To see the other types of publications on this topic, follow the link: All-optical networks.

Journal articles on the topic 'All-optical networks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'All-optical networks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yiyuan Xie, Yiyuan Xie, and Zhu Yang Zhu Yang. "All-optical network interface from backbone networks to local area networks based on semiconductor optical amplifiers." Chinese Optics Letters 11, no. 11 (2013): 110605–8. http://dx.doi.org/10.3788/col201311.110605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chatterjee, Samir, and Suzanne Pawlowski. "All-optical networks." Communications of the ACM 42, no. 6 (1999): 74–83. http://dx.doi.org/10.1145/303849.303865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Su, Y., Y. Tian, E. Wong, N. Nadarajah, and C. C. K. Chan. "All-optical virtual private network in passive optical networks." Laser & Photonics Review 2, no. 6 (2008): 460–79. http://dx.doi.org/10.1002/lpor.200810021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barry, R. A., V. W. S. Chan, K. L. Hall, et al. "All-Optical Network Consortium-ultrafast TDM networks." IEEE Journal on Selected Areas in Communications 14, no. 5 (1996): 999–1013. http://dx.doi.org/10.1109/49.510923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Beeler, Charles, and Craig Partridge. "All-Optical Computing and All-Optical Networks are Dead." Queue 7, no. 3 (2009): 10. http://dx.doi.org/10.1145/1530818.1530830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simmons, J. M. "Network design in realistic "all-optical" backbone networks." IEEE Communications Magazine 44, no. 11 (2006): 88–94. http://dx.doi.org/10.1109/mcom.2006.248170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sridharan, A., and K. N. Sivarajan. "Blocking in All-Optical Networks." IEEE/ACM Transactions on Networking 12, no. 2 (2004): 384–97. http://dx.doi.org/10.1109/tnet.2004.826251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Monacos, S. P., J. M. Morookian, L. Davis, L. A. Bergman, S. Forouhar, and J. R. Sauer. "All-optical WDM packet networks." Journal of Lightwave Technology 14, no. 6 (1996): 1356–70. http://dx.doi.org/10.1109/50.511667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Song, Mingzhu, Xuhui Zhuang, Lu Rong, and Junsheng Wang. "Tilted-Mode All-Optical Diffractive Deep Neural Networks." Micromachines 16, no. 1 (2024): 8. https://doi.org/10.3390/mi16010008.

Full text
Abstract:
Diffractive deep neural networks (D2NNs) typically adopt a densely cascaded arrangement of diffractive masks, leading to multiple reflections of diffracted light between adjacent masks, thereby affecting the network’s inference capability. It is challenging to fully simulate this multiple-reflection phenomenon. To eliminate this phenomenon, we designed tilted-mode all-optical diffractive deep neural networks (T-D2NNs) and proposed a theoretical model for diffraction propagation in the tilted mode. Simulation results indicate that T-D2NNs address the performance degradation caused by interlayer
APA, Harvard, Vancouver, ISO, and other styles
10

Puerto-Leguizamón, Gustavo, Beatriz Ortega, José Capmany, Karen Cardona-Urrego, and Carlos Suárez-Fajardo. "Data networking evolution: Toward an all-optical n all-optical communications platform." Revista Facultad de Ingeniería Universidad de Antioquia, no. 45 (January 16, 2014): 148–56. http://dx.doi.org/10.17533/udea.redin.18121.

Full text
Abstract:
An introduction to optical networks in which the evolution undergone by such networks is presented in order to manage the future demand on the transport of IP traffic is described. This evolution has been boosted by the deployment of all optical devices featuring all optical processing capabilities. Similarly, an all optical packet router is presented based on the label swapping paradigm with the ability to route and forward IP packets at 10 Gb/s. The proposed router is able to process variable length packets and its performance is experimentally verified.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhijian, Qu, Zhang Xianwei, Shi Shaojian, Cao Yanfeng, and Zhao Mingbo. "Network coding based all-optical multicast in WDM networks." Journal of China Universities of Posts and Telecommunications 22, no. 1 (2015): 89–94. http://dx.doi.org/10.1016/s1005-8885(15)60630-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Iannone, E., R. Sabella, L. De Stefano, and F. Valeri. "All-optical wavelength conversion in optical multicarrier networks." IEEE Transactions on Communications 44, no. 6 (1996): 716–24. http://dx.doi.org/10.1109/26.506388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Olenev, V. L., N. Y. Chumakova, N. I. Sinyov, and A. Y. Syschikov. "ALL-OPTICAL ON-BOARD NETWORKS PROTOCOLS." System analysis and logistics 4, no. 30 (2021): 87–98. http://dx.doi.org/10.31799/2077-5687-2021-4-87-98.

Full text
Abstract:
The article presents the concept of all-optical on-board networks (AOON). AOON protocol stack is described, the operation of the transport layer, data link layer and the management layer of the AOON protocol stack is considered in details. The article also describes a software model designed to check the correctness of operation of the AOON protocol stack from a functional point of view, and an example of the developed software model is provided.
APA, Harvard, Vancouver, ISO, and other styles
14

Köksal, Fatih, and Cem Ersoy. "Multicasting for all-optical multifiber networks." Journal of Optical Networking 6, no. 2 (2007): 219. http://dx.doi.org/10.1364/jon.6.000219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bononi, A., F. Forghieri, and P. R. Prucnal. "Soliton ultrafast all-optical mesh networks." IEE Proceedings J Optoelectronics 140, no. 5 (1993): 285. http://dx.doi.org/10.1049/ip-j.1993.0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lazzez, Amor. "All-Optical Networks: Security Issues Analysis." Journal of Optical Communications and Networking 7, no. 3 (2015): 136. http://dx.doi.org/10.1364/jocn.7.000136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Iannone, E., R. Sabella, and S. Binetti. "Granularity in all-optical WDM networks." Journal of Lightwave Technology 16, no. 12 (1998): 2318–27. http://dx.doi.org/10.1109/50.736598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Medard, M., D. Marquis, R. A. Barry, and S. G. Finn. "Security issues in all-optical networks." IEEE Network 11, no. 3 (1997): 42–48. http://dx.doi.org/10.1109/65.587049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bartal, Yair, and Stefano Leonardi. "Ondashline routing in all-optical networks." Theoretical Computer Science 221, no. 1-2 (1999): 19–39. http://dx.doi.org/10.1016/s0304-3975(99)00025-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pankaj, R. K., and R. G. Gallager. "Wavelength requirements of all-optical networks." IEEE/ACM Transactions on Networking 3, no. 3 (1995): 269–80. http://dx.doi.org/10.1109/90.392386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yiu-Wing Leung. "Lightpath concentrators for all-optical networks." Journal of Lightwave Technology 24, no. 9 (2006): 3259–67. http://dx.doi.org/10.1109/jlt.2006.878496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Green, P. E. "Toward customer-usable all-optical networks." IEEE Communications Magazine 32, no. 12 (1994): 44–49. http://dx.doi.org/10.1109/35.335999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Georgakopoulos, George F., Dimitris J. Kavvadias, and Leonidas G. Sioutis. "Nash equilibria in all-optical networks." Discrete Mathematics 309, no. 13 (2009): 4332–42. http://dx.doi.org/10.1016/j.disc.2009.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Amar, D., A. Raspaud, and O. Togni. "All-to-all wavelength-routing in all-optical compound networks." Discrete Mathematics 235, no. 1-3 (2001): 353–63. http://dx.doi.org/10.1016/s0012-365x(00)00289-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yu, Yaze, Yang Cao, Gong Wang, Yajun Pang, and Liying Lang. "Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way." Sensors 23, no. 12 (2023): 5749. http://dx.doi.org/10.3390/s23125749.

Full text
Abstract:
Optical neural networks can effectively address hardware constraints and parallel computing efficiency issues inherent in electronic neural networks. However, the inability to implement convolutional neural networks at the all-optical level remains a hurdle. In this work, we propose an optical diffractive convolutional neural network (ODCNN) that is capable of performing image processing tasks in computer vision at the speed of light. We explore the application of the 4f system and the diffractive deep neural network (D2NN) in neural networks. ODCNN is then simulated by combining the 4f system
APA, Harvard, Vancouver, ISO, and other styles
26

Ji, Yuefeng, Hongxiang Wang, Jiabin Cui, Meitong Yu, Zhitian Yang, and Lin Bai. "All-optical signal processing technologies in flexible optical networks." Photonic Network Communications 38, no. 1 (2019): 14–36. http://dx.doi.org/10.1007/s11107-019-00838-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Qian-Ping Gu and Shietung Peng. "Multihop all-to-all broadcast on WDM optical networks." IEEE Transactions on Parallel and Distributed Systems 14, no. 5 (2003): 477–86. http://dx.doi.org/10.1109/tpds.2003.1199065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Beauquier, Bruno. "All-to-all communication for some wavelength-routed all-optical networks." Networks 33, no. 3 (1999): 179–87. http://dx.doi.org/10.1002/(sici)1097-0037(199905)33:3<179::aid-net4>3.0.co;2-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Mouftah, Hussein T. "Design of all Optical Packet Switching Networks." Sultan Qaboos University Journal for Science [SQUJS] 7, no. 1 (2002): 1. http://dx.doi.org/10.24200/squjs.vol7iss1pp1-10.

Full text
Abstract:
Optical switches and wavelength converters are recognized as two of the most important DWDM system components in future all-optical networks. Optical switches perform the key functions of flexible routing, reconfigurable optical cross-connect (OXC), network protection and restoration, etc. in optical networks. Wavelength Converters are used to shift one incoming wavelength to another outgoing wavelength when this needs to be done. Always residing in optical switches, they can effectively alleviate the blocking probability and help solve contention happening at the output port of switches. The
APA, Harvard, Vancouver, ISO, and other styles
30

CARAGIANNIS, IOANNIS, CHRISTOS KAKLAMANIS, and PINO PERSIANO. "SYMMETRIC COMMUNICATION IN ALL-OPTICAL TREE NETWORKS." Parallel Processing Letters 10, no. 04 (2000): 305–13. http://dx.doi.org/10.1142/s0129626400000299.

Full text
Abstract:
We address the problem of allocating optical bandwidth to a set of communication requests in a tree-shaped all-optical network that utilizes Wavelength Division Multiplexing (WDM) technology. WDM technology establishes communication between pairs of nodes of the network by establishing tranceiver–receiver paths and assigning wavelengths to each path so that no two paths going through the same link use the same wavelength. Optical bandwidth is the number of distinct wavelengths. The important engineering problem to be solved is to establish communication between pairs of nodes so that the total
APA, Harvard, Vancouver, ISO, and other styles
31

Weifa Liang and Xiaojun Shen. "Permutation routing in all-optical product networks." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49, no. 4 (2002): 533–38. http://dx.doi.org/10.1109/81.995673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Xin, Hongxiang Wang, and Yuefeng Ji. "Serial Multicast Mode in All-Optical Networks." IEEE Photonics Technology Letters 18, no. 22 (2006): 2416–18. http://dx.doi.org/10.1109/lpt.2006.886131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Xin Liu, Hongxiang Wang, and Yuefeng Ji. "Hybrid Multicast Mode in All-Optical Networks." IEEE Photonics Technology Letters 19, no. 16 (2007): 1212–14. http://dx.doi.org/10.1109/lpt.2007.901739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Blumenthal, D. J., B. E. Olsson, G. Rossi, et al. "All-optical label swapping networks and technologies." Journal of Lightwave Technology 18, no. 12 (2000): 2058–75. http://dx.doi.org/10.1109/50.908817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ruepp, S., J. Buron, N. Andriolli, and L. Dittmann. "Nodal Stub-Release in All-Optical Networks." IEEE Communications Letters 12, no. 1 (2008): 47–49. http://dx.doi.org/10.1109/lcomm.2008.071560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Huan, and Fouad A. Tobagi. "Physical topology design for all-optical networks." Optical Switching and Networking 5, no. 4 (2008): 219–31. http://dx.doi.org/10.1016/j.osn.2008.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Locati, FS, F. Matera, M. Romagnoli, and M. Settembre. "Study of all optical metropolitan area networks." Computer Communications 16, no. 1 (1993): 54–61. http://dx.doi.org/10.1016/s0140-3664(05)80009-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Marsan, M. A., A. Bianco, E. Leonardi, and F. Neri. "Topologies for wavelength-routing all-optical networks." IEEE/ACM Transactions on Networking 1, no. 5 (1993): 534–46. http://dx.doi.org/10.1109/90.251912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Subramaniam, S., M. Azizoglu, and A. K. Somani. "All-optical networks with sparse wavelength conversion." IEEE/ACM Transactions on Networking 4, no. 4 (1996): 544–57. http://dx.doi.org/10.1109/90.532864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mokhtar, A., and M. Azizoglu. "Adaptive wavelength routing in all-optical networks." IEEE/ACM Transactions on Networking 6, no. 2 (1998): 197–206. http://dx.doi.org/10.1109/90.664268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Forghieri, Fabrizio, Alberto Bononi, Jian-Guo Zhang, Paul R. Prucnal, Giorgio Picchi, and Giancarlo Prati. "Architectures and techniques for all-optical networks." Fiber and Integrated Optics 13, no. 2 (1994): 165–83. http://dx.doi.org/10.1080/01468039408202228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Liu, Y., M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren. "All-optical buffering using laser neural networks." IEEE Photonics Technology Letters 15, no. 4 (2003): 596–98. http://dx.doi.org/10.1109/lpt.2003.809276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Brackett, C. A., A. S. Acampora, J. Sweitzer, et al. "A scalable multiwavelength multihop optical network: a proposal for research on all-optical networks." Journal of Lightwave Technology 11, no. 5/6 (1993): 736–53. http://dx.doi.org/10.1109/50.233237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sun Yue, 孙. 悦., 黄新宁 Huang Xinning, 温. 钰. Wen Yu, and 谢小平 Xie Xiaoping. "All-optical phase regeneration in free-space optical communication networks." Infrared and Laser Engineering 48, no. 9 (2019): 918003. http://dx.doi.org/10.3788/irla201948.0918003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Akiyama, Koji, Akio Takimoto, Michihiro Miyauchi, Yasunori Kuratomi, Junko Asayama, and Hisahito Ogawa. "A New Optical Neuron Device for All-Optical Neural Networks." Japanese Journal of Applied Physics 30, Part 1, No. 12B (1991): 3887–92. http://dx.doi.org/10.1143/jjap.30.3887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Iness, J., B. Ramamurthy, B. Mukherjee, and K. Bala. "Elimination of all-optical cycles in wavelength-routed optical networks." Journal of Lightwave Technology 14, no. 6 (1996): 1207–17. http://dx.doi.org/10.1109/50.511622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ho, Siu-Ting, and Lian-Kuan Chen. "Monitoring of Linearly Accumulated Optical Impairments in All-Optical Networks." Journal of Optical Communications and Networking 1, no. 1 (2009): 125. http://dx.doi.org/10.1364/jocn.1.000125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Clavero, R., J. M. Mart�nez, F. Ramos, and J. Mart�. "All-optical packet routing scheme for optical label-swapping networks." Optics Express 12, no. 18 (2004): 4326. http://dx.doi.org/10.1364/opex.12.004326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sun, Zeyu. "Propagation of all-optical crosstalk attack in transparent optical networks." Optical Engineering 50, no. 8 (2011): 085002. http://dx.doi.org/10.1117/1.3607412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kong, D., Y. Li, H. Wang, et al. "All‐optical XOR gates for QPSK signal based optical networks." Electronics Letters 49, no. 7 (2013): 486–88. http://dx.doi.org/10.1049/el.2013.0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!