of the all-vanadium redox flow battery stack." Journal of Industrial and Engineering Chemistry 45 (January 2017): 387–90. http://dx.doi.org/10.1016/j.jiec.2016.10.007.
Full textChen, Jin Qing, Bao Guo Wang, and Hong Ling Lv. "Numerical Simulation and Experiment on the Electrolyte Flow Distribution for All Vanadium Redox Flow Battery." Advanced Materials Research 236-238 (May 2011): 604–7. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.604.
Full textZhong, Longchun, and Fengming Chu. "A Novel Biomimetic Lung-Shaped Flow Field for All-Vanadium Redox Flow Battery." Sustainability 15, no. 18 (2023): 13613. http://dx.doi.org/10.3390/su151813613.
Full textHuo, Yongjie, Xueqi Xing, Cuijuan Zhang, Xiang Wang, and Yongdan Li. "An all organic redox flow battery with high cell voltage." RSC Advances 9, no. 23 (2019): 13128–32. http://dx.doi.org/10.1039/c9ra01514k.
Full textSanz, Laura, David Lloyd, Eva Magdalena, Jesús Palma, Marc Anderson, and Kyösti Kontturi. "Study and characterization of positive electrolytes for application in the aqueous all-copper redox flow battery." Journal of Power Sources 278 (March 2015): 175–82. http://dx.doi.org/10.1016/j.jpowsour.2014.12.034.
Full textChai, Jingchao, Amir Lashgari, Xiao Wang, Caroline K. Williams, and Jianbing “Jimmy” Jiang. "All-PEGylated redox-active metal-free organic molecules in non-aqueous redox flow battery." Journal of Materials Chemistry A 8, no. 31 (2020): 15715–24. http://dx.doi.org/10.1039/d0ta02303e.
Full textRoberts, Edward, Mohammad Rahimi, Asghar Molaei Dehkordi, Fatemeh ShakeriHosseinabad, Maedeh Pahlevaninezhad, and Ashutosh Kumar Singh. "(Invited) Redox Flow Battery Innovation." ECS Meeting Abstracts MA2022-01, no. 3 (2022): 483. http://dx.doi.org/10.1149/ma2022-013483mtgabs.
Full textZhang, Ye-Qi, Guang-Xu Wang, Ru-Yi Liu, and Tian-Hu Wang. "Operational Parameter Analysis and Performance Optimization of Zinc–Bromine Redox Flow Battery." Energies 16, no. 7 (2023): 3043. http://dx.doi.org/10.3390/en16073043.
Full textPahlevaninezhad, Maedeh, Ashutosh Kumar Singh, Thomas Storwick, et al. "An Advanced Composite Membrane for the All-Vanadium Redox Flow Battery." ECS Meeting Abstracts MA2022-01, no. 3 (2022): 466. http://dx.doi.org/10.1149/ma2022-013466mtgabs.
Full textHendriana, Dena, Mochamad Hamdan Aziz, Yohanes Acep Nanang Kardana, Muhamad Lutfi Rachmat, Gembong Baskoro, and Henry Nasution. "Self-Discharging and Corrosion Problems in Vanadium Redox Flow Battery." Reaktor 22, no. 3 (2023): 77–85. http://dx.doi.org/10.14710/reaktor.22.3.77-85.
Full textYesilyurt, Muhammed Samil, and Huseyin Ayhan Yavasoglu. "An All-Vanadium Redox Flow Battery: A Comprehensive Equivalent Circuit Model." Energies 16, no. 4 (2023): 2040. http://dx.doi.org/10.3390/en16042040.
Full textBao, Jie, Yunxiang Chen, Peiyuan Gao, et al. "Semi-Analytical Model for Hybrid and Redox Targeting Flow Battery Systems." ECS Meeting Abstracts MA2024-01, no. 3 (2024): 552. http://dx.doi.org/10.1149/ma2024-013552mtgabs.
Full textPeljo, Pekka, Heron Vrubel, Véronique Amstutz, et al. "All-vanadium dual circuit redox flow battery for renewable hydrogen generation and desulfurisation." Green Chemistry 18, no. 6 (2016): 1785–97. http://dx.doi.org/10.1039/c5gc02196k.
Full textDong-Yang, LIU, CHENG Jie, PAN Jun-Qing, WEN Yue-Hua, CAO Gao-Ping, and YANG Yu-Sheng. "All-Lead Redox Flow Battery in a Fluoroboric Acid Electrolyte." Acta Physico-Chimica Sinica 27, no. 11 (2011): 2571–76. http://dx.doi.org/10.3866/pku.whxb20111105.
Full textAlkhayri, Fahad, and C. Adam Dyker. "A Bispyridinylidene Anolyte for an All-Organic Redox Flow Battery." ECS Meeting Abstracts MA2020-01, no. 1 (2020): 112. http://dx.doi.org/10.1149/ma2020-011112mtgabs.
Full textZhen, Yihan, Cuijuan Zhang, Jiashu Yuan, Yicheng Zhao, and Yongdan Li. "A high-performance all-iron non-aqueous redox flow battery." Journal of Power Sources 445 (January 2020): 227331. http://dx.doi.org/10.1016/j.jpowsour.2019.227331.
Full textLuo, Tao, Oana David, Youri Gendel, and Matthias Wessling. "Porous poly(benzimidazole) membrane for all vanadium redox flow battery." Journal of Power Sources 312 (April 2016): 45–54. http://dx.doi.org/10.1016/j.jpowsour.2016.02.042.
Full textAnwar, M. Shariq, and Arindam Sarkar. "A Low Voltage, High Current All-Tungsten Redox Flow Battery." ECS Meeting Abstracts MA2022-02, no. 2 (2022): 140. http://dx.doi.org/10.1149/ma2022-022140mtgabs.
Full textAl-Fetlawi, H., A. A. Shah, and F. C. Walsh. "Non-isothermal modelling of the all-vanadium redox flow battery." Electrochimica Acta 55, no. 1 (2009): 78–89. http://dx.doi.org/10.1016/j.electacta.2009.08.009.
Full textBrushett, Fikile R., John T. Vaughey, and Andrew N. Jansen. "An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery." Advanced Energy Materials 2, no. 11 (2012): 1390–96. http://dx.doi.org/10.1002/aenm.201200322.
Full textKabtamu, Daniel Manaye, Guan-Yi Lin, Yu-Chung Chang, et al. "The effect of adding Bi3+ on the performance of a newly developed iron–copper redox flow battery." RSC Advances 8, no. 16 (2018): 8537–43. http://dx.doi.org/10.1039/c7ra12926b.
Full textIbanez, Santiago Enrique, Paula Navalpotro, Ignacio Almonacid, Eduardo Pedraza, and Rebeca Marcilla. "Close Contact without Mixing: All-Aqueous Membrane-Free Flow Battery." ECS Meeting Abstracts MA2022-01, no. 48 (2022): 1996. http://dx.doi.org/10.1149/ma2022-01481996mtgabs.
Full textEr, Süleyman, Changwon Suh, Michael P. Marshak, and Alán Aspuru-Guzik. "Computational design of molecules for an all-quinone redox flow battery." Chemical Science 6, no. 2 (2015): 885–93. http://dx.doi.org/10.1039/c4sc03030c.
Full textCross, Nicholas R., Matthew J. Rau, Serguei N. Lvov, Christopher A. Gorski, Bruce E. Logan, and Derek M. Hall. "The Impacts of Electrolyte Composition on Key Performance Metrics of the All-Aqueous Copper Thermally Regenerative Ammonia Battery." ECS Meeting Abstracts MA2022-01, no. 1 (2022): 98. http://dx.doi.org/10.1149/ma2022-01198mtgabs.
Full textRohan, James F., Declan P. Casey, Giampaolo Lacarbonara, et al. "(Digital Presentation) Electrolyte Optimisation for Copper Deposition and Dissolution in Redox Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 3 (2022): 511. http://dx.doi.org/10.1149/ma2022-013511mtgabs.
Full textDüerkop, Dennis, Hartmut Widdecke, Carsten Schilde, Ulrich Kunz, and Achim Schmiemann. "Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review." Membranes 11, no. 3 (2021): 214. http://dx.doi.org/10.3390/membranes11030214.
Full textKortekaas, Luuk, Sebastian Fricke, Aleksandr Korshunov, Isidora Cekic-Laskovic, Martin Winter, and Mariano Grünebaum. "Building Bridges: Unifying Design and Development Aspects for Advancing Non-Aqueous Redox-Flow Batteries." Batteries 9, no. 1 (2022): 4. http://dx.doi.org/10.3390/batteries9010004.
Full textSreenath, Sooraj, Nitish Kumar Sharma, and Rajaram K. Nagarale. "Alkaline all iron redox flow battery with a polyethylene/poly(styrene-co-divinylbenzene) interpolymer cation-exchange membrane." RSC Advances 10, no. 73 (2020): 44824–33. http://dx.doi.org/10.1039/d0ra08316j.
Full textDing, Yu, Yu Zhao, Yutao Li, John B. Goodenough, and Guihua Yu. "A high-performance all-metallocene-based, non-aqueous redox flow battery." Energy & Environmental Science 10, no. 2 (2017): 491–97. http://dx.doi.org/10.1039/c6ee02057g.
Full text