Journal articles on the topic 'All-vanadium redox flow batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'All-vanadium redox flow batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Tempelman, C. H. L., J. F. Jacobs, R. M. Balzer, and V. Degirmenci. "Membranes for all vanadium redox flow batteries." Journal of Energy Storage 32 (December 2020): 101754. http://dx.doi.org/10.1016/j.est.2020.101754.
Full textPark, Minjoon, Jaechan Ryu, and Jaephil Cho. "Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries." Chemistry - An Asian Journal 10, no. 10 (2015): 2096–110. http://dx.doi.org/10.1002/asia.201500238.
Full textUlaganathan, Mani, Vanchiappan Aravindan, Qingyu Yan, Srinivasan Madhavi, Maria Skyllas-Kazacos, and Tuti Mariana Lim. "Recent Advancements in All-Vanadium Redox Flow Batteries." Advanced Materials Interfaces 3, no. 1 (2015): 1500309. http://dx.doi.org/10.1002/admi.201500309.
Full textWittman, Reed M., and Samantha Macchi. "(Invited) Lessons from Vanadium Flow Batteries for Non-Vanadium Flow Batteries." ECS Meeting Abstracts MA2025-01, no. 45 (2025): 2367. https://doi.org/10.1149/ma2025-01452367mtgabs.
Full textClemente, Alejandro, and Ramon Costa-Castelló. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control." Energies 13, no. 17 (2020): 4514. http://dx.doi.org/10.3390/en13174514.
Full textChoi, Chanyong, Hyungjun Noh, Soohyun Kim, et al. "Understanding the redox reaction mechanism of vanadium electrolytes in all-vanadium redox flow batteries." Journal of Energy Storage 21 (February 2019): 321–27. http://dx.doi.org/10.1016/j.est.2018.11.002.
Full textLangner, J., J. Melke, H. Ehrenberg, and C. Roth. "Determination of Overpotentials in All Vanadium Redox Flow Batteries." ECS Transactions 58, no. 37 (2014): 1–7. http://dx.doi.org/10.1149/05837.0001ecst.
Full textOh, Kyeongmin, Milad Moazzam, Geonhui Gwak, and Hyunchul Ju. "Water crossover phenomena in all-vanadium redox flow batteries." Electrochimica Acta 297 (February 2019): 101–11. http://dx.doi.org/10.1016/j.electacta.2018.11.151.
Full textKim, Soowhan, M. Vijayakumar, Wei Wang, et al. "Chloride supporting electrolytes for all-vanadium redox flow batteries." Physical Chemistry Chemical Physics 13, no. 40 (2011): 18186. http://dx.doi.org/10.1039/c1cp22638j.
Full textAaron, Doug, Zhijiang Tang, Alexander B. Papandrew, and Thomas A. Zawodzinski. "Polarization curve analysis of all-vanadium redox flow batteries." Journal of Applied Electrochemistry 41, no. 10 (2011): 1175–82. http://dx.doi.org/10.1007/s10800-011-0335-7.
Full textJuarez-Robles, Daniel, Taina Rauhala, and Judith Jeevarajan. "Exploring the Safety Aspects of Redox Flow Batteries." ECS Meeting Abstracts MA2022-02, no. 1 (2022): 44. http://dx.doi.org/10.1149/ma2022-02144mtgabs.
Full textPahlevaninezhad, Maedeh, Ashutosh Kumar Singh, Thomas Storwick, et al. "An Advanced Composite Membrane for the All-Vanadium Redox Flow Battery." ECS Meeting Abstracts MA2022-01, no. 3 (2022): 466. http://dx.doi.org/10.1149/ma2022-013466mtgabs.
Full textDoan, The Nam Long, Tuan K. A. Hoang, and P. Chen. "Recent development of polymer membranes as separators for all-vanadium redox flow batteries." RSC Advances 5, no. 89 (2015): 72805–15. http://dx.doi.org/10.1039/c5ra05914c.
Full textWon, Seongyeon, Kyeongmin Oh, and Hyunchul Ju. "Numerical analysis of vanadium crossover effects in all-vanadium redox flow batteries." Electrochimica Acta 177 (September 2015): 310–20. http://dx.doi.org/10.1016/j.electacta.2015.01.166.
Full textStonawski, Julian, Simon Thiele, and Jochen Alfred Kerres. "Novel Anion-Exchange Blend Membranes Comprised of a Commercially Available & Water-Soluble Ionomer for All-Vanadium Redox Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 35 (2022): 1408. http://dx.doi.org/10.1149/ma2022-01351408mtgabs.
Full textSodiq, Ahmed, Lagnamayee Mohapatra, Fathima Fasmin, et al. "Black pearl carbon as a catalyst for all-vanadium redox flow batteries." Chemical Communications 55, no. 69 (2019): 10249–52. http://dx.doi.org/10.1039/c9cc03640g.
Full textGerber, Fischer, Pinkwart, and Tübke. "Segmented Printed Circuit Board Electrode for Locally-resolved Current Density Measurements in All-Vanadium Redox Flow Batteries." Batteries 5, no. 2 (2019): 38. http://dx.doi.org/10.3390/batteries5020038.
Full textLee, Chi-Yuan, Chin-Lung Hsieh, Chia-Hung Chen, Yen-Pu Huang, Chong-An Jiang, and Pei-Chi Wu. "A Flexible 5-In-1 Microsensor for Internal Microscopic Diagnosis of Vanadium Redox Flow Battery Charging Process." Sensors 19, no. 5 (2019): 1030. http://dx.doi.org/10.3390/s19051030.
Full textDüerkop, Dennis, Hartmut Widdecke, Carsten Schilde, Ulrich Kunz, and Achim Schmiemann. "Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review." Membranes 11, no. 3 (2021): 214. http://dx.doi.org/10.3390/membranes11030214.
Full textAaron, D., C. N. Sun, M. Bright, A. B. Papandrew, M. M. Mench, and T. A. Zawodzinski. "In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries." ECS Electrochemistry Letters 2, no. 3 (2013): A29—A31. http://dx.doi.org/10.1149/2.001303eel.
Full textAl-Yasiri, Mohammed, and Jonghyun Park. "Study on Channel Geometry of All-Vanadium Redox Flow Batteries." Journal of The Electrochemical Society 164, no. 9 (2017): A1970—A1982. http://dx.doi.org/10.1149/2.0861709jes.
Full textPark, Minjoon, Jaechan Ryu, and Jaephil Cho. "ChemInform Abstract: Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries." ChemInform 46, no. 46 (2015): no. http://dx.doi.org/10.1002/chin.201546222.
Full textMehboob, Sheeraz, Asad Mehmood, Ju-Young Lee, et al. "Excellent electrocatalytic effects of tin through in situ electrodeposition on the performance of all-vanadium redox flow batteries." Journal of Materials Chemistry A 5, no. 33 (2017): 17388–400. http://dx.doi.org/10.1039/c7ta05657e.
Full textHuang, Qian, Chaojie Song, Alasdair Crawford, et al. "An ultra-stable reference electrode for scaled all-vanadium redox flow batteries." RSC Advances 12, no. 50 (2022): 32173–84. http://dx.doi.org/10.1039/d2ra05781f.
Full textWu, Xiongwei, Jun Liu, Xiaojuan Xiang, Jie Zhang, Junping Hu, and Yuping Wu. "Electrolytes for vanadium redox flow batteries." Pure and Applied Chemistry 86, no. 5 (2014): 661–69. http://dx.doi.org/10.1515/pac-2013-1213.
Full textZhang, Feifei, Songpeng Huang, Xun Wang, Chuankun Jia, Yonghua Du, and Qing Wang. "Redox-targeted catalysis for vanadium redox-flow batteries." Nano Energy 52 (October 2018): 292–99. http://dx.doi.org/10.1016/j.nanoen.2018.07.058.
Full textMcArdle, Sophie, Holger Fiedler, Jérôme Leveneur, John Kennedy, and Aaron Timothy Marshall. "Ion Beam Implantation of Graphite Felt for Redox Flow Batteries: Role of Defects Versus Nitrogen Groups." ECS Meeting Abstracts MA2024-02, no. 58 (2024): 3910. https://doi.org/10.1149/ma2024-02583910mtgabs.
Full textKim, Dong Kyu, Sang Jun Yoon, Jaeho Lee, and Sangwon Kim. "Parametric study and flow rate optimization of all-vanadium redox flow batteries." Applied Energy 228 (October 2018): 891–901. http://dx.doi.org/10.1016/j.apenergy.2018.06.094.
Full textRashitov, Ilia, Aleksandr Voropay, Grigoriy Tsepilov, et al. "Vanadium Redox Flow Battery Stack Balancing to Increase Depth of Discharge Using Forced Flow Attenuation." Batteries 9, no. 9 (2023): 464. http://dx.doi.org/10.3390/batteries9090464.
Full textChaurasia, Shabdiki B., Sundar Rajan Aravamuthan, Connor S. Sullivan, Michael B. Ross, and Ertan Agar. "Green Hydrogen Production Using Manganese – Vanadium Redox Flow Batteries." ECS Meeting Abstracts MA2024-01, no. 3 (2024): 579. http://dx.doi.org/10.1149/ma2024-013579mtgabs.
Full textHuang, Yuqing, Jia Huo, Shuo Dou, Kui Hu, and Shuangyin Wang. "Graphitic C3N4as a powerful catalyst for all-vanadium redox flow batteries." RSC Advances 6, no. 70 (2016): 66368–72. http://dx.doi.org/10.1039/c6ra11381h.
Full textCaiado, Ashley A., Shabdiki B. Chaurasia, Aaron Roy, Murat Inalpolat, and Ertan Agar. "Advancing Flow Battery Performance: Binder-Coated Carbon Cloth Electrodes Guided by Machine Learning Insights." ECS Meeting Abstracts MA2025-01, no. 4 (2025): 486. https://doi.org/10.1149/ma2025-014486mtgabs.
Full textKim, Ki Jae, Min-Sik Park, Jae-Hun Kim, et al. "Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries." Chemical Communications 48, no. 44 (2012): 5455. http://dx.doi.org/10.1039/c2cc31433a.
Full textCui, Xumei, Guigang Zhang, Xiaoe Chen, Bingxue Hou, Xuefeng Zhang, and Dejun Lan. "Purification of V2O5and its application in all-vanadium redox flow batteries." Materials Research Express 6, no. 8 (2019): 085552. http://dx.doi.org/10.1088/2053-1591/ab27e4.
Full textHsieh, Wen-Yen, Chih-Hsing Leu, Chun-Hsing Wu, and Yong-Song Chen. "Measurement of local current density of all-vanadium redox flow batteries." Journal of Power Sources 271 (December 2014): 245–51. http://dx.doi.org/10.1016/j.jpowsour.2014.06.081.
Full textKumtepe, Alihan, Cigdem Tuc Altaf, Nazire Simay Sahsuvar, et al. "Indium Sulfide Based Photoelectrodes for All-Vanadium Photoelectrochemical Redox Flow Batteries." ACS Applied Energy Materials 3, no. 4 (2020): 3127–33. http://dx.doi.org/10.1021/acsaem.9b02034.
Full textOh, Kyeongmin, Haneul Yoo, Johan Ko, Seongyeon Won, and Hyunchul Ju. "Three-dimensional, transient, nonisothermal model of all-vanadium redox flow batteries." Energy 81 (March 2015): 3–14. http://dx.doi.org/10.1016/j.energy.2014.05.020.
Full textDi Noto, Vito, Keti Vezzu, Giovanni Crivellaro, et al. "(Keynote) A General Electrochemical Formalism for Vanadium Redox Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 48 (2022): 2005. http://dx.doi.org/10.1149/ma2022-01482005mtgabs.
Full textRümmler, Stefan, Matthias Steimecke, Sabine Schimpf, Mark Hartmann, Stefan Förster, and Michael Bron. "Highly Graphitic, Mesoporous Carbon Materials as Electrocatalysts for Vanadium Redox Reactions in All-Vanadium Redox-Flow Batteries." Journal of The Electrochemical Society 165, no. 11 (2018): A2510—A2518. http://dx.doi.org/10.1149/2.1251810jes.
Full textEl Diwany, Farah A., Basant A. Ali, Ehab N. El Sawy, and Nageh K. Allam. "Fullerene C76 as a novel electrocatalyst for VO2+/VO2+ and chlorine evolution inhibitor in all-vanadium redox flow batteries." Chemical Communications 56, no. 55 (2020): 7569–72. http://dx.doi.org/10.1039/d0cc03544k.
Full textHuang, Peng, Wei Ling, Hang Sheng, et al. "Heteroatom-doped electrodes for all-vanadium redox flow batteries with ultralong lifespan." Journal of Materials Chemistry A 6, no. 1 (2018): 41–44. http://dx.doi.org/10.1039/c7ta07358e.
Full textRoznyatovskaya, Nataliya, Jens Noack, Heiko Mild, et al. "Vanadium Electrolyte for All-Vanadium Redox-Flow Batteries: The Effect of the Counter Ion." Batteries 5, no. 1 (2019): 13. http://dx.doi.org/10.3390/batteries5010013.
Full textChen, C. L., H. K. Yeoh, and M. H. Chakrabarti. "One Dimensional Mathematical Modelling of the All-Vanadium and Vanadium/Oxygen Redox Flow Batteries." ECS Transactions 66, no. 10 (2015): 1–23. http://dx.doi.org/10.1149/06610.0001ecst.
Full textCarretero-González, Javier, Elizabeth Castillo-Martínez, and Michel Armand. "Highly water-soluble three-redox state organic dyes as bifunctional analytes." Energy & Environmental Science 9, no. 11 (2016): 3521–30. http://dx.doi.org/10.1039/c6ee01883a.
Full textYu, Yibo. "Vanadium redox flow battery: Characteristics and application." Applied and Computational Engineering 58, no. 1 (2024): 267–73. http://dx.doi.org/10.54254/2755-2721/58/20240732.
Full textBekker, Eric Botha, Daniel J. Holland, and Aaron Timothy Marshall. "Electrical Resistive Tomography to Analyse the Flow Behaviour in Redox Flow Batteries." ECS Meeting Abstracts MA2022-01, no. 48 (2022): 2016. http://dx.doi.org/10.1149/ma2022-01482016mtgabs.
Full textRashitov, Ilia, Aleksandr Voropay, Grigoriy Tsepilov, et al. "Study of 10 kW Vanadium Flow Battery Discharge Characteristics at Different Load Powers." Batteries 10, no. 6 (2024): 175. http://dx.doi.org/10.3390/batteries10060175.
Full textStonawski, Julian, Simon Thiele, and Jochen Alfred Kerres. "Novel Ion-Exchange (Blend)-Membranes Based on Free Amines for All-Vanadium Redox Flow Batteries." ECS Meeting Abstracts MA2023-01, no. 38 (2023): 2278. http://dx.doi.org/10.1149/ma2023-01382278mtgabs.
Full textChoi, So-Won, Sang-Ho Cha, and Tae-Ho Kim. "Nanostructured Membranes for Vanadium Redox Flow Batteries." Nanoscience &Nanotechnology-Asia 5, no. 2 (2015): 109–29. http://dx.doi.org/10.2174/2210681205666150903213628.
Full textNoack, Jens N., Lorenz Vorhauser, Karsten Pinkwart, and Jens Tuebke. "Aging Studies of Vanadium Redox Flow Batteries." ECS Transactions 33, no. 39 (2019): 3–9. http://dx.doi.org/10.1149/1.3589916.
Full text