To see the other types of publications on this topic, follow the link: All-optical networks.

Journal articles on the topic 'All-optical networks'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'All-optical networks.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yiyuan Xie, Yiyuan Xie, and Zhu Yang Zhu Yang. "All-optical network interface from backbone networks to local area networks based on semiconductor optical amplifiers." Chinese Optics Letters 11, no. 11 (2013): 110605–8. http://dx.doi.org/10.3788/col201311.110605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chatterjee, Samir, and Suzanne Pawlowski. "All-optical networks." Communications of the ACM 42, no. 6 (June 1999): 74–83. http://dx.doi.org/10.1145/303849.303865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Su, Y., Y. Tian, E. Wong, N. Nadarajah, and C. C. K. Chan. "All-optical virtual private network in passive optical networks." Laser & Photonics Review 2, no. 6 (December 11, 2008): 460–79. http://dx.doi.org/10.1002/lpor.200810021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Barry, R. A., V. W. S. Chan, K. L. Hall, E. S. Kintzer, J. D. Moores, K. A. Rauschenbach, E. A. Swanson, et al. "All-Optical Network Consortium-ultrafast TDM networks." IEEE Journal on Selected Areas in Communications 14, no. 5 (June 1996): 999–1013. http://dx.doi.org/10.1109/49.510923.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Yaze, Yang Cao, Gong Wang, Yajun Pang, and Liying Lang. "Optical Diffractive Convolutional Neural Networks Implemented in an All-Optical Way." Sensors 23, no. 12 (June 20, 2023): 5749. http://dx.doi.org/10.3390/s23125749.

Full text
Abstract:
Optical neural networks can effectively address hardware constraints and parallel computing efficiency issues inherent in electronic neural networks. However, the inability to implement convolutional neural networks at the all-optical level remains a hurdle. In this work, we propose an optical diffractive convolutional neural network (ODCNN) that is capable of performing image processing tasks in computer vision at the speed of light. We explore the application of the 4f system and the diffractive deep neural network (D2NN) in neural networks. ODCNN is then simulated by combining the 4f system as an optical convolutional layer and the diffractive networks. We also examine the potential impact of nonlinear optical materials on this network. Numerical simulation results show that the addition of convolutional layers and nonlinear functions improves the classification accuracy of the network. We believe that the proposed ODCNN model can be the basic architecture for building optical convolutional networks.
APA, Harvard, Vancouver, ISO, and other styles
6

Beeler, Charles, and Craig Partridge. "All-Optical Computing and All-Optical Networks are Dead." Queue 7, no. 3 (April 2009): 10. http://dx.doi.org/10.1145/1530818.1530830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Simmons, J. M. "Network design in realistic "all-optical" backbone networks." IEEE Communications Magazine 44, no. 11 (November 2006): 88–94. http://dx.doi.org/10.1109/mcom.2006.248170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sridharan, A., and K. N. Sivarajan. "Blocking in All-Optical Networks." IEEE/ACM Transactions on Networking 12, no. 2 (April 2004): 384–97. http://dx.doi.org/10.1109/tnet.2004.826251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Monacos, S. P., J. M. Morookian, L. Davis, L. A. Bergman, S. Forouhar, and J. R. Sauer. "All-optical WDM packet networks." Journal of Lightwave Technology 14, no. 6 (June 1996): 1356–70. http://dx.doi.org/10.1109/50.511667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mouftah, Hussein T. "Design of all Optical Packet Switching Networks." Sultan Qaboos University Journal for Science [SQUJS] 7, no. 1 (June 1, 2002): 1. http://dx.doi.org/10.24200/squjs.vol7iss1pp1-10.

Full text
Abstract:
Optical switches and wavelength converters are recognized as two of the most important DWDM system components in future all-optical networks. Optical switches perform the key functions of flexible routing, reconfigurable optical cross-connect (OXC), network protection and restoration, etc. in optical networks. Wavelength Converters are used to shift one incoming wavelength to another outgoing wavelength when this needs to be done. Always residing in optical switches, they can effectively alleviate the blocking probability and help solve contention happening at the output port of switches. The deployment of wavelength converters within optical switches provides robust routing, switching and network management in optical layer, which is critical to the emerging all-optical Internet. However, the high cost of wavelength converters at current stage of manufacturing technology has to be taken into consideration when we design node architectures for an optical network. Our research explores the efficiency of wavelength converters in a long-haul optical network at different degrees of traffic load by running a simulation. Then, we propose a new cost-effective way to optimally design wavelength-convertible switch so as to achieve higher network performance while still keeping the total network cost down. Meanwhile, the routing and wavelength assignment (RWA) algorithm used in the research is designed to be a generic one for both large-scale and small-scale traffic. Removing the constraint on the traffic load makes the RWA more adaptive and robust. When this new RWA works in conjunction with a newly introduced concept of wavelength-convertible switches, we shall explore the impact of large-scale traffic on the role of wavelength converter so as to determine the method towards optimal use of wavelength convertible switches for all-optical networks.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhijian, Qu, Zhang Xianwei, Shi Shaojian, Cao Yanfeng, and Zhao Mingbo. "Network coding based all-optical multicast in WDM networks." Journal of China Universities of Posts and Telecommunications 22, no. 1 (February 2015): 89–94. http://dx.doi.org/10.1016/s1005-8885(15)60630-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Iannone, E., R. Sabella, L. De Stefano, and F. Valeri. "All-optical wavelength conversion in optical multicarrier networks." IEEE Transactions on Communications 44, no. 6 (June 1996): 716–24. http://dx.doi.org/10.1109/26.506388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Olenev, V. L., N. Y. Chumakova, N. I. Sinyov, and A. Y. Syschikov. "ALL-OPTICAL ON-BOARD NETWORKS PROTOCOLS." System analysis and logistics 4, no. 30 (December 22, 2021): 87–98. http://dx.doi.org/10.31799/2077-5687-2021-4-87-98.

Full text
Abstract:
The article presents the concept of all-optical on-board networks (AOON). AOON protocol stack is described, the operation of the transport layer, data link layer and the management layer of the AOON protocol stack is considered in details. The article also describes a software model designed to check the correctness of operation of the AOON protocol stack from a functional point of view, and an example of the developed software model is provided.
APA, Harvard, Vancouver, ISO, and other styles
14

Köksal, Fatih, and Cem Ersoy. "Multicasting for all-optical multifiber networks." Journal of Optical Networking 6, no. 2 (2007): 219. http://dx.doi.org/10.1364/jon.6.000219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bononi, A., F. Forghieri, and P. R. Prucnal. "Soliton ultrafast all-optical mesh networks." IEE Proceedings J Optoelectronics 140, no. 5 (1993): 285. http://dx.doi.org/10.1049/ip-j.1993.0046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lazzez, Amor. "All-Optical Networks: Security Issues Analysis." Journal of Optical Communications and Networking 7, no. 3 (February 23, 2015): 136. http://dx.doi.org/10.1364/jocn.7.000136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Iannone, E., R. Sabella, and S. Binetti. "Granularity in all-optical WDM networks." Journal of Lightwave Technology 16, no. 12 (1998): 2318–27. http://dx.doi.org/10.1109/50.736598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Medard, M., D. Marquis, R. A. Barry, and S. G. Finn. "Security issues in all-optical networks." IEEE Network 11, no. 3 (1997): 42–48. http://dx.doi.org/10.1109/65.587049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bartal, Yair, and Stefano Leonardi. "Ondashline routing in all-optical networks." Theoretical Computer Science 221, no. 1-2 (June 1999): 19–39. http://dx.doi.org/10.1016/s0304-3975(99)00025-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pankaj, R. K., and R. G. Gallager. "Wavelength requirements of all-optical networks." IEEE/ACM Transactions on Networking 3, no. 3 (June 1995): 269–80. http://dx.doi.org/10.1109/90.392386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yiu-Wing Leung. "Lightpath concentrators for all-optical networks." Journal of Lightwave Technology 24, no. 9 (September 2006): 3259–67. http://dx.doi.org/10.1109/jlt.2006.878496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Green, P. E. "Toward customer-usable all-optical networks." IEEE Communications Magazine 32, no. 12 (December 1994): 44–49. http://dx.doi.org/10.1109/35.335999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Georgakopoulos, George F., Dimitris J. Kavvadias, and Leonidas G. Sioutis. "Nash equilibria in all-optical networks." Discrete Mathematics 309, no. 13 (July 2009): 4332–42. http://dx.doi.org/10.1016/j.disc.2009.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Amar, D., A. Raspaud, and O. Togni. "All-to-all wavelength-routing in all-optical compound networks." Discrete Mathematics 235, no. 1-3 (May 2001): 353–63. http://dx.doi.org/10.1016/s0012-365x(00)00289-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

CARAGIANNIS, IOANNIS, CHRISTOS KAKLAMANIS, and PINO PERSIANO. "SYMMETRIC COMMUNICATION IN ALL-OPTICAL TREE NETWORKS." Parallel Processing Letters 10, no. 04 (December 2000): 305–13. http://dx.doi.org/10.1142/s0129626400000299.

Full text
Abstract:
We address the problem of allocating optical bandwidth to a set of communication requests in a tree-shaped all-optical network that utilizes Wavelength Division Multiplexing (WDM) technology. WDM technology establishes communication between pairs of nodes of the network by establishing tranceiver–receiver paths and assigning wavelengths to each path so that no two paths going through the same link use the same wavelength. Optical bandwidth is the number of distinct wavelengths. The important engineering problem to be solved is to establish communication between pairs of nodes so that the total number of wavelengths used is minimized. In this paper, we focus on a special case of the problem considering patterns of requests that are symmetric, i.e. for any transmitter–receiver pair of nodes (v1, v2) there also exists its symmetric (v2, v1). Our motivation lies in the fact that many services that are expected to be supported by high performance optical networks in the future, require bidirectional reservation of bandwidth. We prove that the problem of optimizing the number of wavelengths used is NP-hard even when the underlying network is a binary tree. We also present two interesting lower bounds.
APA, Harvard, Vancouver, ISO, and other styles
26

Qian-Ping Gu and Shietung Peng. "Multihop all-to-all broadcast on WDM optical networks." IEEE Transactions on Parallel and Distributed Systems 14, no. 5 (May 2003): 477–86. http://dx.doi.org/10.1109/tpds.2003.1199065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ji, Yuefeng, Hongxiang Wang, Jiabin Cui, Meitong Yu, Zhitian Yang, and Lin Bai. "All-optical signal processing technologies in flexible optical networks." Photonic Network Communications 38, no. 1 (March 22, 2019): 14–36. http://dx.doi.org/10.1007/s11107-019-00838-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Beauquier, Bruno. "All-to-all communication for some wavelength-routed all-optical networks." Networks 33, no. 3 (May 1999): 179–87. http://dx.doi.org/10.1002/(sici)1097-0037(199905)33:3<179::aid-net4>3.0.co;2-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Weifa Liang and Xiaojun Shen. "Permutation routing in all-optical product networks." IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 49, no. 4 (April 2002): 533–38. http://dx.doi.org/10.1109/81.995673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Liu, Xin, Hongxiang Wang, and Yuefeng Ji. "Serial Multicast Mode in All-Optical Networks." IEEE Photonics Technology Letters 18, no. 22 (November 2006): 2416–18. http://dx.doi.org/10.1109/lpt.2006.886131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Xin Liu, Hongxiang Wang, and Yuefeng Ji. "Hybrid Multicast Mode in All-Optical Networks." IEEE Photonics Technology Letters 19, no. 16 (August 2007): 1212–14. http://dx.doi.org/10.1109/lpt.2007.901739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Blumenthal, D. J., B. E. Olsson, G. Rossi, T. E. Dimmick, L. Rau, M. Masanovic, O. Lavrova, et al. "All-optical label swapping networks and technologies." Journal of Lightwave Technology 18, no. 12 (2000): 2058–75. http://dx.doi.org/10.1109/50.908817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ruepp, S., J. Buron, N. Andriolli, and L. Dittmann. "Nodal Stub-Release in All-Optical Networks." IEEE Communications Letters 12, no. 1 (January 2008): 47–49. http://dx.doi.org/10.1109/lcomm.2008.071560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Liu, Huan, and Fouad A. Tobagi. "Physical topology design for all-optical networks." Optical Switching and Networking 5, no. 4 (October 2008): 219–31. http://dx.doi.org/10.1016/j.osn.2008.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Locati, FS, F. Matera, M. Romagnoli, and M. Settembre. "Study of all optical metropolitan area networks." Computer Communications 16, no. 1 (January 1993): 54–61. http://dx.doi.org/10.1016/s0140-3664(05)80009-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Marsan, M. A., A. Bianco, E. Leonardi, and F. Neri. "Topologies for wavelength-routing all-optical networks." IEEE/ACM Transactions on Networking 1, no. 5 (1993): 534–46. http://dx.doi.org/10.1109/90.251912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Subramaniam, S., M. Azizoglu, and A. K. Somani. "All-optical networks with sparse wavelength conversion." IEEE/ACM Transactions on Networking 4, no. 4 (1996): 544–57. http://dx.doi.org/10.1109/90.532864.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mokhtar, A., and M. Azizoglu. "Adaptive wavelength routing in all-optical networks." IEEE/ACM Transactions on Networking 6, no. 2 (April 1998): 197–206. http://dx.doi.org/10.1109/90.664268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Forghieri, Fabrizio, Alberto Bononi, Jian-Guo Zhang, Paul R. Prucnal, Giorgio Picchi, and Giancarlo Prati. "Architectures and techniques for all-optical networks." Fiber and Integrated Optics 13, no. 2 (January 1994): 165–83. http://dx.doi.org/10.1080/01468039408202228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Y., M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren. "All-optical buffering using laser neural networks." IEEE Photonics Technology Letters 15, no. 4 (April 2003): 596–98. http://dx.doi.org/10.1109/lpt.2003.809276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Brackett, C. A., A. S. Acampora, J. Sweitzer, G. Tangonan, M. T. Smith, W. Lennon, K. C. Wang, and R. H. Hobbs. "A scalable multiwavelength multihop optical network: a proposal for research on all-optical networks." Journal of Lightwave Technology 11, no. 5/6 (May 1993): 736–53. http://dx.doi.org/10.1109/50.233237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sun Yue, 孙. 悦., 黄新宁 Huang Xinning, 温. 钰. Wen Yu, and 谢小平 Xie Xiaoping. "All-optical phase regeneration in free-space optical communication networks." Infrared and Laser Engineering 48, no. 9 (2019): 918003. http://dx.doi.org/10.3788/irla201948.0918003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Akiyama, Koji, Akio Takimoto, Michihiro Miyauchi, Yasunori Kuratomi, Junko Asayama, and Hisahito Ogawa. "A New Optical Neuron Device for All-Optical Neural Networks." Japanese Journal of Applied Physics 30, Part 1, No. 12B (December 30, 1991): 3887–92. http://dx.doi.org/10.1143/jjap.30.3887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Iness, J., B. Ramamurthy, B. Mukherjee, and K. Bala. "Elimination of all-optical cycles in wavelength-routed optical networks." Journal of Lightwave Technology 14, no. 6 (June 1996): 1207–17. http://dx.doi.org/10.1109/50.511622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ho, Siu-Ting, and Lian-Kuan Chen. "Monitoring of Linearly Accumulated Optical Impairments in All-Optical Networks." Journal of Optical Communications and Networking 1, no. 1 (June 1, 2009): 125. http://dx.doi.org/10.1364/jocn.1.000125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Clavero, R., J. M. Mart�nez, F. Ramos, and J. Mart�. "All-optical packet routing scheme for optical label-swapping networks." Optics Express 12, no. 18 (2004): 4326. http://dx.doi.org/10.1364/opex.12.004326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sun, Zeyu. "Propagation of all-optical crosstalk attack in transparent optical networks." Optical Engineering 50, no. 8 (August 1, 2011): 085002. http://dx.doi.org/10.1117/1.3607412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kong, D., Y. Li, H. Wang, S. Zhou, J. Zang, J. Zhang, J. Wu, and J. Lin. "All‐optical XOR gates for QPSK signal based optical networks." Electronics Letters 49, no. 7 (March 2013): 486–88. http://dx.doi.org/10.1049/el.2013.0010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wai, P. K. A., Lixin Xu, L. F. K. Lui, L. Y. Chan, C. C. Lee, H. Y. Tam, and M. S. Demokan. "All-optical add–drop node for optical packet-switched networks." Optics Letters 30, no. 12 (June 15, 2005): 1515. http://dx.doi.org/10.1364/ol.30.001515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Patil, Shilpa S., and Bharat S. Chaudhari. "Wavelength Converter Based Optimized RWA for All Optical Networks." Asian Journal of Computer Science and Technology 8, no. 2 (May 5, 2019): 111–15. http://dx.doi.org/10.51983/ajcst-2019.8.2.2131.

Full text
Abstract:
Wavelength converters are used in WDM networks to avoid call blocking and minimizing the blocking probability. Optimal placement of wavelength converters restricts the call blocking probability, the complexity and improves the overall network performance of the network. In this paper, we propose a new weight dependent routing and wavelength assignment algorithm for the optimal placement of the wavelength converters. The wavelength converter placement was considered separately at all the nodes and the partial nodes. Our algorithm outperforms the previously reported studies and requires a lesser number of wavelength converters to achieve the required performance. It reduces the blocking probabilities up to 5.4% and shows that the first four nodes primarily control the blocking performance of the network. The study also reveals that instead of merely increasing the number of converters, their placement at the right location plays a crucial role in improving the performance. Initially, although an increase in the number of the wavelengths also improves the network performance, the further increase does not contribute much to the reduction of the blocking probability.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography