Academic literature on the topic 'Allocation de Dirichlet latente (LDA)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Allocation de Dirichlet latente (LDA).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Allocation de Dirichlet latente (LDA)"
Guo, Yunyan, and Jianzhong Li. "Distributed Latent Dirichlet Allocation on Streams." ACM Transactions on Knowledge Discovery from Data 16, no. 1 (July 3, 2021): 1–20. http://dx.doi.org/10.1145/3451528.
Full textGarg, Mohit, and Priya Rangra. "Bibliometric Analysis of Latent Dirichlet Allocation." DESIDOC Journal of Library & Information Technology 42, no. 2 (February 28, 2022): 105–13. http://dx.doi.org/10.14429/djlit.42.2.17307.
Full textKim, Anastasiia, Sanna Sevanto, Eric R. Moore, and Nicholas Lubbers. "Latent Dirichlet Allocation modeling of environmental microbiomes." PLOS Computational Biology 19, no. 6 (June 8, 2023): e1011075. http://dx.doi.org/10.1371/journal.pcbi.1011075.
Full textZhou, Qi, Haipeng Chen, Yitao Zheng, and Zhen Wang. "EvaLDA: Efficient Evasion Attacks Towards Latent Dirichlet Allocation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 16 (May 18, 2021): 14602–11. http://dx.doi.org/10.1609/aaai.v35i16.17716.
Full textChristy, A., Anto Praveena, and Jany Shabu. "A Hybrid Model for Topic Modeling Using Latent Dirichlet Allocation and Feature Selection Method." Journal of Computational and Theoretical Nanoscience 16, no. 8 (August 1, 2019): 3367–71. http://dx.doi.org/10.1166/jctn.2019.8234.
Full textFernanda, Jerhi Wahyu. "PEMODELAN PERSEPSI PEMBELAJARAN ONLINE MENGGUNAKAN LATENT DIRICHLET ALLOCATION." Jurnal Statistika Universitas Muhammadiyah Semarang 9, no. 2 (December 31, 2021): 79. http://dx.doi.org/10.26714/jsunimus.9.2.2021.79-85.
Full textYuan, Ling, JiaLi Bin, YinZhen Wei, Fei Huang, XiaoFei Hu, and Min Tan. "Big Data Aspect-Based Opinion Mining Using the SLDA and HME-LDA Models." Wireless Communications and Mobile Computing 2020 (November 18, 2020): 1–19. http://dx.doi.org/10.1155/2020/8869385.
Full textOgundare, A. O., A. U. Saleh, O. A. James, E. E. Ajayi, and S. Gostoji. "Performance evaluation of Latent Dirichlet Allocation on legal documents." Applied and Computational Engineering 52, no. 1 (March 27, 2024): 96–101. http://dx.doi.org/10.54254/2755-2721/52/20241322.
Full textSyed, Shaheen, and Marco Spruit. "Exploring Symmetrical and Asymmetrical Dirichlet Priors for Latent Dirichlet Allocation." International Journal of Semantic Computing 12, no. 03 (September 2018): 399–423. http://dx.doi.org/10.1142/s1793351x18400184.
Full textOhmura, Masahiro, Koh Kakusho, and Takeshi Okadome. "Tweet Sentiment Analysis with Latent Dirichlet Allocation." International Journal of Information Retrieval Research 4, no. 3 (July 2014): 66–79. http://dx.doi.org/10.4018/ijirr.2014070105.
Full textDissertations / Theses on the topic "Allocation de Dirichlet latente (LDA)"
Ponweiser, Martin. "Latent Dirichlet Allocation in R." WU Vienna University of Economics and Business, 2012. http://epub.wu.ac.at/3558/1/main.pdf.
Full textSeries: Theses / Institute for Statistics and Mathematics
Lindgren, Jennifer. "Evaluating Hierarchical LDA Topic Models for Article Categorization." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-167080.
Full textJaradat, Shatha. "OLLDA: Dynamic and Scalable Topic Modelling for Twitter : AN ONLINE SUPERVISED LATENT DIRICHLET ALLOCATION ALGORITHM." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-177535.
Full textTillhandahålla högkvalitativa ämnen slutsats i dagens stora och dynamiska korpusar, såsom Twitter, är en utmanande uppgift. Detta är särskilt utmanande med tanke på att innehållet i den här miljön innehåller korta texter och många förkortningar. Projektet föreslår en förbättring med en populär online ämnen modellering algoritm för Latent Dirichlet Tilldelning (LDA), genom att införliva tillsyn för att göra den lämplig för Twitter sammanhang. Denna förbättring motiveras av behovet av en enda algoritm som uppnår båda målen: analysera stora mängder av dokument, inklusive nya dokument som anländer i en bäck, och samtidigt uppnå hög kvalitet på ämnen "upptäckt i speciella fall miljöer, till exempel som Twitter. Den föreslagna algoritmen är en kombination av en online-algoritm för LDA och en övervakad variant av LDA - Labeled LDA. Prestanda och kvalitet av den föreslagna algoritmen jämförs med dessa två algoritmer. Resultaten visar att den föreslagna algoritmen har visat bättre prestanda och kvalitet i jämförelse med den övervakade varianten av LDA, och det uppnådde bättre resultat i fråga om kvalitet i jämförelse med den online-algoritmen. Dessa förbättringar gör vår algoritm till ett attraktivt alternativ när de tillämpas på dynamiska miljöer, som Twitter. En miljö för att analysera och märkning uppgifter är utformad för att förbereda dataset innan du utför experimenten. Möjliga användningsområden för den föreslagna algoritmen är tweets rekommendation och trender upptäckt.
Mungre, Surbhi. "LDA-based dimensionality reduction and domain adaptation with application to DNA sequence classification." Thesis, Kansas State University, 2011. http://hdl.handle.net/2097/8846.
Full textDepartment of Computing and Information Sciences
Doina Caragea
Several computational biology and bioinformatics problems involve DNA sequence classification using supervised machine learning algorithms. The performance of these algorithms is largely dependent on the availability of labeled data and the approach used to represent DNA sequences as {\it feature vectors}. For many organisms, the labeled DNA data is scarce, while the unlabeled data is easily available. However, for a small number of well-studied model organisms, large amounts of labeled data are available. This calls for {\it domain adaptation} approaches, which can transfer knowledge from a {\it source} domain, for which labeled data is available, to a {\it target} domain, for which large amounts of unlabeled data are available. Intuitively, one approach to domain adaptation can be obtained by extracting and representing the features that the source domain and the target domain sequences share. \emph{Latent Dirichlet Allocation} (LDA) is an unsupervised dimensionality reduction technique that has been successfully used to generate features for sequence data such as text. In this work, we explore the use of LDA for generating predictive DNA sequence features, that can be used in both supervised and domain adaptation frameworks. More precisely, we propose two dimensionality reduction approaches, LDA Words (LDAW) and LDA Distribution (LDAD) for DNA sequences. LDA is a probabilistic model, which is generative in nature, and is used to model collections of discrete data such as document collections. For our problem, a sequence is considered to be a ``document" and k-mers obtained from a sequence are ``document words". We use LDA to model our sequence collection. Given the LDA model, each document can be represented as a distribution over topics (where a topic can be seen as a distribution over k-mers). In the LDAW method, we use the top k-mers in each topic as our features (i.e., k-mers with the highest probability); while in the LDAD method, we use the topic distribution to represent a document as a feature vector. We study LDA-based dimensionality reduction approaches for both supervised DNA sequence classification, as well as domain adaptation approaches. We apply the proposed approaches on the splice site predication problem, which is an important DNA sequence classification problem in the context of genome annotation. In the supervised learning framework, we study the effectiveness of LDAW and LDAD methods by comparing them with a traditional dimensionality reduction technique based on the information gain criterion. In the domain adaptation framework, we study the effect of increasing the evolutionary distances between the source and target organisms, and the effect of using different weights when combining labeled data from the source domain and with labeled data from the target domain. Experimental results show that LDA-based features can be successfully used to perform dimensionality reduction and domain adaptation for DNA sequence classification problems.
Harrysson, Mattias. "Neural probabilistic topic modeling of short and messy text." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189532.
Full textAtt utforska enorma mängder användargenererad data med ämnen postulerar ett nytt sätt att hitta användbar information. Ämnena antas vara “gömda” och måste “avtäckas” med statistiska metoder såsom ämnesmodellering. Dock är användargenererad data generellt sätt kort och stökig t.ex. informella chattkonversationer, mycket slangord och “brus” som kan vara URL:er eller andra former av pseudo-text. Denna typ av data är svår att bearbeta för de flesta algoritmer i naturligt språk, inklusive ämnesmodellering. Det här arbetet har försökt hitta den metod som objektivt ger dem bättre ämnena ur kort och stökig text i en jämförande studie. De metoder som jämfördes var latent Dirichlet allocation (LDA), Re-organized LDA (RO-LDA), Gaussian Mixture Model (GMM) with distributed representation of words samt en egen metod med namnet Neural Probabilistic Topic Modeling (NPTM) baserat på tidigare arbeten. Den slutsats som kan dras är att NPTM har en tendens att ge bättre ämnen på kort och stökig text jämfört med LDA och RO-LDA. GMM lyckades inte ge några meningsfulla resultat alls. Resultaten är mindre bevisande eftersom NPTM har problem med långa körtider vilket innebär att tillräckligt många stickprov inte kunde erhållas för ett statistiskt test.
Chen, Yuxin. "Apprentissage interactif de mots et d'objets pour un robot humanoïde." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLY003/document.
Full textFuture applications of robotics, especially personal service robots, will require continuous adaptability to the environment, and particularly the ability to recognize new objects and learn new words through interaction with humans. Though having made tremendous progress by using machine learning, current computational models for object detection and representation still rely heavily on good training data and ideal learning supervision. In contrast, two year old children have an impressive ability to learn to recognize new objects and at the same time to learn the object names during interaction with adults and without precise supervision. Therefore, following the developmental robotics approach, we develop in the thesis learning approaches for objects, associating their names and corresponding features, inspired by the infants' capabilities, in particular, the ambiguous interaction with humans, inspired by the interaction that occurs between children and parents.The general idea is to use cross-situational learning (finding the common points between different presentations of an object or a feature) and to implement multi-modal concept discovery based on two latent topic discovery approaches : Non Negative Matrix Factorization (NMF) and Latent Dirichlet Association (LDA). Based on vision descriptors and sound/voice inputs, the proposed approaches will find the underlying regularities in the raw dataflow to produce sets of words and their associated visual meanings (eg. the name of an object and its shape, or a color adjective and its correspondence in images). We developed a complete approach based on these algorithms and compared their behavior in front of two sources of uncertainties: referential ambiguities, in situations where multiple words are given that describe multiple objects features; and linguistic ambiguities, in situations where keywords we intend to learn are merged in complete sentences. This thesis highlights the algorithmic solutions required to be able to perform efficient learning of these word-referent associations from data acquired in a simplified but realistic acquisition setup that made it possible to perform extensive simulations and preliminary experiments in real human-robot interactions. We also gave solutions for the automatic estimation of the number of topics for both NMF and LDA.We finally proposed two active learning strategies, Maximum Reconstruction Error Based Selection (MRES) and Confidence Based Exploration (CBE), to improve the quality and speed of incremental learning by letting the algorithms choose the next learning samples. We compared the behaviors produced by these algorithms and show their common points and differences with those of humans in similar learning situations
Johansson, Richard, and Heino Otto Engström. "Topic propagation over time in internet security conferences : Topic modeling as a tool to investigate trends for future research." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177748.
Full textChen, Yuxin. "Apprentissage interactif de mots et d'objets pour un robot humanoïde." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLY003.
Full textFuture applications of robotics, especially personal service robots, will require continuous adaptability to the environment, and particularly the ability to recognize new objects and learn new words through interaction with humans. Though having made tremendous progress by using machine learning, current computational models for object detection and representation still rely heavily on good training data and ideal learning supervision. In contrast, two year old children have an impressive ability to learn to recognize new objects and at the same time to learn the object names during interaction with adults and without precise supervision. Therefore, following the developmental robotics approach, we develop in the thesis learning approaches for objects, associating their names and corresponding features, inspired by the infants' capabilities, in particular, the ambiguous interaction with humans, inspired by the interaction that occurs between children and parents.The general idea is to use cross-situational learning (finding the common points between different presentations of an object or a feature) and to implement multi-modal concept discovery based on two latent topic discovery approaches : Non Negative Matrix Factorization (NMF) and Latent Dirichlet Association (LDA). Based on vision descriptors and sound/voice inputs, the proposed approaches will find the underlying regularities in the raw dataflow to produce sets of words and their associated visual meanings (eg. the name of an object and its shape, or a color adjective and its correspondence in images). We developed a complete approach based on these algorithms and compared their behavior in front of two sources of uncertainties: referential ambiguities, in situations where multiple words are given that describe multiple objects features; and linguistic ambiguities, in situations where keywords we intend to learn are merged in complete sentences. This thesis highlights the algorithmic solutions required to be able to perform efficient learning of these word-referent associations from data acquired in a simplified but realistic acquisition setup that made it possible to perform extensive simulations and preliminary experiments in real human-robot interactions. We also gave solutions for the automatic estimation of the number of topics for both NMF and LDA.We finally proposed two active learning strategies, Maximum Reconstruction Error Based Selection (MRES) and Confidence Based Exploration (CBE), to improve the quality and speed of incremental learning by letting the algorithms choose the next learning samples. We compared the behaviors produced by these algorithms and show their common points and differences with those of humans in similar learning situations
Ficapal, Vila Joan. "Anemone: a Visual Semantic Graph." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-252810.
Full textSemantiska grafer har använts för att optimera olika processer för naturlig språkbehandling samt för att förbättra sökoch informationsinhämtningsuppgifter. I de flesta fall har sådana semantiska grafer konstruerats genom övervakade maskininlärningsmetoder som förutsätter manuellt kurerade ontologier såsom Wikipedia eller liknande. I denna uppsats, som består av två delar, undersöker vi i första delen möjligheten att automatiskt generera en semantisk graf från ett ad hoc dataset bestående av 50 000 tidningsartiklar på ett helt oövervakat sätt. Användbarheten hos den visuella representationen av den resulterande grafen testas på 14 försökspersoner som utför grundläggande informationshämtningsuppgifter på en delmängd av artiklarna. Vår studie visar att vår funktionalitet är lönsam för att hitta och dokumentera likhet med varandra, och den visuella kartan som produceras av vår artefakt är visuellt användbar. I den andra delen utforskar vi möjligheten att identifiera entitetsrelationer på ett oövervakat sätt genom att använda abstraktiva djupa inlärningsmetoder för meningsomformulering. De omformulerade meningarna utvärderas kvalitativt med avseende på grammatisk korrekthet och meningsfullhet såsom detta uppfattas av 14 testpersoner. Vi utvärderar negativt resultaten av denna andra del, eftersom de inte har varit tillräckligt bra för att få någon definitiv slutsats, men har istället öppnat nya dörrar för att utforska.
Schneider, Bruno. "Visualização em multirresolução do fluxo de tópicos em coleções de texto." reponame:Repositório Institucional do FGV, 2014. http://hdl.handle.net/10438/11745.
Full textApproved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2014-05-13T12:56:21Z (GMT) No. of bitstreams: 1 dissertacao_bruno_schneider.pdf.pdf: 8019497 bytes, checksum: 70ff1fddb844b630666397e95c188672 (MD5)
Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2014-05-14T19:44:51Z (GMT) No. of bitstreams: 1 dissertacao_bruno_schneider.pdf.pdf: 8019497 bytes, checksum: 70ff1fddb844b630666397e95c188672 (MD5)
Made available in DSpace on 2014-05-14T19:45:33Z (GMT). No. of bitstreams: 1 dissertacao_bruno_schneider.pdf.pdf: 8019497 bytes, checksum: 70ff1fddb844b630666397e95c188672 (MD5) Previous issue date: 2014-03-21
The combined use of algorithms for topic discovery in document collections with topic flow visualization techniques allows the exploration of thematic patterns in long corpus. In this task, those patterns could be revealed through compact visual representations. This research has investigated the requirements for viewing data about the thematic composition of documents obtained through topic modeling - where datasets are sparse and has multi-attributes - at different levels of detail through the development of an own technique and the use of an open source library for data visualization, comparatively. About the studied problem of topic flow visualization, we observed the presence of conflicting requirements for data display in different resolutions, which led to detailed investigation on ways of manipulating and displaying this data. In this study, the hypothesis put forward was that the integrated use of more than one visualization technique according to the resolution of data expands the possibilities for exploitation of the object under study in relation to what would be obtained using only one method. The exhibition of the limits on the use of these techniques according to the resolution of data exploration is the main contribution of this work, in order to provide subsidies for the development of new applications.
O uso combinado de algoritmos para a descoberta de tópicos em coleções de documentos com técnicas orientadas à visualização da evolução daqueles tópicos no tempo permite a exploração de padrões temáticos em corpora extensos a partir de representações visuais compactas. A pesquisa em apresentação investigou os requisitos de visualização do dado sobre composição temática de documentos obtido através da modelagem de tópicos – o qual é esparso e possui multiatributos – em diferentes níveis de detalhe, através do desenvolvimento de uma técnica de visualização própria e pelo uso de uma biblioteca de código aberto para visualização de dados, de forma comparativa. Sobre o problema estudado de visualização do fluxo de tópicos, observou-se a presença de requisitos de visualização conflitantes para diferentes resoluções dos dados, o que levou à investigação detalhada das formas de manipulação e exibição daqueles. Dessa investigação, a hipótese defendida foi a de que o uso integrado de mais de uma técnica de visualização de acordo com a resolução do dado amplia as possibilidades de exploração do objeto em estudo em relação ao que seria obtido através de apenas uma técnica. A exibição dos limites no uso dessas técnicas de acordo com a resolução de exploração do dado é a principal contribuição desse trabalho, no intuito de dar subsídios ao desenvolvimento de novas aplicações.
Books on the topic "Allocation de Dirichlet latente (LDA)"
Jockers, Matthew L. Theme. University of Illinois Press, 2017. http://dx.doi.org/10.5406/illinois/9780252037528.003.0008.
Full textBook chapters on the topic "Allocation de Dirichlet latente (LDA)"
Bibyan, Ritu, Sameer Anand, and Ajay Jaiswal. "Latent Dirichlet Allocation (LDA) Based on Automated Bug Severity Prediction Model." In Proceedings of Data Analytics and Management, 363–77. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6289-8_31.
Full textHasan, Mahedi, Anichur Rahman, Md Razaul Karim, Md Saikat Islam Khan, and Md Jahidul Islam. "Normalized Approach to Find Optimal Number of Topics in Latent Dirichlet Allocation (LDA)." In Advances in Intelligent Systems and Computing, 341–54. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-33-4673-4_27.
Full textBalasubramanian, Sreejith, Supriya Kaitheri, Krishnadas Nanath, Sony Sreejith, and Cody Morris Paris. "Examining Post COVID-19 Tourist Concerns Using Sentiment Analysis and Topic Modeling." In Information and Communication Technologies in Tourism 2021, 564–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65785-7_54.
Full textHori, Kennichiro, Ibuki Yoshida, Miki Suzuki, Zhu Yiwen, and Yohei Kurata. "Emergence and Rapid Popularization of Paid Web-Conferencing-Application-Based Tours in Japan: An Analysis of Their Business Potential." In Information and Communication Technologies in Tourism 2022, 41–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94751-4_4.
Full textEvangelista, Adelia, Annalina Sarra, and Tonio Di Battista. "Students’ feedback on the digital ecosystem: a structural topic modeling approach." In Proceedings e report, 203–8. Florence: Firenze University Press and Genova University Press, 2023. http://dx.doi.org/10.36253/979-12-215-0106-3.36.
Full textVílchez-Román, Carlos, Farita Huamán-Delgado, and Sol Sanguinetti-Cordero. "Topic Modeling Applied to Business Research: A Latent Dirichlet Allocation (LDA)-Based Classification for Organization Studies." In Information Management and Big Data, 212–19. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11680-4_21.
Full textCalleo, Yuri, and Simone Di Zio. "Unsupervised spatial data mining for the development of future scenarios: a Covid-19 application." In Proceedings e report, 173–78. Florence: Firenze University Press, 2021. http://dx.doi.org/10.36253/978-88-5518-461-8.33.
Full textPon, Abisheka, C. Deisy, and P. Sharmila. "A Case-Study on Topic Modeling Approach with Latent Dirichlet Allocation (LDA) Model." In New Frontiers in Communication and Intelligent Systems, 291–99. Soft Computing Research Society, 2021. http://dx.doi.org/10.52458/978-81-95502-00-4-30.
Full textDaud, Ali, Jamal Ahmad Khan, Jamal Abdul Nasir, Rabeeh Ayaz Abbasi, Naif Radi Aljohani, and Jalal S. Alowibdi. "Latent Dirichlet Allocation and POS Tags Based Method for External Plagiarism Detection." In Scholarly Ethics and Publishing, 319–36. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8057-7.ch015.
Full textKeikhosrokiani, Pantea, Moussa Pourya Asl, Kah Em Chu, and Nur Ain Nasuha Anuar. "Artificial Intelligence Framework for Opinion Mining of Netizen Readers' Reviews of Arundhati Roy's The God of Small Things." In Advances in Computational Intelligence and Robotics, 68–92. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-6242-3.ch004.
Full textConference papers on the topic "Allocation de Dirichlet latente (LDA)"
Zhao, Fangyuan, Xuebin Ren, Shusen Yang, and Xinyu Yang. "On Privacy Protection of Latent Dirichlet Allocation Model Training." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/675.
Full text"Tutorial 2: Latent Dirichlet Allocation (LDA) by Abram Hindle." In 2014 IEEE 4th Workshop on Mining Unstructured Data (MUD). IEEE, 2014. http://dx.doi.org/10.1109/mud.2014.15.
Full textThornton, Adam, Brandon Meiners, and Donald Poole. "Latent Dirichlet Allocation (LDA) for Anomaly Detection in Avionics Networks." In 2020 IEEE/AIAA 39th Digital Avionics Systems Conference (DASC). IEEE, 2020. http://dx.doi.org/10.1109/dasc50938.2020.9256582.
Full textShakeel, Khadija, Ghulam Rasool Tahir, Irsha Tehseen, and Mubashir Ali. "A framework of Urdu topic modeling using latent dirichlet allocation (LDA)." In 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2018. http://dx.doi.org/10.1109/ccwc.2018.8301655.
Full textPrabhudesai, Kedar S., Boyla O. Mainsah, Leslie M. Collins, and Chandra S. Throckmorton. "Augmented Latent Dirichlet Allocation (Lda) Topic Model with Gaussian Mixture Topics." In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8462003.
Full textBasuki, Setio, Yufis Azhar, Agus Eko Minarno, Christian Sri Kusuma Aditya, Fauzi Dwi Setiawan Sumadi, and Ardiansah Ilham Ramadhan. "Detection of Reference Topics and Suggestions using Latent Dirichlet Allocation (LDA)." In 2019 12th International Conference on Information & Communication Technology and System (ICTS). IEEE, 2019. http://dx.doi.org/10.1109/icts.2019.8850993.
Full textGorro, Ken D., Glicerio A. Baguia, and Moustafa F. Ali. "An analysis of Disaster Risk Suggestions using Latent Dirichlet Allocation and Hierarchical Dirichlet Process (Nonparametric LDA)." In ICIT 2021: IoT and Smart City. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3512576.3512608.
Full textYoon, Young Seog, Junhee Lee, and Kwangroh Park. "Extracting Promising Topics on Smart Manufacturing Based on Latent Dirichlet Allocation (LDA)." In 2019 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2019. http://dx.doi.org/10.1109/ictc46691.2019.8939701.
Full textIshmael, Ontiretse, Etain Kiely, Cormac Quigley, and Donal McGinty. "Topic Modelling using Latent Dirichlet Allocation (LDA) and Analysis of Students Sentiments." In 2023 20th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2023. http://dx.doi.org/10.1109/jcsse58229.2023.10201965.
Full textHabibi, Muhammad, Adri Priadana, Andika Bayu Saputra, and Puji Winar Cahyo. "Topic Modelling of Germas Related Content on Instagram Using Latent Dirichlet Allocation (LDA)." In International Conference on Health and Medical Sciences (AHMS 2020). Paris, France: Atlantis Press, 2021. http://dx.doi.org/10.2991/ahsr.k.210127.060.
Full textReports on the topic "Allocation de Dirichlet latente (LDA)"
Moreno Pérez, Carlos, and Marco Minozzo. “Making Text Talk”: The Minutes of the Central Bank of Brazil and the Real Economy. Madrid: Banco de España, November 2022. http://dx.doi.org/10.53479/23646.
Full text