Dissertations / Theses on the topic 'All optical Bose-Einstein condensation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'All optical Bose-Einstein condensation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Barrett, Murray Douglas. "A QUEST for BEC : an all optical alternative." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29520.
Full textSalomon, Guillaume. "Production tout optique de condensats de Bose-Einstein de 39K : des interactions contrôlables pour l’étude de gaz quantiques désordonnés en dimensions réduites." Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://www.theses.fr/2014IOTA0009/document.
Full textThis thesis presents the all optical production of 39K Bose-Einstein condensates. A key point in the process is the sub-Doppler cooling that allows for an efficient loading of an optical dipole trap. To this aim we use a gray molasses scheme working on the blue side of the D1 line of this alkali that leads to a high phase space density and a high number of trapped atoms in a 1550 nm optical trap. The cloud is then polarized and compressed in a crossed dipole trap before starting an efficient forced evaporation close to a Feshbach resonance. This process allows us to produce Bose-Einstein condensates every 7 seconds with our experiment. Those degenerate clouds represent the starting point of experiments aiming to study the influence of disorder on quantum gases in low dimensions. We discuss the perspectives to study of the phase diagram of the two-dimensional disordered Bose gas as well as the Anderson localization phenomenon in two dimensions and the behaviour of bright solitons in a disordered potential in a one-dimensional geometry
Fouche, Lauriane. "Gaz quantiques de potassium 39 à interactions contrôlables." Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2015. http://www.theses.fr/2015IOTA0003/document.
Full textPotassium 39 is an alkali allowing to control the interactions between atoms thanks to Feshbach resonances. This thesis presents a fast and efficient way to produce all-optical Bose-Einstein condensates of 39K. Our technique is first taking advantage of gray molasses cooling leading to a cold enough sample to directly load an optical trap. Then an optical evaporation is performed near a Feshbach resonance to control the collision rate. Studies in various spin mixtures have allowed us to observe new p-wave Feshbach resonances and a d-wave Feshbach resonance. The later presents unusual properties and has been studied in details to understand the collision processes involved. The model developped is a two stage model, each one of them involving a two body collision. It explains the experimental results obtained. In the produced 39K degenerate Bose gases, tuning interactions near the Feshbach resonance at 560,7 Gauss for the atoms in |F=1,mF=-1> has allowed us to adress different physical problems. For repulsive interactions, we study the expansion of a Bose-Einstein condensate in the 1D-3D dimensional crossover. For attractive interactions we produce bright solitons in a one-dimensional optical trap. Perspectives concerning the study of those degenerate self-confined Bose gases in disordered media are also discussed
Geursen, Reece Wim, and n/a. "Experiments with Bose-Einstein condensates in optical potentials." University of Otago. Department of Physics, 2005. http://adt.otago.ac.nz./public/adt-NZDU20070131.162251.
Full textMcKinney, Sarah. "Dynamics of Bose-Einstein condensates in optical lattices /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9805.
Full textLouis, Pearl J. Y. "Matter-wave solitons in optical lattices and superlattices /." View electronic text, 2005. http://matter.sci.osaka-cu.ac.jp/~pearl/thesis.pdf.
Full textFeng, Yinqi. "Quantum optical states and Bose-Einstein condensation : a dynamical group approach." Thesis, Open University, 2001. http://oro.open.ac.uk/54440/.
Full textCennini, Giovanni. "Field-insensitive Bose-Einstein condensates and an all-optical atom laser." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=972737421.
Full textFigl, Cristina. "Optical collisions in crossed beams and Bose-Einstein condensation in a microtrap." Phd thesis, [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=97236143X.
Full textBerhane, Bereket H. "Quantum optical interactions in trapped degenerate atomic gases." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/29891.
Full textNaik, Devang S. "Bose-Einstein Condensation: Building the Testbeds to Study Superfluidity." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-09072006-141453/.
Full textDavidovic, Dragomir, Committee Member ; Kennedy, T.A. Brian, Committee Member ; Chapman, Mike, Committee Member ; Raman, Chandra, Committee Chair ; Bunz, Uwe, Committee Member.
Klafka, Tobias [Verfasser]. "Bose-Einstein condensation in higher Bloch bands of the optical honeycomb lattice / Tobias Klafka." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2021. http://d-nb.info/1241249202/34.
Full textDamon, François. "Sonder des structures complexes avec des ondes de matière." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30342/document.
Full textThis thesis presents the studies that I did at the Laboratoire de Physique Théorique. It concerns the interaction between matter waves and time and space depandant optical lattices. Using such lattices allows one to manipulate coherently the dynamical properties of ultra cold atoms. This theoretical study has been done in collaboration with the Cold Atoms group at the LCAR laboratory. The spatial variations of the lattice envelope locally create spatial gaps which create a Bragg cavity for matter waves. We have st udied in detail their properties and the cavity has been realized experimentally by using a Ru bid ium 85 Bose-Einstein condensate in a wave guide. We have also studied the propagation of an atomic cloud in a bichromatic optical lattice which allows us to make a quantum simulator of the Harper madel. The spectrum of the system Hamiltonian· posseses a fractal dimension which can be numerically characterized. We have also shawn that it is possible to use the repulsive interatomic interaction of a Bose-Einstein condensate in arder to amplify the momentum-position correlation during propagation in a guide. Our st udy shows that a mesure of local dynamical quantities of the atomic cloud enables one to experimentally probe resonances of an optical potential down to the picoKelvin scale. At last, an atomic cloud with attractive interactions admit a stable solution, the soliton. We have numerically demonstrated that this soliton can be used to probe bound states of a potential by populating those states through a scattering experiment, for example surface states
Mellish, Angela Susan, and n/a. "Experiments with Bose-Einstein condensates in optical lattices and cold collisions of ultracold atoms." University of Otago. Department of Physics, 2006. http://adt.otago.ac.nz./public/adt-NZDU20070126.100723.
Full textViebahn, Konrad Gilbert Heinrich. "Quasicrystalline optical lattices for ultracold atoms." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/287942.
Full textLowney, Joseph Daniel. "Manipulating and Probing Angular Momentum and Quantized Circulation in Optical Fields and Matter Waves." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/612898.
Full textHaine, Simon A. "The stability of a continuously pumped atom laser." View electronic text, 2002. http://eprints.anu.edu.au/documents/disk0/00/00/06/62/index.html.
Full textAvailable via the Australian National University Library Electronic Pre and Post Print Repository. Title from title screen (viewed Feb. 18, 2003). "A thesis submitted as partial fulfillment of the requirements for the degree of Bachelor of Science with Honours in theoretical physics at the Australian National University" Includes bibliographical references.
Kuyumjyan, Grigor. "Condensation de Bose-Einstein multiple dans les modes d’ordre supérieurs d’une cavité optique bi-fréquence." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0877/document.
Full textQuantum degenerate gases of neutral atoms are excellent systems with important applications in the study of many body quantum physics, condensed matter physics, precision measurements, and quantum information processing. In this thesis we demonstrate the creation of 87Rb Bose-Einstein condensates (BECs) in different transverse modes of a bow-tie cavity. The cavity resonant at two wavelengths, 1560 and 780 nm. We are using the radiation 1560 nm accessible in telecom (C band) to create BEC in the cavity enhanced optical dipole trap with only 3 W of optical power from the source. The non-degenerate cavity modes enable the creation of arrays of BECs in the higher transverse modes. As representative examples we realize the BEC in the fundamental TEM00 and the TEM01 mode of the cavity which are the single well and double well trapping configuration with ultra-cold atomic simple well coupled to the cavity modes. By controlling the relative power between the fundamental and the higher transverses cavity modes (TEM01, TEM10), splitting and merging of ultra-cold atomic ensemble is shown. Moreover, in this manuscript we present the development of a lock system around the optical cavity which allows us to obtain both radiations locked to the cavity as well as the lengthe of the optical resonator is referenced on the rubidium atoms. The second wavelength is derived from 1560 nm beam by frequency doubling and then both radiations are locked to the cavity by Pound-Drever-Hall technique. One part of the frequency doubled 780 nm is referenced to an independent 780 nm laser locked on the rubidium atoms. The beat signal between these two lasers is frequency synthesized and through the PI controller is sent to the piezo-electric transducer driver to avoid long-term drifts of the cavity due to temperature fluctuations. The cavity resonance at 780 nm will be used as a probe beam for cavity aided quantum non-demolition measurements to generate measurement induced spin squeezed states
Thomas, Nicholas, and n/a. "Double-TOP trap for ultracold atoms." University of Otago. Department of Physics, 2005. http://adt.otago.ac.nz./public/adt-NZDU20070321.160859.
Full textChang, Ming-Shien. "Coherent Spin Dynamics of a Spin-1 Bose-Einstein Condensate." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10547.
Full textVanderbruggen, Thomas. "Détection non-destructive pour l’interférométrie atomique et Condensation de Bose-Einstein dans une cavité optique de haute finesse." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112067/document.
Full textIn this thesis, we study several methods to improve atom interferometers. In the first part of the manuscript, we analyze how a nondestructive detection, that preserves the coherence between the internal degrees of freedom in an atomic ensemble, can be used to increase the sensitivity of interferometers. We first theoretically show how the projection of the wave-function induced by the measurement prepares spin-squeezed states. We then present the implementation of this method with a detection based on the frequency modulation spectroscopy. Finally, some first applications are described, more explicitly we show how to implement a quantum feedback that preserve the atomic state against the decoherence induced by a random collective flip, we also introduce a phase-locked loop where the atomic sample is used as the phase reference. In the second part of the manuscript, we present the all-optical realization of a Bose-Einstein condensate in a high-finesse cavity using a laser system based on standard telecoms technologies. We first describe the resonator and the frequency lock of the laser on the resonance, in particular, we introduce a new stabilization method based of the serrodyne modulation. Finally, we show how the condensate is obtained from the evaporation in the cavity mode
Schreck, Florian. "Mixtures of ultracold gases : Fermi sea and Bose-Einstein condensate of lithium isotopes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2002. http://tel.archives-ouvertes.fr/tel-00001340.
Full text$^7$Li dans le régime quantique à très basse température. Le
refroidissement est obtenu par évaporation du $^7$Li dans un piège
magnétique très confinant. Puisque le refroidissement évaporatif
d'un gaz de fermion polarisé est quasiment impossible, le $^6$Li
est refroidi sympathiquement par contact thermique avec le $^7$Li.
Dans une première série d'expériences, les propriétés des gaz
quantiques dans les états hyperfins les plus élevés, piégés
magnétiquement, sont étudiées. Un gaz de $10^5$ fermions a une
température de 0.25(5) fois la température de Fermi ($T_F$) est
obtenu. L'instabilité du condensat pour plus de 300 atomes
condensés, à cause des interactions attractives, limite la
dégénérescence que l'on peut atteindre. Pour s'affranchir de cette
limite, une autre série d'expérience est menée dans les états
hyperfins bas, piégeable magnétiquement, où les interactions entre
bosons sont faiblement répulsives. Les collisions
inter-isotopiques permettent alors la thermalisation du mélange.
Le mélange d'un condensat de Bose-Einstein (CBE) de $^7$Li et d'un
mer de Fermi de $^6$Li est produit. Le condensat est quasi
unidimensionnel et la fraction thermique peut être négligeable. La
dégénérescence atteinte correspond à $T/T_C=T/T_F=0.2(1)$. La
température est mesurée à partir de la fraction thermique des
bosons qui disparaît aux plus basses températures, et limite notre
précision de mesure. Dans une troisième série d'expérience, les
bosons sont transférés dans un piège optique, et placé dans l'état
interne $|F=1,m_F=1\rangle$, l'état fondamental pour les bosons.
Une résonance de Feshbach est repérée puis exploitée pour former
un condensai où les interactions sont ajustables. Quand les
interactions effectives entre les atomes sont attractives, on
observe la formation d'un soliton brillant de matière. La
propagation de ce soliton sans dispersion sur une distance de
$1.1\,$mm est observée.
Luz, Hedhio Luiz Francisco da. "Dinâmica e estabilidade de condensados de Bose-Einstein em redes ópticas lineares e não-lineares." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-15102014-134254/.
Full textIn this thesis, the main objective was the verification of stability of condensed atomic systems, subject to different combinations of linear and nonlinear bi- and tridimensional optical lattices , considering some symmetric and asymmetric situations. With this objective, were performed variational analyzes and numerical exact simulations of the nonlinear Schrödinger-type equation that describes Bose-Einstein condensate systems, better known as Gross-Pitaevskii equation. In two-dimensional case, with a crossed linear and nonlinear optical lattice, the stability was confirmed for certain parameter regions of the interactions. It was observed that the stability disappears when including a third dimension without the presence of a confinement potential. In the three dimensional case, considering crossed linear and nonlinear optical lattices, stability occurs only when considering an interaction confining the third dimension, in this case a second linear optical lattice. Finally, it is expected that our results will be useful for experimental studies which have been done in the laboratories of ultra-cold atoms. Keywords:
Rehn, Magnus. "Experimental and Numerical Investigations of Ultra-Cold Atoms." Doctoral thesis, Umeå : Department of Physics, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1453.
Full textBriosne, frejaville Clémence. "Transport et confinement optique d'atomes de strontium pour une expérience de microscope à gaz quantique." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP037.
Full textThis manuscript presents the construction of a new quantum ultracold atom experiment using strontium 84. The aim of this experiment is to study the relaxation dynamics of quantum gases initially prepared in an out-of-equilibrium state. We will investigate bidimensional gases on a lattice. This manuscript aims to describe the optical systems designed for trapping and manipulating the atoms during the experiment. Specifically, we present our optical solution to transport the atoms between locations in the vacuum chamber. We also discuss the choices we made to create the bidimensional lattice. Lastly, a quantum gas microscope is implemented to measure the spatial correlation functions from the atoms’ distribution in the lattice. A characterization of the microscope is laid out in this manuscript. Though we determined a first version of our optical systems, there are still a few steps needed to complete the experimental setup
Bookjans, Eva M. "Relative number squeezing in a Spin-1 Bose-Einstein condensate." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37148.
Full textFuhrmanek, Andreas. "From single to many atoms in a microscopic optical dipole trap." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00655970.
Full textCosta, Karine Piacentini Coelho da. "Estudo do modelo de Bose-Hubbard usando o algoritmo Worm." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-27022012-085711/.
Full textThis work study the two-dimensional ultracold bosonic atoms loaded in a square optical lattice, without harmonic confinement. The dynamics of this system is described by the Bose-Hubbard model, which predicts a quantum phase transition from a superfluid to a Mott-insulator at low temperatures that can be induced by varying the depth of the optical potential. We present here the phase diagram of this transition built from a mean field approach and from a numerical calculation using a Quantum Monte Carlo algorithm, namely the Worm algorithm. We found the critical transition point for the first Mott lobe in both cases, in agreement with the standard literature.
Bouganne, Raphaël. "Probing ultracold ytterbium in optical lattices with resonant light : from coherent control to dissipative dynamics." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS391.
Full textIn this manuscript I present an experimental investigation of the dynamics of an ultracold gas of bosonic ytterbium loaded into optical lattices and exposed to resonant light. The interaction between atoms and light makes it possible to study the coherence properties of the gas. The resonant driving is performed on the relevant optical transitions featured by ytterbium. On the one hand, I demonstrate the coherent driving of the internal state of the atoms on the clock transition, the excited state of which is metastable and can not spontaneously decay, thus preserving the coherence of the gas. The temporal internal dynamics in a deep lattice allows me to measure the collisional properties at low temperature for both clock states. On the other hand, I use the spontaneously emitted photons of the intercombination transition excited level to induce a coupling to the atomic external degrees of freedom. I present the momentum diffusion of a superfluid excited on this transition. Strong interactions between atoms slow down the decoherence and lead to an anomalous sub-diffusive relaxation. A simple model comprising atomic motion, interactions and dissipation accounts for our observations. A theoretical study of the dissipative dynamics in optical lattices sheds light on complementary phenomena such as induced dipole-dipole interactions or collective effects in spontaneous emission
Michon, Eric. "Dynamique de condensats de Bose Einstein dans un réseau optique modulé en phase ou en amplitude." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30100/document.
Full textThe subject of this thesis is the study of the dynamics of a Bose Einstein condensate in a phase and amplitude modulated optical lattice. First, I present the experimental setup allowing us to produce the BEC as well as the optical lattice. I describe the different means of control on the phase and on the amplitude of the lattice that we implemented. The first experiment we performed is based on the sudden shift of the phase of the lattice that induces a displacement of a few tenth of nm. This experiment allowed us to develop a new method to calibrate the depth of the lattice using the period of the micro-oscillation of the BEC chain triggered by the phase shift. There is a bijection between the depth of the lattice and the oscillation period giving the period the ideal profile to be a calibration method. The dynamic of the oscillation shows tunnel effect between adjacent wells of the lattice. We have been able to measure directly the tunneling time which is the delay between an atoms packet which passed through a potential barrier by tunnel effect and a packet of atoms which continued its oscillation. The last part of the manuscript presents a study of the dynamics of the BEC inside a lattice which phase or amplitude is modulated with a sine function. We study three ranges of modulation frequencies showing different behaviors. The frequency is compared with the resonant frequency between the fundamental band of the lattice band structure and the first excited band. When we modulate with low frequencies the phase of the lattice, the tunnel rate between adjacent wells is renormalized. This yields a dynamical instability which triggers a quantum phase transition. We performed a theoretical study, a numerical study and an experimental study that allowed us to define the role of quantum and thermal fluctuations in the system on the kinetics of this transition. For the high modulation frequency regime, the potential depth is renormalized with a Bessel function. We used this effect to put the atoms in a far-out of equilibrium position in a well- controlled manner. Lastly, by choosing the modulation frequency to be of the order of the resonant frequency between the fundamental band and the first excited band, we induce interband transitions. Our data reveal the selection rules which are different for phase and amplitude modulation, and the role of two-body interactions in the excitation process
Klein, Alexander. "Special purpose quantum information processing with atoms in optical lattices." Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:bc67ec3e-3cc7-4d13-ae11-b436b2ca897b.
Full textMagalhães, Kilvia Mayre Farias. "Obtenção da degenerescência quântica em sódio aprisionado." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-24012008-083710/.
Full textUsing a system composed of a QUIC trap loaded from a slowed atomic beam, we have performed experiments to observe the Bose-Einstein Condensation of Na atoms. In order to obtain the atomic distribution in the trap, we use an in situ out of resonance absorption image of a probe beam to determine the temperature and the density, which are use to calculate the phase space D. We have followed D as a function of the final evaporation frequency. The results show that at 1.65 MHz we crossed the critical value for D which corresponds to the point to start Bose-Condensation of the sample. Due to the low number of atoms remaining in the trap at the critical point, the interaction produce minor effects and therefore an ideal gas model explains well the observations.
Saers, Robert. "Ultracold rubidium atoms in periodic potentials." Doctoral thesis, Umeå universitet, Fysik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1821.
Full textTorralbo, Campo Lara. "A compact system for ultracold atoms." Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3192.
Full textBosch, Aguilera Manel. "Coherence and relaxation of an optically-driven bosonic quantum gas : experiments with ultracold ytterbium atoms." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS174.
Full textIn this thesis I report on a series of experimental studies performed with ultracold ytterbium gases driven in different optical transitions. Ytterbium belongs to the family of the so-called alkaline-earth-like atoms, which feature a rich electronic structure, with an optical clock transition free of spontaneous emission, and a narrow intercombination transition, making them very appealing for metrological and quantum simulation proposals. By performing spectroscopy on the clock transition, I prove on a first set of experiments in deep optical lattices our ability to drive this transition coherently for long times. This coherent control is then used for different studies. First, as tool to measure the scattering lengths of the states involved in the clock transition. Then, to prepare a small open quantum system, where dissipation arises in the form of two-body losses. By enabling the coupling adiabatically, we observe a strong suppression of these losses, which is interpreted as a signature of the quantum Zeno effect. I ultimately use the coherent driving to study the relaxation dynamics of a dissipative bulk Bose-Einstein condensate. Finally, I elaborate an investigation on a strongly-interacting open system. Dissipation is artificially induced in the form of spontaneous emission using the intercombination transition. Here, I study in which manner spontaneous emission destroys the spatial coherence of a superfluid in an optical lattice. These experiments reveal that the presence of strong interactions partially protects a residual amount of coherence and makes decoherence develop in a non-trivial manner, unveiling the emergence of a subdiffusive relaxation channel
Arnal, Maxime. "Gaz quantique dans un potentiel périodique dépendant du temps : de la modulation perturbative aux résonances de l'effet tunnel assisté par le chaos." Electronic Thesis or Diss., Toulouse 3, 2020. http://www.theses.fr/2020TOU30078.
Full textDegenerate quantum gases have demonstrated their ability to mimic the properties of other systems and are, as such, an ideal platform for quantum simulation. These gases, characterized by a high level of control thanks to the temporal driving of their parameters, have mainly been studied either in the perturbative regime or in a purely chaotic one. The aim of the present work is to further extend the possibilities offered by such systems by taking advantage of a mixed dynamics, which we apply to the case of matter-wave transport. In this thesis, we describe several experimental studies on the dynamics of a Bose-Einstein condensate in a one-dimensional time-dependent optical lattice. The experiments that are presented fall into two categories: (i) the perturbative regime, where the applied modulations induce little chaos, and (ii) the mixed regime, where regular and chaotic trajectories coexist at the classical limit. In the perturbative regime, which was first studied during this thesis, we distinguish two modulation domains of the optical lattice. When the modulation frequencies are resonant with the band structure, we induce interband transitions that are subject to selection rules. We then demonstrate a new cooling technique, similar to evaporation but in reciprocal space, taking advantage of these selection rules. For a phase modulation out of resonance, the dynamics of the condensate can be described by an effective Hamiltonian. We study two such Hamiltonians, one of which accounts for a quantum phase transition and the other for the renormalization of the lattice depth. In each case we explore the limits of these models. The mixed regime constitutes the second focus of this thesis. The classical analogue of our system is the modulated pendulum, well-known to present both regular and chaotic trajectories. This behavior is revealed at the quantum level by the presence, in addition to the lattice structure, of a chaotic sea. In this optical lattice dressed by chaos, we study a type of transport called chaos-assisted tunneling, which presents resonances that can amplify or inhibit tunneling between two stable positions within a lattice well. Compared to previous experiments on this subject, we use a different configuration in which we manage to resolve these resonances for the first time. For quantum simulators, this work paves the way to a new type of control, including long-range transport
Orosz, Laurent. "Etude des microcavités planaires ZnO dans le régime de coupage fort." Thesis, Clermont-Ferrand 2, 2013. http://www.theses.fr/2013CLF22412/document.
Full textThis thesis reports a spectroscopic study of the light-matter interaction in ZnO based microcavities.We have examined several planar microcavities which dier from the previous ones through their structures and their epitaxial processes. The theoretical advantages that have driven these realizations are discussed and veried through experimental measurements of reectivity and photoluminescence as a function of temperature and excitation intensity. Thanks to the optical characterics of these new cavities, we have studied the coherent light emission based on the condensation of polaritons at high temperature, up to 300K. High optical quality factor and high Rabi splitting allow to deeply analyze the relationship which exists between the photonic fraction of polaritons and the threshold excitation value corresponding to the occurrence of the polariton laser eect. This work highlights two identied physical processes which contribute to the laser eect : the thermodynamic and kinetic regimes. Moreover, it appears that the exciton-phonon interaction constitutes a specic phenomenon which allows to reduce the polariton laser threshold
Médard, François-Régis. "Conception et spectroscopie de microcavités à base de ZnO en régime de couplage fort pour l'obtention d'un laser à polaritons." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2010. http://tel.archives-ouvertes.fr/tel-00557136.
Full textFlottat, Thibaut. "Bosons couplés à des spins 1/2 sur réseau." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4080/document.
Full textStrongly correlated systems, where new surprising phases of matter may appear both in the context of ultra-cold atoms and cavity quantum electrodynamics, are the focus of intense experimental and theoritical activity. In this thesis we present a study of two models of bosons with two or zero internal states, that is to say spin-1/2 or spin-0 bosons. These particles can move around a lattice, and they are locally coupled to immobile spins 1/2. Our interest was to determine the ground state phase diagram, study phase properties and quantum phase transitions. We used two methods: an approximate one using a mean field approach and the other using quantum Monte-Carlo simulations, which provides numerically exact results. The first model, namely the bosonic Kondo lattice model, is in the context of ultra-cold atoms in optical lattices. We found that its physics is close to that of the Bose-Hubbard model, exhibiting Mott and superfluid phases. The local coupling strengthens the insulating behaviour of the system and magnetism emerges through indirect or direct coupling between bosons. Thermal effects, inherent in experiments, are also studied. The second model, which is in the context of light-matter interaction, describes a situation of an ultra-strong coupling between spin-0 bosons (photons) and local spins 1/2 (two levels atoms) and is known as the Rabi lattice model. The phase diagram generally consists of only two phases: a coherent phase and a compressible incoherent one. The locals
Lopes, Raphael. "An atomic Hong-Ou-Mandel experiment." Thesis, Palaiseau, Institut d'optique théorique et appliquée, 2015. http://www.theses.fr/2015IOTA0001/document.
Full textIn this thesis, we report the first realisation of the Hong–Ou–Mandel experiment with massive particles in momentum space. This milestone experiment was originally performed in quantum optics: two photons arriving simultaneously at the input ports of a 50:50 beam-splitter always emerge together in one of the output ports. The effect leads to a reduction of coincidence counts which translates into a dip when particles are indistinguishable. We performed the experiment with metastable helium atoms where the specificities of the Micro-Channel-Plate detector allows one to recover the momentum vector of each individual atom.After listing the necessary tools to perform this experiment with atoms, the experimental sequence is discussed and the results are presented. In particular we measured a coincidence count reduction that cannot be explained through any simple classical model. This corresponds to the signature of a two-particle interference, and confirms that our atomic pair source produces beams which have highly correlated populations and are well mode matched. This opens the prospect of testing Bell’s inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics. It also demonstrates a new way to produce and benchmark twin-atom pairs that may be of interest for quantum information processing
Nalitov, Anton. "Spin dynamics ande topological effects in physics of indirect excitons and microcavity polaritons." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22569/document.
Full textThe present thesis manuscript is devoted to new phenomena in physics of light-matter quasiparticles in heterostructures, related to spin and topology. It is divided into four parts. Chapter 1 gives a necessary background, introducing basic properties of microcavity polaritons and indirect excitons in coupled quantum wells. Chapter 2 is focused on spin dynamics and topological defects formation in indirect exciton many-body systems. The last 2 chapters are related to microcavity-based structures. Chapter 3 is devoted to polariton spin dynamics in optical parametric oscillators. Finally, Chapter 4 studies pillar microcavity lattices and introduces the polariton topological insulator
Sturm, Chris. "Exciton-Polaritons in ZnO-based Microresonators: Dispersion and Occupation." Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-77759.
Full textBoughdad, Omar. "Fluides de lumière dans un milieu non-linéaire photoréfractif." Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4014.
Full textThis thesis presents an experimental study of hydrodynamical phenomena of a laser propagating nonlinearly. For a medium presenting an intensity-dependent refractive index, and in the frame of the paraxial approximation, The intensity of the laser beam is equivalent to a density of a fluid, the propagation direction is seen as a time evolution of the fluid as well as the phase gradient of the laser beam defines a flow velocity and the nonlinear refractive index change allows defining a sound velocity of the fluid. Under this analogy, we call the propagating laser beam a fluid of light. In this thesis, we provide a study of the superfluidity concept of a fluid of light in a selfdefocusing regime of the nonlinearity. It is defined as the absence of diffraction when the fluid of light encounters an obstacle. The parameters which control the superfluid transition are: the flow velocity as well as the sound velocity. They are controlled respectively through the wave vector and the intensity of the laser beam. In the frame of this analogy, we also present in this thesis a study of vortex shedding regime as a result of the interaction between the fluid of light and the obstacle. Here, the obstacle is considered to be strong. When twice the flow velocity at the poles of the obstacle is larger than the sound velocity, pairs of vortex/anti-vortex are emitted demonstrating a hydrodynamical behaviour of the fluid of light. In order to underline the nonlinear refractive index change, we also report in this thesis a study of the photorefractive effect using the self-phase modulation effect
Cantin, Etienne. "Cavité à haute finesse pour la production et la détection de sources atomiques cohérentes." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0259/document.
Full textThis thesis reports the development of two original tools for atom interferometry.The first is a high finesse optical cavity for the manipulation of 87Rb cold atoms. This cavity isfirstly used to enhance the intensity of an optical dipole trap. Thus, by realizing an evaporativecooling on the atomic sample, we reached Bose-Einstein condensation. Furthermore, the nondegeneratecavity allows the injection of different transverse electromagnetic modes. In thisway, we have demonstrated the generation and the manipulation of arrays of atomic ensemblesusing these modes. Successive measurements of these atomic ensembles in an atominterferometric sequence would increase the interrogation time and thus the sensitivity of thesensor.Secondly, the use of weak nondestructive measurements on the atoms allows to extractinformation from the system with negligible perturbation of the ensemble. Applying feedbackafter the measurement, we were able to control the quantum state of the system. Using amodified Ramsey sequence with weak nondestructive measurements and phase corrections, werealized a phase lock loop between a local oscillator and the atomic state. We have thendemonstrated that this protocol leads to a stability enhancement of an atomic clock byovercoming the limit set by the local oscillator.We also contributed to the development of the commercial laser platform EYLSA fromQuantel, testing its performances on two laser cooling experiments
Bonneau, Marie. "Mélange à quatre ondes atomique dans un réseau optique." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00665955.
Full textLundblad, Nathan Eric. "All-optical spinor Bose-Einstein condensation and the spinor dynamics-driven atom laser." Thesis, 2006. https://thesis.library.caltech.edu/2009/1/nl_thesis_ELECTR.pdf.
Full textChen, Chun-Chia, and 陳俊嘉. "Toward All-optical Bose Einstein condensate." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/00008431174984262304.
Full text國立臺灣大學
物理研究所
100
The goal of this experiment is to realize the rapid formation of Rubidium Bose-Einstein Condensates (BEC) in a dipole trap. We completed the experi- ment setup, including a vapor load magneto-optical trap (MOT) and a crossed dipole trap. We first analyzed and optimized the MOT parameters. We then loaded cold atoms into the crossed dipole trap. With 3×107 atoms cooled to 40 μK in the MOT, we transferred 106 atoms into the crossed dipole trap. We the proceeded with forced evaporative cooling. We optimized the evaporation trajectory, and we achieved a final phase space density of 0.1, with 2 × 104 atoms remained in the trap.
Meyrath, Todd Philip Raizen Mark George. "Experiments with Bose-Einstein condensation in an optical box." 2005. http://repositories.lib.utexas.edu/bitstream/handle/2152/1793/meyratht04334.pdf.
Full textMeyrath, Todd. "Experiments with Bose-Einstein condensation in an optical box." Thesis, 2005. http://hdl.handle.net/2152/1793.
Full text"Squeezing, entanglement and excitation spectra of BECs in optical lattices." 2007. http://library.cuhk.edu.hk/record=b5893208.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 2007.
Includes bibliographical references (leaves 97-100).
Abstracts in English and Chinese.
Liu, Xiaopi = Guang ge zi shi zhong bo se ai yin si tan ning ju ti de ya suo, jiu chan yu ji fa pu / Liu Xiaopi.
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Review of Superfluidity and B.E. Condensation --- p.1
Chapter 1.2 --- Our Understanding of superfluidity --- p.4
Chapter 1.3 --- Non-classicality in Quantum Mechanics --- p.8
Chapter 2 --- One-Component BECs in optical lattices --- p.16
Chapter 2.1 --- Introduction: The Hamiltonian --- p.16
Chapter 2.2 --- The Hamiltonian in Quasi-momentum space --- p.19
Chapter 2.3 --- Bogoliubov Method and Equation of Motion --- p.21
Chapter 2.3.1 --- Squeezing and Condensation --- p.27
Chapter 2.3.2 --- Two-mode Entanglement and Squeezing --- p.31
Chapter 3 --- Matrix method approach to ground state BECs --- p.39
Chapter 3.1 --- Matrix method --- p.39
Chapter 3.2 --- Ground state and Particle Distribution --- p.42
Chapter 3.3 --- Correlation in Pair Ground State --- p.46
Chapter 4 --- Attractive BECs in optical lattices --- p.50
Chapter 5 --- 2-component BECs in optical lattice --- p.56
Chapter 5.1 --- Model Hamiltonian --- p.56
Chapter 5.2 --- Excitation Spectrum and Critical super-fluid velocity --- p.59
Chapter 5.3 --- Excitation spectrum and Phase Separation Dynamics --- p.63
Chapter 5.4 --- Excitation Spectrum for Asymmetric 2-component BECs --- p.67
Chapter 6 --- Multi-Mode Squeezing of 2-component BECs in optical lattices --- p.69
Chapter 6.1 --- Simultaneous Diagonalization --- p.69
Chapter 6.2 --- Equation of Motion and Variance Matrix --- p.70
Chapter 6.3 --- U(n) Squeezing of Variance Matrix --- p.75
Chapter 6.4 --- Squeezing in the case qA≠ qB and nA≠ nB --- p.82
Chapter 7 --- Entanglement between 2-component BECs in optical lattices --- p.83
Chapter 7.1 --- Variance matrix in block diagonal --- p.83
Chapter 7.2 --- 2-component entangled variance matrix --- p.86
Chapter 7.3 --- Logarithmic negativity --- p.89
Chapter 7.4 --- Beat oscillation mode of logarithmic negativity --- p.91
Chapter 8 --- Conclusion and Outlook --- p.95
Bibliography --- p.97