Academic literature on the topic 'All-solid batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'All-solid batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "All-solid batteries"

1

Xiong, Xiaolin, Guoliang Jiang, Hong Li, Liquan Chen, and Liumin Suo. "All-Electrochem-Active All Solid State Batteries." Energy Storage Materials 79 (June 2025): 104330. https://doi.org/10.1016/j.ensm.2025.104330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HAYASHI, Akitoshi, and Atsushi SAKUDA. "Development of All-solid-state Batteries." Journal of The Institute of Electrical Engineers of Japan 141, no. 9 (2021): 579–82. http://dx.doi.org/10.1541/ieejjournal.141.579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Notten, Peter H. L. "3D-integrated all-solid-state batteries." Europhysics News 42, no. 3 (2011): 24–29. http://dx.doi.org/10.1051/epn/2011303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bhardwaj, Ravindra Kumar, and David Zitoun. "Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries." Batteries 9, no. 2 (2023): 110. http://dx.doi.org/10.3390/batteries9020110.

Full text
Abstract:
Metal–sulfur batteries, especially lithium/sodium–sulfur (Li/Na-S) batteries, have attracted widespread attention for large-scale energy application due to their superior theoretical energy density, low cost of sulfur compared to conventional lithium-ion battery (LIBs) cathodes and environmental sustainability. Despite these advantages, metal–sulfur batteries face many fundamental challenges which have put them on the back foot. The use of ether-based liquid electrolyte has brought metal–sulfur batteries to a critical stage by causing intermediate polysulfide dissolution which results in poor
APA, Harvard, Vancouver, ISO, and other styles
5

Amaresh, S., K. Karthikeyan, K. J. Kim, Y. G. Lee, and Y. S. Lee. "Aluminum based sulfide solid lithium ionic conductors for all solid state batteries." Nanoscale 6, no. 12 (2014): 6661–67. http://dx.doi.org/10.1039/c4nr00804a.

Full text
Abstract:
The ionic conductivity of a Li–Al–Ge–P–S based thio-LISICON solid electrolyte is equivalent to that of a conventional organic liquid electrolyte used in lithium secondary batteries. The usage of aluminum brings down the cost of the solid electrolyte making it suitable for commercial solid state batteries.
APA, Harvard, Vancouver, ISO, and other styles
6

HAYASHI, Akitoshi, Atsushi SAKUDA, and Masahiro TATSUMISAGO. "Development of Solid Electrolytes for All-Solid-State Batteries." NIPPON GOMU KYOKAISHI 92, no. 11 (2019): 430–34. http://dx.doi.org/10.2324/gomu.92.430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dirican, Mahmut, Chaoyi Yan, Pei Zhu, and Xiangwu Zhang. "Composite solid electrolytes for all-solid-state lithium batteries." Materials Science and Engineering: R: Reports 136 (April 2019): 27–46. http://dx.doi.org/10.1016/j.mser.2018.10.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hatzell, Kelsey. "Chemo-Mechanics in All Solid State Composite Cathodes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 469. http://dx.doi.org/10.1149/ma2022-024469mtgabs.

Full text
Abstract:
Decarbonization of transportation systems will require a suite of battery technologies depending on the mode and scale. Solid state batteries are an energy dense and non-flammable alternative to conventional batteries and is currently being explored for passenger vehicles and portable electronics1,2. While there is considerable interest in understanding lithium metal anodes for solid state batteries, many significant challenges still exist in solid state cathodes. Solid state cathodes are composites and usually include a combination of active material, solid electrolyte and binder3. The compos
APA, Harvard, Vancouver, ISO, and other styles
9

Smdani, Gulam, Md Wahidul Hasan, Amir Abdul Razzaq, and Weibing Xing. "A Novel Solid State Polymer Electrolyte for All Solid State Lithium Batteries." ECS Meeting Abstracts MA2024-01, no. 1 (2024): 113. http://dx.doi.org/10.1149/ma2024-011113mtgabs.

Full text
Abstract:
All-solid-state lithium batteries (ASSLBs) have gained enormous interest due to their potential high energy density, high performance, and inherent safety characteristics for advanced energy storage systems.1 Currently, solid-state ceramic (inorganic) electrolytes (SSCEs), solid-state polymer electrolytes (SSPEs), and a combination of the two (e.g., SSCE fillers in SSPEs) are being developed for ASSLBs.2 Although SSCEs have high ionic conductivity and high electrochemical stability,3 they experience some significant drawbacks, such as poor electrolyte/electrode interfacial properties and poor
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Zhouting, Mingyi Liu, Yong Zhu, et al. "Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries." Sustainability 14, no. 15 (2022): 9090. http://dx.doi.org/10.3390/su14159090.

Full text
Abstract:
All-solid-state batteries have attracted wide attention for high-performance and safe batteries. The combination of solid electrolytes and lithium metal anodes makes high-energy batteries practical for next-generation high-performance devices. However, when a solid electrolyte replaces the liquid electrolyte, many different interface/interphase issues have arisen from the contact with electrodes. Poor wettability and unstable chemical/electrochemical reaction at the interfaces with lithium metal anodes will lead to poor lithium diffusion kinetics and combustion of fresh lithium and active mate
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "All-solid batteries"

1

Johnson, D. R. "The microstructure of all-solid-state batteries." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Geiß, Matthias [Verfasser]. "Sacrificial interlayers for all-solid-state batteries / Matthias Geiß." Gießen : Universitätsbibliothek, 2021. http://d-nb.info/1230476318/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Quemin, Elisa. "Exploring solid-solid interfaces in Li6PS5Cl-based cathode composites for all solid state batteries." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS501.

Full text
Abstract:
Les technologies de stockage énergétiques jouent un rôle crucial en accommodant le caractère intermittent des énergies renouvelable. Actuellement, les batteries lithium-ion prédominent le marché des appareils portables. Cependant, pour les véhicules électriques, des avancées sont nécessaires en termes de sécurité et de densité énergétique, conduisant à l'exploration de nouvelles technologies de batterie, notamment les batteries tout-solide. Cette thèse se concentre sur les obstacles entravant l'application pratique de ces batteries tout-solide, en mettant particulièrement en lumière le rôle de
APA, Harvard, Vancouver, ISO, and other styles
4

Yada, Chihiro. "Studies on electrode/solid electrolyte interface of all-solid-state rechargeable lithium batteries." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144024.

Full text
Abstract:
Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(工学)<br>甲第12338号<br>工博第2667号<br>新制||工||1377(附属図書館)<br>24174<br>UT51-2006-J330<br>京都大学大学院工学研究科物質エネルギー化学専攻<br>(主査)教授 小久見 善八, 教授 江口 浩一, 教授 田中 功<br>学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
5

Sun, Bing. "Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries." Doctoral thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-248084.

Full text
Abstract:
Pressing demands for high power and high energy densities in novel electrical energy storage units have caused reconsiderations regarding both the choice of battery chemistry and design. Practical concerns originating in the conventional use of flammable liquid electrolytes have renewed the interests of using solvent-free polymer electrolytes (SPEs) as solid ionic conductors for safer batteries. In this thesis work, SPEs developed from two polymer host structures, polyethers and polycarbonates, have been investigated for all-solid-state Li- and Li-ion battery applications. In the first part, f
APA, Harvard, Vancouver, ISO, and other styles
6

Shao, Yunfan. "Highly electrochemical stable quaternary solid polymer electrolyte for all-solid-state lithium metal batteries." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1522332577785545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koç, Tuncay. "In search of the best solid electrolyte-layered oxide pair in all-solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS535.

Full text
Abstract:
Les batteries à l'état solide (ASSB) qui reposent sur l'utilisation d'électrolytes solides (SE) à conductivité ionique élevée sont le Saint-Graal de la future technologie des batteries, car elles pourraient théoriquement permettre une augmentation de près de 70 et 40 % des densités d'énergie volumétrique (Wh/l) et gravimétrique (Wh/kg), respectivement, ainsi qu'une sécurité accrue par rapport à la technologie des batteries au lithium-ion. À cette fin, la dernière décennie a vu le développement des ASSB, principalement grâce à des SE à base de sulfure, en raison de leurs propriétés intrinsèques
APA, Harvard, Vancouver, ISO, and other styles
8

Su, Zhongyi. "Performance enhancement of all-solid-state batteries by optimizing the electrolyte through advanced microscopy and tomography techniques." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22112.

Full text
Abstract:
NASICON-structured electrolytes of Li1+xAlxGe2−x(PO4)3, abbreviated as LAGP, are relatively stable in ambient air, also show good performance regarding Li+ conductivity (up to10-3 S·cm-1 at room temperature), thus are promising applications in ASSLIBs. To understand the ion transport mechanism of LAGP and the Al/Ge exchange system, a detailed study of SEM, Nano-SIMS, TEM and APT characterization applied for LGP and LAGP(X=0.1,0.3,0.5).It was confirmed that, by doping aluminum, the substitution: LiGe2(PO4)3 → Li1+xAlxGe2−x(PO4)3, can be accomplished. Al3+ ions partially substitute Ge4+ ions,
APA, Harvard, Vancouver, ISO, and other styles
9

Naboulsi, Agathe. "Composite organic-inorganic membrane as new electrolyte in all solid-state battery." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS451.

Full text
Abstract:
Le développement de batteries tout solide est essentiel pour réussir la transition écologique et le déploiement de véhicules tout électriques. Le développement de cette filière pourra se faire, entre autres, par l'élaboration d’un électrolyte tout solide (SE). Les SE polymères à base de poly(éthylène glycol) présentent l'avantage d'être adaptables aux procédés actuels de fabrication des batteries Li-ion. Malheureusement, leur conductivité reste limitée (10-6 – 10-9 S.cm-1) à température ambiante. Les SE inorganiques, comme le Li7La3Zr2O12, sont en revanche de bons conducteurs ioniques (10-3 S.
APA, Harvard, Vancouver, ISO, and other styles
10

Saha, Sujoy. "Exploration of ionic conductors and Li-rich sulfides for all-solid-state batteries." Electronic Thesis or Diss., Sorbonne université, 2020. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2020SORUS041.pdf.

Full text
Abstract:
Les besoins croissants en stockage de l’énergie exigent une amélioration continue des batteries lithium-ion. Le mécanisme de redox anionique qui permet d’augmenter la densité d’énergie des électrodes positives mais est associé à divers inconvénients (hystérésis et décroissance de tension, cinétique lente, etc.) qui restent à résoudre. De plus, la sécurité des batteries lithium-ion peut être améliorée en concevant des batteries tout-solide. Dans cette thèse, nous nous sommes d'abord concentrés sur le développement de nouveaux électrolytes solides à base d'oxydes pour des applications dans les b
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "All-solid batteries"

1

Kulova, Tatiana. All-Solid-state Thin-film Lithium-ion Batteries. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kotobuki, Masashi. Ceramic Electrolytes for All-Solid-State Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

AL. Ceramic Electrolytes All-Solid-state L: Ceramic Electrolytes for All-Solid-state Li Batteries. World Scientific Publishing Co Pte Ltd, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Skundin, Alexander, Tatiana Kulova, Alexander Rudy, and Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Skundin, Alexander, Tatiana Kulova, Alexander Rudy, and Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Skundin, Alexander, Tatiana Kulova, Alexander Rudy, and Alexander Miromemko. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kulova, Tatiana. All Solid State Thin-Film Lithium-Ion Batteries: Materials, Technology, and Diagnostics. CRC Press LLC, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "All-solid batteries"

1

Tofield, Bruce C. "Future Prospects for All-Solid-State Batteries." In Solid State Batteries. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ilango, P. Robert, Jeevan Kumar Reddy Modigunta, Abhilash Karuthedath Parameswaran, Zdenek Sofer, G. Murali, and Insik In. "Novel Design Aspects of All-Solid-State Batteries." In Solid State Batteries. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ajith, K., P. Christopher Selvin, K. P. Abhilash, Nithyadharseni Palaniyandy, P. Adlin Helen, and G. Somasundharam. "Recycling of All-Solid-State Lithium-Ion Batteries." In Solid State Batteries. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ratsoma, M. S., K. Makgopa, K. D. Modibane, and K. Raju. "Prospective Cathode Materials for All-Solid-State Batteries." In Solid State Batteries. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Priyanka, P., B. Nalini, and P. Nithyadharseni. "Basic Aspects of Design and Operation of All-Solid-State Batteries." In Solid State Batteries. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abhilash, K. P., P. Nithyadharseni, P. Sivaraj, et al. "Future Challenges to Address the Market Demands of All-Solid-State Batteries." In Solid State Batteries. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakamura, Hideya, and Satoru Watano. "Dry Coating of Electrode Particle with Solid Electrolyte for Composite Electrode of All-Solid-State Battery." In Next Generation Batteries. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Asakura, Ryo, Arndt Remhof, and Corsin Battaglia. "Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries." In ACS Symposium Series. American Chemical Society, 2022. http://dx.doi.org/10.1021/bk-2022-1413.ch014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Abhilash, K. P., P. Sivaraj, Bhupendar Pal, et al. "Advanced Characterization Techniques to Unveil the Dynamics of Challenging Nano-scale Interfaces in All-Solid-State Batteries." In Solid State Batteries. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12470-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Okumura, Toyoki. "Powder-Process-Based Fabrication of Oxide-Based Bulk-Type All-Solid-State Batteries." In Next Generation Batteries. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "All-solid batteries"

1

Ferreira, Patryck, and Shu-Xia Tang. "Quintuple Thermal Model for All-Solid-State Batteries and Temperature Estimation through a Cascaded Thermal-Electrochemical Model." In 2024 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2024. http://dx.doi.org/10.1109/ccta60707.2024.10666604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maohua, Chen, Rayavarapu Prasada Rao, and Stefan Adams. "All-Solid-State Lithium Batteries Using Li6PS5Br Solid Electrolyte." In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Beutl, Alexander, Ningxin Zhang, Marcus Jahn, and Maria Nestoridi. "All-solid state batteries for space exploration." In 2019 European Space Power Conference (ESPC). IEEE, 2019. http://dx.doi.org/10.1109/espc.2019.8931978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

THANGADURAI, V., J. SCHWENZEI, and W. WEPPNER. "DEVELOPMENT OF ALL-SOLID-STATE LITHIUM BATTERIES." In Proceedings of the 10th Asian Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773104_0084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Finsterbusch, Martin. "Oxide-Electrolyte Based All-Solid-State Batteries." In Materials for Sustainable Development Conference (MAT-SUS). FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Song, Taeseup, Jehyun Lee, Jiwoon Kim, et al. "Electrode Structure Engineering for All Solid State Batteries." In MATSUS Spring 2024 Conference. FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sousa, R., J. F. Ribeiro, J. A. Sousa, L. M. Goncalves, and J. H. Correia. "All-solid-state batteries: An overview for bio applications." In 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2013. http://dx.doi.org/10.1109/enbeng.2013.6518400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Zhixiong, Huangqing Ye, Jiahui Chen, Xian-Zhu Fu, Rong Sun, and Ching-Ping Wong. "Li0.43La0.56Ti0.95Ge0.05O3/PEO composite solid electrolytes for flexible all-solid-state lithium batteries." In 2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018. http://dx.doi.org/10.1109/icept.2018.8480741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Hongru, and Ceng Li. "Recent Developments of Solid-State Electrolytes for All-Solid-State Lithium Metal Batteries." In 2022 3rd International Conference on Clean and Green Energy Engineering (CGEE). IEEE, 2022. http://dx.doi.org/10.1109/cgee55282.2022.9976528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liu, Wei, Ryan Milcarek, Kang Wang, and Jeongmin Ahn. "Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries." In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.

Full text
Abstract:
In this study, a multi-layer structure solid electrolyte (SE) for all-solid-state electrolyte lithium ion batteries (ASSLIBs) was fabricated and characterized. The SE was fabricated by laminating ceramic electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP) with polymer (PEO)10-Li(N(CF3SO2)2 electrolyte and gel-polymer electrolyte of PVdF-HFP/ Li(N(CF3SO2)2. It is shown that the interfacial resistance is generated by poor contact at the interface of the solid electrolytes. The lamination protocol, material selection and fabrication method play a key role in the fabrication process of practical multi-layer
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "All-solid batteries"

1

Zhang, Pu. All Solid State Batteries Enabled by Multifunctional Electrolyte Materials. Office of Scientific and Technical Information (OSTI), 2022. http://dx.doi.org/10.2172/1906484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kwon, Patrick, Carlos Juarez-Yescas, Hyewon Jeong, et al. Chemo-electrochemical evolution of cathode–solid electrolyte interface in all-solid-state batteries. Engineer Research and Development Center (U.S.), 2025. https://doi.org/10.21079/11681/49796.

Full text
Abstract:
The stability of the interface between the cathode and the solid electrolyte (SE) has been found to be a key determinant of solid-state battery (SSB) performance. While interfacial failure from electro-chemical cycling has been studied, temperature effects on the chemical and electrochemical evolution of interface properties are not well-understood. We utilize a dense additive-free LiCoO2 cathode, which provides controlled morphology and crystallography, and well-known high voltage halide SEs (Li₃InCl₆ and Li₃YCl₆) to eliminate the need for cathode coating to explore the nature of interface de
APA, Harvard, Vancouver, ISO, and other styles
3

Ye, Jianchao. Printing of All Solid-State Lithium Batteries (BMR FY20Q1 Task 4). Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1631527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Doeff, Marca. Flexible All Solid State Lithium Batteries Made by Roll-to-Roll Freeze-Casting. Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1569485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ye, J. FY24Q1 VTO Quarter Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), 2024. http://dx.doi.org/10.2172/2429648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ye, J., and M. Wood. VTO FY23Q4 Quarterly Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2429659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ye, J., A. Orhan, and E. Ramos. VTO FY23Q3 Quarterly Report on 3D Printing of All-Solid-State Lithium batteries. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2429657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yersak, Thomas. Hot Pressing of Reinforced Li-NMC All-Solid State Batteries with Sulfide Glass Electrolyte. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2246589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ye, J., A. Orhan, M. Wood, and E. Ramos. VTO FY23 Annual Progress Report on 3D Printing of All-Solid-State Lithium Batteries. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/2429655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Narayanan, Badri, Hui Wang, Gamini Sumanasekera, and Jacek Jasinski. Predictive Engineering of Interfaces and Cathodes for High-Performance All Solid-State Lithium-Sulfur Batteries. Office of Scientific and Technical Information (OSTI), 2023. http://dx.doi.org/10.2172/1971763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!