Journal articles on the topic 'All terrain robot'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'All terrain robot.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kumar, Dr M. Sampath, Anchal Mohanty, and Meghana Beesu E. Sai Kiran. "All Terrain Offensive and Defensive Robot." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (2019): 1438–40. http://dx.doi.org/10.31142/ijtsrd23370.
Full textPecie, Robert Florian, Mihai Olimpiu Tătar, and Călin Rusu. "Studies on mobile robots for all types of terrain." MATEC Web of Conferences 343 (2021): 08015. http://dx.doi.org/10.1051/matecconf/202134308015.
Full textLuneckas, Tomas. "EVALUATING TERRAIN IRREGULARITY BY ROBOT POSTURE / PAVIRŠIAUS NETOLYGUMO VERTINIMAS PAGAL ROBOTO PADĖTĮ." Mokslas - Lietuvos ateitis 3, no. 1 (2011): 96–99. http://dx.doi.org/10.3846/mla.2011.020.
Full textZiemniak, Paweł, Dariusz Uciński, and Andreas Paczynski. "Control System for an All-Terrain Mobile Robot." Solid State Phenomena 147-149 (January 2009): 43–48. http://dx.doi.org/10.4028/www.scientific.net/ssp.147-149.43.
Full textLi, Yan Jie, Fu De Wang, and Zhi Hui Kou. "Dynamics Modeling and Simulation of a Six-Wheel All-Terrain Mobile Robot Based on ADAMS." Applied Mechanics and Materials 101-102 (September 2011): 516–20. http://dx.doi.org/10.4028/www.scientific.net/amm.101-102.516.
Full textZhao, Jianwei, Tao Han, Shouzhong Wang, Chengxiang Liu, Jianhua Fang, and Shengyi Liu. "Design and Research of All-Terrain Wheel-Legged Robot." Sensors 21, no. 16 (2021): 5367. http://dx.doi.org/10.3390/s21165367.
Full textTian, Yuan, and Feng Gao. "Efficient motion generation for a six-legged robot walking on irregular terrain via integrated foothold selection and optimization-based whole-body planning." Robotica 36, no. 3 (2017): 333–52. http://dx.doi.org/10.1017/s0263574717000418.
Full textQiao, Tianbo. "Gait Control of Hexapod Robot Based on Field-Programmable Gate Array and Central Pattern Generator." Journal Européen des Systèmes Automatisés 53, no. 6 (2020): 931–37. http://dx.doi.org/10.18280/jesa.530619.
Full textWang, Xin, Baisong Yang, Di Tan, et al. "Bioinspired footed soft robot with unidirectional all-terrain mobility." Materials Today 35 (May 2020): 42–49. http://dx.doi.org/10.1016/j.mattod.2019.12.028.
Full textZhu, Yaguang, Chaoyu Jia, Chao Ma, and Qiong Liu. "SURF-BRISK–Based Image Infilling Method for Terrain Classification of a Legged Robot." Applied Sciences 9, no. 9 (2019): 1779. http://dx.doi.org/10.3390/app9091779.
Full textKamikawa, Kenji, Tomohito Takubo, Yasushi Mae, Kenji Inoue, and Tatsuo Arai. "Omni-Directional Gait of Multi-Legged Robot on Rough Terrain by Following the Virtual Plane." Journal of Robotics and Mechatronics 24, no. 1 (2012): 71–85. http://dx.doi.org/10.20965/jrm.2012.p0071.
Full textFang, Shu, Zhen Wei Zhang, and Lei Zhang. "Turning Dynamics of Series Hybrid Power All-Terrain Vehicle." Advanced Materials Research 512-515 (May 2012): 2620–24. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.2620.
Full textPradhan, Debesh, Jishnu Sen, and Nirmal Baran Hui. "Design and development of an automated all-terrain wheeled robot." Advances in robotics research 1, no. 1 (2014): 21–39. http://dx.doi.org/10.12989/arr.2014.1.1.021.
Full textZhu, Hongbo, Minzhou Luo, and Jingzhao Li. "Optimization-based gait planning and control for biped robots utilizing the optimal allowable ZMP variation region." Industrial Robot: An International Journal 45, no. 4 (2018): 469–80. http://dx.doi.org/10.1108/ir-01-2018-0011.
Full textRoslee, H. H., J. C. Tew, M. A. U. Ismail, et al. "Development of Theo Jansen inspired all-terrain quadruped mini mobile robot." Journal of Physics: Conference Series 1969, no. 1 (2021): 012009. http://dx.doi.org/10.1088/1742-6596/1969/1/012009.
Full textChen, Wei, Qianjie Liu, Huosheng Hu, Jun Liu, Shaojie Wang, and Qingyuan Zhu. "Novel Laser-Based Obstacle Detection for Autonomous Robots on Unstructured Terrain." Sensors 20, no. 18 (2020): 5048. http://dx.doi.org/10.3390/s20185048.
Full textYoneda, Kan, Yusuke Ota, Fumitoshi Ito, and Shigeo Hirose. "Quadruped Walking Robot with Reduced Degrees of Freedom." Journal of Robotics and Mechatronics 13, no. 2 (2001): 190–97. http://dx.doi.org/10.20965/jrm.2001.p0190.
Full textJmel, Ines, Habib Dimassi, Salim Hadj-Said, and Faouzi M’Sahli. "Adaptive Observer-Based Sliding Mode Control for a Two-Wheeled Self-Balancing Robot under Terrain Inclination and Disturbances." Mathematical Problems in Engineering 2021 (January 6, 2021): 1–15. http://dx.doi.org/10.1155/2021/8853441.
Full textKim, In Ho, Jae Seong Lee, Woo Young Jeong, Jang Hyun Kim, and Hyun Seok Yang. "Design Morphological Changing All-Terrain-Rover and Optimizing with Genetic Algorithm for Enhancing Mobility." Applied Mechanics and Materials 619 (August 2014): 242–48. http://dx.doi.org/10.4028/www.scientific.net/amm.619.242.
Full textManawadu, Udaka A., Hiroaki Ogawa, Keito Shishiki, et al. "Towards Developing a Teleoperation System for a Disaster Response Robot." SHS Web of Conferences 102 (2021): 04005. http://dx.doi.org/10.1051/shsconf/202110204005.
Full textTerefe, Tesfaye Olana, Hirpa G. Lemu, and Addisu K/Mariam. "Review and synthesis of a walking machine (Robot) leg mechanism." MATEC Web of Conferences 290 (2019): 08012. http://dx.doi.org/10.1051/matecconf/201929008012.
Full textMiková, Lubica. "DESIGN AND STRESS ANALYSIS OF WHEEL MOBILE ROBOT." TECHNICAL SCIENCES AND TECHNOLOGIES, no. 3(17) (2019): 162–67. http://dx.doi.org/10.25140/2411-5363-2019-3(17)-162-167.
Full textMegantoro, Prisma, Herlambang Setiadi, and Brahmantya Aji Pramudita. "All-terrain mobile robot desinfectant sprayer to decrease the spread of COVID-19 in open area." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 3 (2021): 2090. http://dx.doi.org/10.11591/ijece.v11i3.pp2090-2100.
Full textRubio, Francisco, Carlos Llopis-Albert, Francisco Valero, and Antonio José Besa. "A new approach to the kinematic modeling of a three-dimensional car-like robot with differential drive using computational mechanics." Advances in Mechanical Engineering 11, no. 3 (2019): 168781401982590. http://dx.doi.org/10.1177/1687814019825907.
Full textFućek, Luka, Zdenko Kovačić, and Stjepan Bogdan. "Analytically founded yaw control algorithm for walking on uneven terrain applied to a hexapod robot." International Journal of Advanced Robotic Systems 16, no. 3 (2019): 172988141985799. http://dx.doi.org/10.1177/1729881419857997.
Full textLacroix, Simon, Anthony Mallet, David Bonnafous, et al. "Autonomous Rover Navigation on Unknown Terrains: Functions and Integration." International Journal of Robotics Research 21, no. 10-11 (2002): 917–42. http://dx.doi.org/10.1177/0278364902021010841.
Full textMATSUKAWA, Ko, and Takeshi AOKI. "2A1-D06 Study of omni-directional all terrain mobile robot with Four-wheel-vehicle Model(Wheeled Robot/Tracked Vehicle (1))." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2014 (2014): _2A1—D06_1—_2A1—D06_2. http://dx.doi.org/10.1299/jsmermd.2014._2a1-d06_1.
Full textWang, Z. Y., X. L. Ding, and A. Rovetta. "Analysis of typical locomotion of a symmetric hexapod robot." Robotica 28, no. 6 (2009): 893–907. http://dx.doi.org/10.1017/s0263574709990725.
Full textVillaseñor, Carlos, Jorge Rios, Nancy Arana-Daniel, Alma Alanis, Carlos Lopez-Franco, and Esteban Hernandez-Vargas. "Germinal Center Optimization Applied to Neural Inverse Optimal Control for an All-Terrain Tracked Robot." Applied Sciences 8, no. 1 (2017): 31. http://dx.doi.org/10.3390/app8010031.
Full textTOKUNAGA, Naoki, Yoshito OKADA, Keiji NAGATANI, and Kazuya YOSHIDA. "1A2-H08 Tele-operation of all-terrain robot using continuous acquisition of three-dimensional environment." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2009 (2009): _1A2—H08_1—_1A2—H08_4. http://dx.doi.org/10.1299/jsmermd.2009._1a2-h08_1.
Full textErsal, Tulga, Youngki Kim, John Broderick, et al. "Keeping Ground Robots on the Move Through Battery & Mission Management." Mechanical Engineering 136, no. 06 (2014): S1—S6. http://dx.doi.org/10.1115/6.2014-jun-4.
Full textKudriashov, Andrii, Tomasz Buratowski, Jerzy Garus, and Mariusz Giergiel. "3D Environment Exploration with SLAM for Autonomous Mobile Robot Control." WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL 16 (August 2, 2021): 450–56. http://dx.doi.org/10.37394/23203.2021.16.40.
Full textMitkov, Ivan, Veselin Harizanov, and Georgi Komitov. "Determining the energy efficiency of an agrorobot." Agricultural Sciences 13, no. 30 (2021): 73–78. http://dx.doi.org/10.22620/agrisci.2021.30.010.
Full textReddy, Satish Kumar, and Prabir K. Pal. "Detection of traversable region around a mobile robot by computing terrain unevenness from the range data of a 3D laser scanner." International Journal of Intelligent Unmanned Systems 4, no. 2 (2016): 107–28. http://dx.doi.org/10.1108/ijius-08-2015-0009.
Full textIrawan, Addie, and Kenzo Nonami. "Compliant Walking Control for Hydraulic Driven Hexapod Robot on Rough Terrain." Journal of Robotics and Mechatronics 23, no. 1 (2011): 149–62. http://dx.doi.org/10.20965/jrm.2011.p0149.
Full textAlanis, Alma Y., Jorge D. Rios, Nancy Arana-Daniel, and Carlos Lopez-Franco. "Real-time neural control of all-terrain tracked robots with unknown dynamics and network communication delays." Ingeniería Investigación y Tecnología 21, no. 3 (2020): 1–12. http://dx.doi.org/10.22201/fi.25940732e.2020.21.3.026.
Full textBelter, Dominik, and Piotr Skrzypczyński. "A biologically inspired approach to feasible gait learning for a hexapod robot." International Journal of Applied Mathematics and Computer Science 20, no. 1 (2010): 69–84. http://dx.doi.org/10.2478/v10006-010-0005-7.
Full textNakajima, Shuro, and Eiji Nakano. "Adaptive Gait for Large Rough Terrain of a Leg-Wheel Robot (Third Report: Step-Down Gait)." Journal of Robotics and Mechatronics 21, no. 1 (2009): 12–19. http://dx.doi.org/10.20965/jrm.2009.p0012.
Full textYan, Dang Hui, De An Zhao, and Hui Liang Shen. "The Mobile Robot Navigation System Design Based on GPS and GIS." Applied Mechanics and Materials 241-244 (December 2012): 1918–21. http://dx.doi.org/10.4028/www.scientific.net/amm.241-244.1918.
Full textBuzlov, N. A. "Scan Matching for Navigation of a Mobile Robot in Semi-Structured Terrain Conditions." Mekhatronika, Avtomatizatsiya, Upravlenie 22, no. 5 (2021): 246–53. http://dx.doi.org/10.17587/mau.22.246-253.
Full textEckert, Peter, Anja EM Schmerbauch, Tomislav Horvat, et al. "Towards rich motion skills with the lightweight quadruped robot Serval." Adaptive Behavior 28, no. 3 (2019): 129–50. http://dx.doi.org/10.1177/1059712319853227.
Full textAOKI, Takeshi, and Mizuki SHIMAOKA. "1P1-E08 Development of all terrain vehicle with globular metal spring wheel(Wheeled Robot/Tracked Vehicle(3))." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2012 (2012): _1P1—E08_1—_1P1—E08_2. http://dx.doi.org/10.1299/jsmermd.2012._1p1-e08_1.
Full textFRIEDMANN, MARTIN, JUTTA KIENER, SEBASTIAN PETTERS, DIRK THOMAS, OSKAR VON STRYK, and HAJIME SAKAMOTO. "VERSATILE, HIGH-QUALITY MOTIONS AND BEHAVIOR CONTROL OF A HUMANOID SOCCER ROBOT." International Journal of Humanoid Robotics 05, no. 03 (2008): 417–36. http://dx.doi.org/10.1142/s0219843608001509.
Full textSun, Zhang Jun, Jing Long Yan, Chao Quan Li, Yue Ju Li, and Chao Di. "Design and Simulation of a Variable Structure Mobile Robot." Applied Mechanics and Materials 457-458 (October 2013): 672–76. http://dx.doi.org/10.4028/www.scientific.net/amm.457-458.672.
Full textMICHISHITA, Tomohiro, Tatsuya AKIBA, Yuta TOCHIKUBO, Naohiko HANAJIMA, Hiromitsu HIKITA, and Mitsuhisa YAMASHITA. "1P1-D19 Development of an environment investigation robot using an All Terrain Vehicle : A wire winding steering system." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2010 (2010): _1P1—D19_1—_1P1—D19_4. http://dx.doi.org/10.1299/jsmermd.2010._1p1-d19_1.
Full textD'Amelio Luca Bascetta, Enzo L., Davide A. Cucci, Matteo Matteucci, and Gianluca Bardaro. "A Modelica simulator to support the development of the control system of an autonomous All-Terrain mobile robot." IFAC-PapersOnLine 48, no. 1 (2015): 274–79. http://dx.doi.org/10.1016/j.ifacol.2015.05.017.
Full textGriffin, Brent, and Jessy Grizzle. "Nonholonomic virtual constraints and gait optimization for robust walking control." International Journal of Robotics Research 36, no. 8 (2017): 895–922. http://dx.doi.org/10.1177/0278364917708249.
Full textDasgupta, Prithviraj, José Baca, K. R. Guruprasad, Angélica Muñoz-Meléndez, and Janyl Jumadinova. "The COMRADE System for Multirobot Autonomous Landmine Detection in Postconflict Regions." Journal of Robotics 2015 (2015): 1–17. http://dx.doi.org/10.1155/2015/921370.
Full textLamarre, Olivier, Oliver Limoyo, Filip Marić, and Jonathan Kelly. "The Canadian Planetary Emulation Terrain Energy-Aware Rover Navigation Dataset." International Journal of Robotics Research 39, no. 6 (2020): 641–50. http://dx.doi.org/10.1177/0278364920908922.
Full textPortugal, David, Gonçalo Cabrita, Bruno D. Gouveia, David C. Santos, and José A. Prado. "Retraction notice to: “An autonomous all terrain robotic system for field demining missions” [Robot. Auton. Syst. 70 (2015) 126–144]." Robotics and Autonomous Systems 77 (March 2016): 76. http://dx.doi.org/10.1016/j.robot.2015.11.005.
Full text