Contents
Academic literature on the topic 'Allocation de ressources (radiotéléphonie) – Modèles mathématiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Allocation de ressources (radiotéléphonie) – Modèles mathématiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Allocation de ressources (radiotéléphonie) – Modèles mathématiques"
Dirani, Mariana. "Resource allocation and son based radio resource management in cellular and wireless networks." Paris 6, 2011. http://www.theses.fr/2011PA066480.
Full textEcarot, Thibaud. "Efficient allocation for distributed and connected Cloud." Thesis, Evry, Institut national des télécommunications, 2016. http://www.theses.fr/2016TELE0017/document.
Full textThis thesis focuses on optimal and suboptimal allocation of cloud resources from infrastructure providers taking into account both the users or consumers and the providers interests in the mathematical modeling of this joint optimization problem. Compared to the state of the art that has so far remained provider centric, our algorithms optimize the dynamic allocation of cloud resources while taking into account the users and the providers objectives and requirements and consequently frees the users (or consumers) from provider lock in (providers’ business interests). Evolutionary algorithms are proposed to address this challenge and compared to the state of the art
Hachicha, Belghith Emna. "Supporting cloud resource allocation in configurable business process models." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLL007/document.
Full textOrganizations are recently more and more adopting Process-Aware Information Systems (PAIS) for managing their service-based processes using process models referred to as business process models. Motivated by adapting to the rapid changing business requirements and reducing maintenance costs, organizations are outsourcing their processes in an important infrastructure which is Cloud Computing. According to the NIST Institute, Cloud Computing is a model that enables providers sharing their computing resources (e.g., networks, applications, and storage) and users accessing them in convenient and on-demand way with a minimal management effort. In such a multi-tenant environment, using configurable process models allows a Cloud process provider to deliver a customizable process that can be configured by different tenants according to their needs.A business process could be specified from various perspectives such as the control-flow perspective, the organizational perspective, the resource perspective, etc. Several approaches have been correctly proposed at the level of the first perspectives, in particular the control-flow, i.e., the temporal ordering of the process activities. Nevertheless, the resource perspective, which is of equal importance, has been neglected and poorly operated. The management of the resource perspective especially the Cloud resource allocation in business processes is a current interesting topic that increasingly involves many researches in both academics and industry. The design and configuration of resources are undoubtedly sensitive and labor-intensive task. On the one hand, the resource perspective in process models is not explicitly defined. Although many proposals exist in the literature, they all targeted human resources rather than Cloud resources. On the other hand, despite of the fact that the concept of configurable process models is highly complementary to Cloud Computing, the way in how resources can be configured and integrated is hardly handled. The few proposals, which have been suggested on extending configuration to resources, do not cover required Cloud properties such as elasticity or multi-tenancy.To address these limitations, we propose an approach for supporting the design and configuration of Cloud resource Allocation in configurable business process models. We target to (1) define a unified and formal description for the resource perspective, (2) ensure a correct, free-of-conflict and optimized use of Cloud resource consumption, (3) assist process providers to design their configurable resource allocation in a fine-grained way to avoid complex and large results, and (4) optimize the selection of Cloud resources with respect to the requirements related to Cloud properties (elasticity and shareability) and QoS properties.To do so, we first suggest a semantic framework for a semantically-enriched resource description in business processes aiming at formalizing the consumed Cloud resources using a shared knowledge base. Then, we build upon social business processes to provide strategies in order to ensure a controlled resource allocation without conflicts in terms of resources. Next, we propose a novel approach that extends configurable process models to permit a configurable Cloud resource allocation. Our purpose is to shift the Cloud resource allocation from the tenant side to the Cloud process provider side for a centralized resource management. Afterwards, we propose genetic-based approaches that aim at selecting optimal resource configuration in an energy efficient manner and to improve non-functional properties.In order to show the effectiveness of our proposals, we concretely developed (i) a set of proof of concepts, as a validation part, to assist the design of process models and populate a knowledge base of heterogeneous process models with Cloud resources, and (ii) performed experiments on real process models from large datasets
Aslan, Fatma. "Essays on Allocation Procedures of Indivisibles." Thesis, Paris, CNAM, 2019. http://www.theses.fr/2019CNAM1240/document.
Full textThis thesis focuses on the allocation of indivisible goods in presence of externality in individual preferences. This externality creates a difficulty with collecting full information about preferences. Therefore, conducting a normative analysis of allocation mechanisms requires assumptions on how reported preferences can be extended to preferences over outcomes. This approach is in line with the literature on preference domain restriction well-known in Social Choice theory. The first three chapters focus on Shapley-Scarf markets where trades are organized among coalitions. Coalitional trade generates externalities in individual valuations of allocations. Chapters 1 and 2 investigate domain restrictions ensuring the existence of various types of competitive equilibrium. Chapter 3 endows the set of goods with a geographical structure and considers distance to partners as a source of externality in preference. We identify domains of preference extensions which guarantee the existence of various types of core allocations. Chapter 4 focuses the case of pure public indivisible goods, which is formally identical to choosing a committee formed by several members, each selected from a specific set. We characterize preference domains over committees for which a well-defined seat-wise choice procedure based on majority voting is consistent with choosing a committee at once from majority voting
Yongsiriwit, Karn. "Modeling and mining business process variants in cloud environments." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLL002/document.
Full textMore and more organizations are adopting cloud-based Process-Aware Information Systems (PAIS) to manage and execute processes in the cloud as an environment to optimally share and deploy their applications. This is especially true for large organizations having branches operating in different regions with a considerable amount of similar processes. Such organizations need to support many variants of the same process due to their branches' local culture, regulations, etc. However, developing new process variant from scratch is error-prone and time consuming. Motivated by the "Design by Reuse" paradigm, branches may collaborate to develop new process variants by learning from their similar processes. These processes are often heterogeneous which prevents an easy and dynamic interoperability between different branches. A process variant is an adjustment of a process model in order to flexibly adapt to specific needs. Many researches in both academics and industry are aiming to facilitate the design of process variants. Several approaches have been developed to assist process designers by searching for similar business process models or using reference models. However, these approaches are cumbersome, time-consuming and error-prone. Likewise, such approaches recommend entire process models which are not handy for process designers who need to adjust a specific part of a process model. In fact, process designers can better develop process variants having an approach that recommends a well-selected set of activities from a process model, referred to as process fragment. Large organizations with multiple branches execute BP variants in the cloud as environment to optimally deploy and share common resources. However, these cloud resources may be described using different cloud resources description standards which prevent the interoperability between different branches. In this thesis, we address the above shortcomings by proposing an ontology-based approach to semantically populate a common knowledge base of processes and cloud resources and thus enable interoperability between organization's branches. We construct our knowledge base built by extending existing ontologies. We thereafter propose an approach to mine such knowledge base to assist the development of BP variants. Furthermore, we adopt a genetic algorithm to optimally allocate cloud resources to BPs. To validate our approach, we develop two proof of concepts and perform experiments on real datasets. Experimental results show that our approach is feasible and accurate in real use-cases
Abu, Zanat Hanal. "Modèles d'équité pour l'amélioration de la qualité de service dans les réseaux sans fil en mode ad-hoc." Phd thesis, Ecole Centrale de Lille, 2009. http://tel.archives-ouvertes.fr/tel-00579655.
Full textBen, Cheikh Henda. "Evaluation et optimisation de la performance des flots dans les réseaux stochastiques à partage de bande passante." Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0013/document.
Full textWe study queueing-theoretic models for the performance evaluation and optimization of bandwidth-sharing networks. We first propose simple and explicit approximations for the main performance metrics of elastic flows in bandwidth-sharing networks operating under balanced fairness. Assuming that an admission control mechanism is used to limit the number of simultaneous streaming flows, we then study the competition for bandwidth between elastic and streaming flows and propose performance approximations based on a quasi-stationary assumption. Simulation results show the good accuracy of the proposed approximations. We then investigate the energy-delay tradeoff in bandwidth-sharing networks in which nodes can regulate their speed according to the load of the system. Assuming that the network is initially congested, we investigate the rate allocation to the classes that drains out the network with minimum total energy and delay cost. We formulate this optimal resource allocation problem as a Markov decision process which proves tobe both analytically and computationally challenging. We thus propose to solve this stochastic problem using a deterministic fluid approximation. For a single link sharedby an arbitrary number of classes, we show that the optimal-fluid solution follows thewell-known cμ rule and give an explicit expression for the optimal speed. Finally, we consider cloud computing platforms under the SaaS model. Assuming a fair share of the capacity of physical resources between virtual machines executed concurrently, we propose simple queueing models for predicting response times of applications.The proposed models explicitly take into account the different behaviors of the different classes of applications (interactive, CPU-intensive or permanent applications). Experiments on a real virtualized platform show that the mathematical models allow to predict response times accurately