Journal articles on the topic 'All-solid batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'All-solid batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Xiong, Xiaolin, Guoliang Jiang, Hong Li, Liquan Chen, and Liumin Suo. "All-Electrochem-Active All Solid State Batteries." Energy Storage Materials 79 (June 2025): 104330. https://doi.org/10.1016/j.ensm.2025.104330.
Full textHAYASHI, Akitoshi, and Atsushi SAKUDA. "Development of All-solid-state Batteries." Journal of The Institute of Electrical Engineers of Japan 141, no. 9 (2021): 579–82. http://dx.doi.org/10.1541/ieejjournal.141.579.
Full textNotten, Peter H. L. "3D-integrated all-solid-state batteries." Europhysics News 42, no. 3 (2011): 24–29. http://dx.doi.org/10.1051/epn/2011303.
Full textBhardwaj, Ravindra Kumar, and David Zitoun. "Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries." Batteries 9, no. 2 (2023): 110. http://dx.doi.org/10.3390/batteries9020110.
Full textAmaresh, S., K. Karthikeyan, K. J. Kim, Y. G. Lee, and Y. S. Lee. "Aluminum based sulfide solid lithium ionic conductors for all solid state batteries." Nanoscale 6, no. 12 (2014): 6661–67. http://dx.doi.org/10.1039/c4nr00804a.
Full textHAYASHI, Akitoshi, Atsushi SAKUDA, and Masahiro TATSUMISAGO. "Development of Solid Electrolytes for All-Solid-State Batteries." NIPPON GOMU KYOKAISHI 92, no. 11 (2019): 430–34. http://dx.doi.org/10.2324/gomu.92.430.
Full textDirican, Mahmut, Chaoyi Yan, Pei Zhu, and Xiangwu Zhang. "Composite solid electrolytes for all-solid-state lithium batteries." Materials Science and Engineering: R: Reports 136 (April 2019): 27–46. http://dx.doi.org/10.1016/j.mser.2018.10.004.
Full textHatzell, Kelsey. "Chemo-Mechanics in All Solid State Composite Cathodes." ECS Meeting Abstracts MA2022-02, no. 4 (2022): 469. http://dx.doi.org/10.1149/ma2022-024469mtgabs.
Full textSmdani, Gulam, Md Wahidul Hasan, Amir Abdul Razzaq, and Weibing Xing. "A Novel Solid State Polymer Electrolyte for All Solid State Lithium Batteries." ECS Meeting Abstracts MA2024-01, no. 1 (2024): 113. http://dx.doi.org/10.1149/ma2024-011113mtgabs.
Full textSun, Zhouting, Mingyi Liu, Yong Zhu, et al. "Issues Concerning Interfaces with Inorganic Solid Electrolytes in All-Solid-State Lithium Metal Batteries." Sustainability 14, no. 15 (2022): 9090. http://dx.doi.org/10.3390/su14159090.
Full textChen, Zonghai. "(Invited) Formation of Solid/Solid Interface for All Solid State Batteries." ECS Meeting Abstracts MA2020-01, no. 2 (2020): 290. http://dx.doi.org/10.1149/ma2020-012290mtgabs.
Full textThangadurai, Venkataraman. "(Invited) Garnet Solid Electrolytes for Advanced All-Solid-State Li Metal Batteries." ECS Meeting Abstracts MA2022-02, no. 47 (2022): 1759. http://dx.doi.org/10.1149/ma2022-02471759mtgabs.
Full textPandeeswari, Jayaraman, Gunamony Jenisha, Kumlachew Zelalem Walle, and Masashi Kotobuki. "Recent Research Progress on All-Solid-State Mg Batteries." Batteries 9, no. 12 (2023): 570. http://dx.doi.org/10.3390/batteries9120570.
Full textDeshpande, Piyush, and Jennifer L. Schaefer. "Characterizing Sulfur Copolymer Composite Cathodes for All-Solid Batteries." ECS Meeting Abstracts MA2025-01, no. 2 (2025): 152. https://doi.org/10.1149/ma2025-012152mtgabs.
Full textLian, Peng-Jie, Bo-Sheng Zhao, Lian-Qi Zhang, Ning Xu, Meng-Tao Wu, and Xue-Ping Gao. "Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries." Journal of Materials Chemistry A 7, no. 36 (2019): 20540–57. http://dx.doi.org/10.1039/c9ta04555d.
Full textSAKUDA, Atsushi, Akitoshi HAYASHI, and Masahiro TATSUMISAGO. "Metastable Materials for All-Solid-State Batteries." Electrochemistry 87, no. 5 (2019): 247–50. http://dx.doi.org/10.5796/electrochemistry.19-h0002.
Full textBuissette, Valérie. "All-solid-state Batteries - Without Liquid Electrolyte." ATZextra worldwide 27, S1 (2022): 34–37. http://dx.doi.org/10.1007/s40111-022-0325-2.
Full textYang, Jing, Gaozhan Liu, Maxim Avdeev, et al. "Ultrastable All-Solid-State Sodium Rechargeable Batteries." ACS Energy Letters 5, no. 9 (2020): 2835–41. http://dx.doi.org/10.1021/acsenergylett.0c01432.
Full textDanilov, D., R. A. H. Niessen, and P. H. L. Notten. "Modeling All-Solid-State Li-Ion Batteries." Journal of The Electrochemical Society 158, no. 3 (2011): A215. http://dx.doi.org/10.1149/1.3521414.
Full textMeng, Shirley. "Si Anode for All Solid State Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (2022): 249. http://dx.doi.org/10.1149/ma2022-023249mtgabs.
Full textWang, Lutong, Chuang Yi, Jixian Luo, et al. "3D printing for all-solid-state batteries." Materials Science and Engineering: R: Reports 166 (September 2025): 101053. https://doi.org/10.1016/j.mser.2025.101053.
Full textKim, Jun tae, Hyeon-ji Shin, and Hun-Gi Jung. "Sulfide Solid Electrolyte Coated Cathode in All-Solid-State Batteries." ECS Meeting Abstracts MA2024-02, no. 8 (2024): 1234. https://doi.org/10.1149/ma2024-0281234mtgabs.
Full textJung, Yun-Chae, Sang-Min Lee, Jeong-Hee Choi, Seung Soon Jang, and Dong-Won Kim. "All Solid-State Lithium Batteries Assembled with Hybrid Solid Electrolytes." Journal of The Electrochemical Society 162, no. 4 (2015): A704—A710. http://dx.doi.org/10.1149/2.0731504jes.
Full textHelms, Brett. "Design of Solid Electrolytes to Enable Direct Cathode Recycling in All-Solid-State Lithium Metal Batteries." ECS Meeting Abstracts MA2023-01, no. 6 (2023): 1080. http://dx.doi.org/10.1149/ma2023-0161080mtgabs.
Full textYang, Shuhao, and Guoying Chen. "Fundamental Understanding of Halide Solid Electrolytes for All-Solid-State Batteries." ECS Meeting Abstracts MA2024-01, no. 2 (2024): 412. http://dx.doi.org/10.1149/ma2024-012412mtgabs.
Full textNagao, Kenji, Yuka Nagata, Atsushi Sakuda, et al. "A reversible oxygen redox reaction in bulk-type all-solid-state batteries." Science Advances 6, no. 25 (2020): eaax7236. http://dx.doi.org/10.1126/sciadv.aax7236.
Full textWang, Yao‐Yao, Wan‐Yue Diao, Chao‐Ying Fan, Xing‐Long Wu, and Jing‐Ping Zhang. "Benign Recycling of Spent Batteries towards All‐Solid‐State Lithium Batteries." Chemistry – A European Journal 25, no. 38 (2019): 8975–81. http://dx.doi.org/10.1002/chem.201900845.
Full textSmdani, Gulam, Md Wahidul Hasan, Amir Abdul Razzaq, and Weibing Xing. "Electronically Conductive Polymer Enhanced Solid State Polymer Electrolytes for All Solid-State Lithium Batteries." ECS Meeting Abstracts MA2025-01, no. 3 (2025): 463. https://doi.org/10.1149/ma2025-013463mtgabs.
Full textReddy, Mogalahalli V., Christian M. Julien, Alain Mauger, and Karim Zaghib. "Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review." Nanomaterials 10, no. 8 (2020): 1606. http://dx.doi.org/10.3390/nano10081606.
Full textKim, A.-yeon, Hun-Gi Jung, Hyeon-Ji Shin, and Jun tae Kim. "Binderless Sheet-Type Oxide-Sulfide Composite Solid Electrolyte for All-Solid-State Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (2023): 745. http://dx.doi.org/10.1149/ma2023-024745mtgabs.
Full textLim, Jungwoo, Rory Powell, and Laurence J. Hardwick. "Gas Evolution from Sulfide-Based All-Solid-State Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (2022): 231. http://dx.doi.org/10.1149/ma2022-012231mtgabs.
Full textZhang, Jiarui. "Research Progress of Thin Film Structures of All-Solid-State Lithium-Ion Battery." Highlights in Science, Engineering and Technology 83 (February 27, 2024): 548–52. http://dx.doi.org/10.54097/g2mbv453.
Full textSakuda, Atsushi. "Favorable composite electrodes for all-solid-state batteries." Journal of the Ceramic Society of Japan 126, no. 9 (2018): 675–83. http://dx.doi.org/10.2109/jcersj2.18114.
Full textHuang, Yonglin, Bowen Shao, and Fudong Han. "Interfacial challenges in all-solid-state lithium batteries." Current Opinion in Electrochemistry 33 (June 2022): 100933. http://dx.doi.org/10.1016/j.coelec.2021.100933.
Full textKasemchainan, Jitti, and Peter G. Bruce. "All-Solid-State Batteries and their Remaining Challenges." Johnson Matthey Technology Review 62, no. 2 (2018): 177–80. http://dx.doi.org/10.1595/205651318x696747.
Full textHiralal, Pritesh, Shinji Imaizumi, Husnu Emrah Unalan, et al. "Nanomaterial-Enhanced All-Solid Flexible Zinc−Carbon Batteries." ACS Nano 4, no. 5 (2010): 2730–34. http://dx.doi.org/10.1021/nn901391q.
Full textBraun, P., C. Uhlmann, M. Weiss, A. Weber, and E. Ivers-Tiffée. "Assessment of all-solid-state lithium-ion batteries." Journal of Power Sources 393 (July 2018): 119–27. http://dx.doi.org/10.1016/j.jpowsour.2018.04.111.
Full textAzhari, Luqman, Sungyool Bong, Xiaotu Ma, and Yan Wang. "Recycling for All Solid-State Lithium-Ion Batteries." Matter 3, no. 6 (2020): 1845–61. http://dx.doi.org/10.1016/j.matt.2020.10.027.
Full textCasalbore-Miceli, G., G. Giro, G. Beggiato, P. G. Di Marco, and A. Geri. "All-solid-state batteries based on conducting polymers." Synthetic Metals 41, no. 3 (1991): 1119–22. http://dx.doi.org/10.1016/0379-6779(91)91566-s.
Full textKim, Youngki, Xianke Lin, Armin Abbasalinejad, Sun Ung Kim, and Seung Hyun Chung. "On state estimation of all solid-state batteries." Electrochimica Acta 317 (September 2019): 663–72. http://dx.doi.org/10.1016/j.electacta.2019.06.023.
Full textKato, Yuki, Shinya Shiotani, Keisuke Morita, Kota Suzuki, Masaaki Hirayama, and Ryoji Kanno. "All-Solid-State Batteries with Thick Electrode Configurations." Journal of Physical Chemistry Letters 9, no. 3 (2018): 607–13. http://dx.doi.org/10.1021/acs.jpclett.7b02880.
Full textQu, Hang, Xin Lu, and Maksim Skorobogatiy. "All-Solid Flexible Fiber-Shaped Lithium Ion Batteries." Journal of The Electrochemical Society 165, no. 3 (2018): A688—A695. http://dx.doi.org/10.1149/2.1001803jes.
Full textLiao, Jared, Joel Kirner, and Feng Zhao. "Mitigating Interfacial Issues in All-Solid-State Batteries." ECS Meeting Abstracts MA2020-02, no. 5 (2020): 952. http://dx.doi.org/10.1149/ma2020-025952mtgabs.
Full textBattaglia, Corsin. "(Invited) Interface Stability in All-Solid-State Batteries." ECS Meeting Abstracts MA2020-02, no. 5 (2020): 965. http://dx.doi.org/10.1149/ma2020-025965mtgabs.
Full textKim, Se‐Hee, Jung‐Hui Kim, Sung‐Ju Cho, and Sang‐Young Lee. "All‐Solid‐State Printed Bipolar Li–S Batteries." Advanced Energy Materials 9, no. 40 (2019): 1901841. http://dx.doi.org/10.1002/aenm.201901841.
Full textNotten, P. H. L., F. Roozeboom, R. A. H. Niessen, and L. Baggetto. "3-D Integrated All-Solid-State Rechargeable Batteries." Advanced Materials 19, no. 24 (2007): 4564–67. http://dx.doi.org/10.1002/adma.200702398.
Full textNavarro, Santiago, Pascal Hennrich, Florian Steinlehner, Stefan W. Zangerle, Markus S. Ding, and Rüdiger Daub. "Production of Sulfidic Cylindrical All-Solid-State Batteries." Procedia CIRP 134 (2025): 199–204. https://doi.org/10.1016/j.procir.2025.03.049.
Full textZhang, Shumin, Feipeng Zhao, and Xueliang Andy Sun. "Interface Engineering Via Fluorinated Solid Electrolytes for All-Solid-State Li Batteries." ECS Meeting Abstracts MA2022-01, no. 2 (2022): 159. http://dx.doi.org/10.1149/ma2022-012159mtgabs.
Full textAsano, Tetsuya, Masashi Sakaida, Akihiro Sakai, Akinobu Miyazaki, and Shinya Hasegawa. "(Invited) Solid Halide Electrolytes for All-Solid-State Lithium Ion Batteries." ECS Meeting Abstracts MA2020-01, no. 2 (2020): 270. http://dx.doi.org/10.1149/ma2020-012270mtgabs.
Full textHuo, Hanyu, and Jürgen Janek. "Solid-state batteries: from ‘all-solid’ to ‘almost-solid’." National Science Review, April 11, 2023. http://dx.doi.org/10.1093/nsr/nwad098.
Full text