Academic literature on the topic 'All optical Bose-Einstein condensation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'All optical Bose-Einstein condensation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "All optical Bose-Einstein condensation"
Arnold, K. J., and M. D. Barrett. "All-optical Bose–Einstein condensation in a 1.06μm dipole trap." Optics Communications 284, no. 13 (June 2011): 3288–91. http://dx.doi.org/10.1016/j.optcom.2011.03.008.
Full textDeng, Shu-Jin, Peng-Peng Diao, Qian-Li Yu, and Hai-Bin Wu. "All-Optical Production of Quantum Degeneracy and Molecular Bose-Einstein Condensation of 6 Li." Chinese Physics Letters 32, no. 5 (May 2015): 053401. http://dx.doi.org/10.1088/0256-307x/32/5/053401.
Full textSawicki, Krzysztof, Thomas J. Sturges, Maciej Ściesiek, Tomasz Kazimierczuk, Kamil Sobczak, Andrzej Golnik, Wojciech Pacuski, and Jan Suffczyński. "Polariton lasing and energy-degenerate parametric scattering in non-resonantly driven coupled planar microcavities." Nanophotonics 10, no. 9 (May 21, 2021): 2421–29. http://dx.doi.org/10.1515/nanoph-2021-0079.
Full textGedela, Satyanarayana, Neeraj Pant, R. P. Pant, and Jaya Upreti. "Relativistic anisotropic model of strange star SAX J1808.4-3658 admitting quadratic equation of state." International Journal of Modern Physics A 34, no. 29 (October 20, 2019): 1950179. http://dx.doi.org/10.1142/s0217751x19501793.
Full textJian-Ping, Yin, Gao Wei-Jian, Wang Hai-Feng, Long Quan, and Wang Yu-Zhu. "Generations of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation." Chinese Physics 11, no. 11 (October 23, 2002): 1157–70. http://dx.doi.org/10.1088/1009-1963/11/11/312.
Full textBAO, WEIZHU, and YANZHI ZHANG. "DYNAMICS OF THE GROUND STATE AND CENTRAL VORTEX STATES IN BOSE–EINSTEIN CONDENSATION." Mathematical Models and Methods in Applied Sciences 15, no. 12 (December 2005): 1863–96. http://dx.doi.org/10.1142/s021820250500100x.
Full textLin, Kai, Xiao-Mei Kuang, Wei-Liang Qian, Qiyuan Pan, and A. B. Pavan. "Analysis of s-wave, p-wave and d-wave holographic superconductors in Hořava–Lifshitz gravity." Modern Physics Letters A 33, no. 26 (August 24, 2018): 1850147. http://dx.doi.org/10.1142/s021773231850147x.
Full textBall, Philip. "How cold atoms got hot: an interview with William Phillips." National Science Review 3, no. 2 (November 9, 2015): 201–3. http://dx.doi.org/10.1093/nsr/nwv075.
Full textSavona, Vincenzo, and Davide Sarchi. "Bose-Einstein condensation of microcavity polaritons." physica status solidi (b) 242, no. 11 (September 2005): 2290–301. http://dx.doi.org/10.1002/pssb.200560964.
Full textHolzmann, M., P. Grüter, and F. Laloë. "Bose-Einstein condensation in interacting gases." European Physical Journal B 10, no. 4 (August 1999): 739–60. http://dx.doi.org/10.1007/s100510050905.
Full textDissertations / Theses on the topic "All optical Bose-Einstein condensation"
Barrett, Murray Douglas. "A QUEST for BEC : an all optical alternative." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29520.
Full textSalomon, Guillaume. "Production tout optique de condensats de Bose-Einstein de 39K : des interactions contrôlables pour l’étude de gaz quantiques désordonnés en dimensions réduites." Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://www.theses.fr/2014IOTA0009/document.
Full textThis thesis presents the all optical production of 39K Bose-Einstein condensates. A key point in the process is the sub-Doppler cooling that allows for an efficient loading of an optical dipole trap. To this aim we use a gray molasses scheme working on the blue side of the D1 line of this alkali that leads to a high phase space density and a high number of trapped atoms in a 1550 nm optical trap. The cloud is then polarized and compressed in a crossed dipole trap before starting an efficient forced evaporation close to a Feshbach resonance. This process allows us to produce Bose-Einstein condensates every 7 seconds with our experiment. Those degenerate clouds represent the starting point of experiments aiming to study the influence of disorder on quantum gases in low dimensions. We discuss the perspectives to study of the phase diagram of the two-dimensional disordered Bose gas as well as the Anderson localization phenomenon in two dimensions and the behaviour of bright solitons in a disordered potential in a one-dimensional geometry
Fouche, Lauriane. "Gaz quantiques de potassium 39 à interactions contrôlables." Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2015. http://www.theses.fr/2015IOTA0003/document.
Full textPotassium 39 is an alkali allowing to control the interactions between atoms thanks to Feshbach resonances. This thesis presents a fast and efficient way to produce all-optical Bose-Einstein condensates of 39K. Our technique is first taking advantage of gray molasses cooling leading to a cold enough sample to directly load an optical trap. Then an optical evaporation is performed near a Feshbach resonance to control the collision rate. Studies in various spin mixtures have allowed us to observe new p-wave Feshbach resonances and a d-wave Feshbach resonance. The later presents unusual properties and has been studied in details to understand the collision processes involved. The model developped is a two stage model, each one of them involving a two body collision. It explains the experimental results obtained. In the produced 39K degenerate Bose gases, tuning interactions near the Feshbach resonance at 560,7 Gauss for the atoms in |F=1,mF=-1> has allowed us to adress different physical problems. For repulsive interactions, we study the expansion of a Bose-Einstein condensate in the 1D-3D dimensional crossover. For attractive interactions we produce bright solitons in a one-dimensional optical trap. Perspectives concerning the study of those degenerate self-confined Bose gases in disordered media are also discussed
Geursen, Reece Wim, and n/a. "Experiments with Bose-Einstein condensates in optical potentials." University of Otago. Department of Physics, 2005. http://adt.otago.ac.nz./public/adt-NZDU20070131.162251.
Full textMcKinney, Sarah. "Dynamics of Bose-Einstein condensates in optical lattices /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9805.
Full textLouis, Pearl J. Y. "Matter-wave solitons in optical lattices and superlattices /." View electronic text, 2005. http://matter.sci.osaka-cu.ac.jp/~pearl/thesis.pdf.
Full textFeng, Yinqi. "Quantum optical states and Bose-Einstein condensation : a dynamical group approach." Thesis, Open University, 2001. http://oro.open.ac.uk/54440/.
Full textCennini, Giovanni. "Field-insensitive Bose-Einstein condensates and an all-optical atom laser." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972737421.
Full textFigl, Cristina. "Optical collisions in crossed beams and Bose-Einstein condensation in a microtrap." Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=97236143X.
Full textBerhane, Bereket H. "Quantum optical interactions in trapped degenerate atomic gases." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/29891.
Full textBooks on the topic "All optical Bose-Einstein condensation"
Kenyon, Ian R. Quantum 20/20. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198808350.001.0001.
Full textKivshar, Yuri S., Cornelia Denz, and Sergej Flach. Nonlinearities in Periodic Structures and Metamaterials. Springer, 2011.
Find full textKivshar, Yuri S., Cornelia Denz, and Sergej Flach. Nonlinearities in Periodic Structures and Metamaterials. Springer, 2012.
Find full textMorawetz, Klaus. Interacting Systems far from Equilibrium. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.001.0001.
Full textBook chapters on the topic "All optical Bose-Einstein condensation"
Klingshirn, Claus. "Excitonic Bose-Einstein Condensation versus Electron-Hole Plasma Formation." In Frontiers of Optical Spectroscopy, 539–70. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-2751-6_15.
Full textArimondo, Ennio, and Maria Allegrini. "Optical Components for a Robust Bose—Einstein Condensation Experiment." In Laser Physics at the Limits, 281–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04897-9_27.
Full textKatz, N., E. Rowen, R. Ozeri, J. Steinhauer, E. Gershnabel, and N. Davidson. "Atom Optics with Bose-Einstein Condensation Using Optical Potentials." In Decoherence, Entanglement and Information Protection in Complex Quantum Systems, 589–600. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3283-8_41.
Full textChapman, M. "All optical formation of a Bose Einstein condensate." In Coherence and Quantum Optics VIII, 107. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_8.
Full textKeeling, Jonathan, Marzena H. Szymańska, and Peter B. Littlewood. "Keldysh Green’s function approach to coherence in a non-equilibrium steady state: connecting Bose-Einstein condensation and lasing." In Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures, 293–329. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12491-4_12.
Full text"Bose–Einstein Condensation." In World Scientific Series on Atomic, Molecular and Optical Physics, 635–82. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812567857_0009.
Full textPitaevskii, Lev, and Sandro Stringari. "Quantum Gases in Optical Lattices." In Bose-Einstein Condensation and Superfluidity, 428–58. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198758884.003.0022.
Full text"Introduction to Bose–Einstein Condensation." In Optical Trapping and Manipulation of Neutral Particles Using Lasers, 259–78. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774897_0016.
Full text"Recent Work on Bose–Einstein Condensation." In Optical Trapping and Manipulation of Neutral Particles Using Lasers, 303–21. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774897_0020.
Full text"Optical Lattices." In Fundamentals and New Frontiers of Bose-Einstein Condensation, 277–95. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789812839602_0011.
Full textConference papers on the topic "All optical Bose-Einstein condensation"
Johanning, Michael, Rainer Dumke, Jonathan D. Weinstein, Kevin M. Jones, and Paul D. Lett. "All-Optical Bose-Einstein-Condensation of Sodium in a Crossed Dipole Trap." In Laser Science. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/ls.2005.lwg1.
Full textChapman, M. S. "Bose-Einstein condensation of interacting spin-1 /sup 87/Rb atoms in an all-optical trap." In International Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/iqec.2005.1561138.
Full textBarrett, M. D., M. S. Chang, C. Hamley, K. Fortier, J. A. Sauer, and M. S. Chapman. "All-Optical Atomic Bose-Einstein Condensates." In Proceedings of the XVIII International Conference on Atomic Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705099_0004.
Full textCornell, Eric A., and Paul C. Haljan. "Ultralow-temperature magnifying glass: how Bose-Einstein condensation makes quantum mechanics visible." In International Symposium on Optical Science and Technology, edited by Carmina Londono. SPIE, 2001. http://dx.doi.org/10.1117/12.431254.
Full textHung, Chen-Lung, Xibo Zhang, Nathan Gemelke, and Cheng Chin. "Runaway Evaporative Cooling to Bose-Einstein Condensation of Cesium Atoms in Optical Traps." In Laser Science. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/ls.2008.ltug4.
Full textKlaers, Jan, Julian Schmitt, Tobias Damm, David Dung, Frank Vewinger, and Martin Weitz. "Bose-Einstein condensation of photons in a microscopic optical resonator: towards photonic lattices and coupled cavities." In SPIE LASE, edited by Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko, Lutz Aschke, and Kunihiko Washio. SPIE, 2013. http://dx.doi.org/10.1117/12.2001831.
Full textCENNINI, G., G. RITT, C. GECKELER, and M. WEITZ. "ALL-OPTICAL REALIZATION OF AN ATOM LASER BASED ON FIELD-INSENSITIVE BOSE-EINSTEIN CONDENSATES." In Proceedings of the XVI International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812703002_0029.
Full textMuradyan, A. Z., and H. L. Haroutyunyan. "Bose-Einstein condensation of ideal gas in a shallow periodic field of a resonant quasi-standing wave." In ICONO '98: Laser Spectroscopy and Optical Diagnostics--Novel Trends and Applications in Laser Chemistry, Biophysics, and Biomedicine, edited by Anatoli V. Andreev, Sergei N. Bagayev, Anatoliy S. Chirkin, and Vladimir I. Denisov. SPIE, 1999. http://dx.doi.org/10.1117/12.340104.
Full text