Academic literature on the topic 'Allotropes du carbone'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Allotropes du carbone.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Allotropes du carbone"

1

Pezoldt, Jörg. "Formation of Different Carbon Phases on SiC." Materials Science Forum 615-617 (March 2009): 227–30. http://dx.doi.org/10.4028/www.scientific.net/msf.615-617.227.

Full text
Abstract:
Carbon is able to crystallise in different allotrope modifications. They mainly differ in the dominating bindings formed in dependence on the hybridization sp, sp2 and sp3 of the carbon atoms. The present work demonstrates the formation of two different forms of car¬bon allotropes by heating both polar surfaces of on axis 6H-SiC(0001) and 6H-SiC(000 ) crystals to temperatures above 1600°C. In consequence of the structural evolution graphite-like (sp2-hybridised) and carbine-like (sp-hybridised) allotropic carbon modifications were obtained.
APA, Harvard, Vancouver, ISO, and other styles
2

Yap, Stephanie Hui Kit, Kok Ken Chan, Swee Chuan Tjin, and Ken-Tye Yong. "Carbon Allotrope-Based Optical Fibers for Environmental and Biological Sensing: A Review." Sensors 20, no. 7 (April 5, 2020): 2046. http://dx.doi.org/10.3390/s20072046.

Full text
Abstract:
Recently, carbon allotropes have received tremendous research interest and paved a new avenue for optical fiber sensing technology. Carbon allotropes exhibit unique sensing properties such as large surface to volume ratios, biocompatibility, and they can serve as molecule enrichers. Meanwhile, optical fibers possess a high degree of surface modification versatility that enables the incorporation of carbon allotropes as the functional coating for a wide range of detection tasks. Moreover, the combination of carbon allotropes and optical fibers also yields high sensitivity and specificity to monitor target molecules in the vicinity of the nanocoating surface. In this review, the development of carbon allotropes-based optical fiber sensors is studied. The first section provides an overview of four different types of carbon allotropes, including carbon nanotubes, carbon dots, graphene, and nanodiamonds. The second section discusses the synthesis approaches used to prepare these carbon allotropes, followed by some deposition techniques to functionalize the surface of the optical fiber, and the associated sensing mechanisms. Numerous applications that have benefitted from carbon allotrope-based optical fiber sensors such as temperature, strain, volatile organic compounds and biosensing applications are reviewed and summarized. Finally, a concluding section highlighting the technological deficiencies, challenges, and suggestions to overcome them is presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Rickhaus, Michel, Marcel Mayor, and Michal Juríček. "Chirality in curved polyaromatic systems." Chemical Society Reviews 46, no. 6 (2017): 1643–60. http://dx.doi.org/10.1039/c6cs00623j.

Full text
Abstract:
Chiral non-planar polyaromatic systems that display zero, positive or negative Gaussian curvature are analysed and their potential to ‘encode’ chirality of larger sp2-carbon allotropes is evaluated. Shown is a hypothetical peanut-shaped carbon allotrope, where helical chirality results from the interplay of various curvature types.
APA, Harvard, Vancouver, ISO, and other styles
4

Pan, Bitao, Jun Xiao, Jiling Li, Pu Liu, Chengxin Wang, and Guowei Yang. "Carbyne with finite length: The one-dimensional sp carbon." Science Advances 1, no. 9 (October 2015): e1500857. http://dx.doi.org/10.1126/sciadv.1500857.

Full text
Abstract:
Carbyne is the one-dimensional allotrope of carbon composed of sp-hybridized carbon atoms. Definitive evidence for carbyne has remained elusive despite its synthesis and preparation in the laboratory. Given the remarkable technological breakthroughs offered by other allotropes of carbon, including diamond, graphite, fullerenes, carbon nanotubes, and graphene, interest in carbyne and its unusual potential properties remains intense. We report the first synthesis of carbyne with finite length, which is clearly composed of alternating single bonds and triple bonds, using a novel process involving laser ablation in liquid. Spectroscopic analyses confirm that the product is the structure of sp hybridization with alternating carbon-carbon single bonds and triple bonds and capped by hydrogen. We observe purple-blue fluorescence emissions from the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of carbyne. Condensed-phase carbyne crystals have a hexagonal lattice and resemble the white crystalline powder produced by drying a carbyne solution. We also establish that the combination of gold and alcohol is crucial to carbyne formation because carbon-hydrogen bonds can be cleaved with the help of gold catalysts under the favorable thermodynamic environment provided by laser ablation in liquid and because the unique configuration of two carbon atoms in an alcohol molecule matches the elementary entity of carbyne. This laboratory synthesis of carbyne will enable the exploration of its properties and applications.
APA, Harvard, Vancouver, ISO, and other styles
5

JOYA, M. R., A. R. ZANATTA, and J. BARBA-ORTEGA. "RAMAN SPECTROSCOPY OF TEMPERATURE INDUCED EFFECTS IN FOUR CARBON ALLOTROPES." Modern Physics Letters B 27, no. 28 (October 24, 2013): 1350203. http://dx.doi.org/10.1142/s0217984913502035.

Full text
Abstract:
In this paper, we report strong variations in the Raman spectra of different carbon allotropes samples, for temperatures ranging from 83 K to 1123 K. The temperature dependence of D and G peak frequencies in the Raman spectrum of diamond, graphite, graphene, and carbon nanoparticles (CNPs) with 20 nm dot-size were investigated. These effects caused by temperature can be estimated from the changes in position [Formula: see text] and in linewidth of peak full width at half maximum (FWHM) G in the Raman spectrum of each sample. The broadening for each allotrope under the same conditions of temperature were: diamond ~ 4 cm-1, graphite ~ 50 cm-1, graphene ~ 5 cm-1 and nanoparticles ~ 7 cm-1. We also used scanning electron microscopy (SEM) to study the morphology and determine the size of the samples. According to the experimental data, the residual structural disorder and stress present in the samples are enhanced with temperature and responds for the observed changes in the Raman spectra. We present a systematic study of the temperature-dependent Raman spectra of four carbon allotropes.
APA, Harvard, Vancouver, ISO, and other styles
6

Abdulnabi, Hussein A., and Yasin Yousif Al-Aboosi. "Design of Tunable Multiband Hybrid Graphene Metal Antenna in Microwave Regime." Indonesian Journal of Electrical Engineering and Computer Science 12, no. 3 (December 1, 2018): 1003. http://dx.doi.org/10.11591/ijeecs.v12.i3.pp1003-1009.

Full text
Abstract:
<p>Graphene is an <a title="Allotrope" href="https://en.wikipedia.org/wiki/Allotrope">allotrope</a> (form) of carbon consisting of a single layer of carbon atoms arranged in an <a title="Hexagonal lattice" href="https://en.wikipedia.org/wiki/Hexagonal_lattice">hexagonal lattice</a>. It is the basic structural element of many other allotropes of carbon, such as <a title="Graphite" href="https://en.wikipedia.org/wiki/Graphite">graphite</a>, <a title="Charcoal" href="https://en.wikipedia.org/wiki/Charcoal">charcoal</a>, <a title="Carbon nanotube" href="https://en.wikipedia.org/wiki/Carbon_nanotube">carbon nanotubes</a> and <a title="Fullerene" href="https://en.wikipedia.org/wiki/Fullerene">fullerenes</a>. In this paper, a tunable hybrid metal-graphene antenna in the microwave regime is proposed. This antenna composed of the copper patch and four graphene strips. The antenna designs used for the cellular long-term evolution system and the operating frequency bands of 1.8, 2.5, 2.6, and 3.6 GHz, are evaluated to demonstrate the working principle and the performance tradeoffs. Furthermore, the proposed antenna can be tuned by varying applied DC voltage on the graphene which leads to change in the chemical potential of the graphene and hence the surface conductivity and electrical properties are changed. The simulation results reveal that the antenna operates in multi-band where scattering factor S<sub>11</sub>&lt; -10 dB. In addition, the results show that hybrid metal-graphene frequency reconfigurable antennas can, at the same time, provide a tunable bandwidth and antenna matching.</p>
APA, Harvard, Vancouver, ISO, and other styles
7

Galimberti, M., V. Barbera, S. Guerra, and A. Bernardi. "FACILE FUNCTIONALIZATION OF sp2 CARBON ALLOTROPES WITH A BIOBASED JANUS MOLECULE." Rubber Chemistry and Technology 90, no. 2 (June 1, 2017): 285–307. http://dx.doi.org/10.5254/rct.17.82665.

Full text
Abstract:
ABSTRACT A simple, versatile, sustainable, not expensive method for the functionalization of sp2 carbon allotropes, both nano-sized and nano-structured, without altering their bulk crystalline organization, is presented. Carbon materials available at the commercial scale were used: furnace carbon black (CB), nano-sized graphite with high surface area, and multiwalled carbon nanotubes. A bio-sourced molecule, 2-(2,5-dimethyl-1H-pyrrol-1-yl)-1,3-propanediol (serinol pyrrole), was used for the functionalization. Serinol pyrrole (SP) was obtained from serinol through a reaction with atomic efficiency of about 82%, performed in the absence of solvents or catalysts. Synthesis of serinol pyrrole was performed as well on carbon allotropes as the solid support. Adducts of serinol pyrrole with a carbon allotrope were prepared with the help of either thermal or mechanical energy. Functionalization yield was in all cases larger than 90%. With such adducts, stable dispersions in water and in NR latex were prepared. A few layers of graphene were isolated from the water dispersions, and NR-based composites precipitated from the latex revealed very even distribution of fine graphitic particles. Composites were prepared, based on NR, IR, and BR as the rubbers and CB and silica as the fillers, with different amounts of CB–SP adduct, and were cross-linked with a sulfur-based system without observing appreciable effect of functionalization on vulcanization kinetics. The CB–SP adduct led to appreciable reduction of the Payne effect.
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Jingrong, Shan He, Anindya Nag, and Jonathan Woon Chung Wong. "A Review of the Use of Carbon Nanotubes and Graphene-Based Sensors for the Detection of Aflatoxin M1 Compounds in Milk." Sensors 21, no. 11 (May 21, 2021): 3602. http://dx.doi.org/10.3390/s21113602.

Full text
Abstract:
This paper presents a comprehensive review of the detection of aflatoxin compounds using carbon allotrope-based sensors. Although aflatoxin M1 and its derivative aflatoxin B1 compounds have been primarily found in milk and other food products, their presence above a threshold concentration causes disastrous health-related anomalies in human beings, such as growth impairment, underweight and even carcinogenic and immunosuppressive effects. Among the many sensors developed to detect the presence of these compounds, the employment of certain carbon allotropes, such as carbon nanotubes (CNTs) and graphene, has been highly preferred due to their enhanced electromechanical properties. These conductive nanomaterials have shown excellent quantitative performance in terms of sensitivity and selectivity for the chosen aflatoxin compounds. This paper elucidates some of the significant examples of the CNTs and graphene-based sensors measuring Aflatoxin M1 (ATM1) and Aflatoxin B1 (AFB1) compounds at low concentrations. The fabrication technique and performance of each of the sensors are shown here, as well as some of the challenges existing with the current sensors.
APA, Harvard, Vancouver, ISO, and other styles
9

Suryana, Nana. "Kajian Pengaruh Temperatur Sintering terhadap Peningkatan Derajat Kristalinitas Karbon dari Limbah Kulit Kemiri." Jurnal Ilmu dan Inovasi Fisika 5, no. 2 (August 9, 2021): 164–69. http://dx.doi.org/10.24198/jiif.v5i2.35078.

Full text
Abstract:
Allotropes of carbon has advantages in the ability to intercalate ions, atoms or molecules that potentially to apply in various technological applications. Graphite one of allotrope carbon which has well intercalation and ion transport capabilities. In case, the synthesis of activated carbon made from candlenut shell was carried out with carbonization temperatures at 700C and used a chemical activator in form of 30% KOH. After the activation process, given the sintering treatment for activating carbon with temperature of 950C and 1000C, respectively, which this process is expected to increase the crystalline phase of activated carbon close to the graphite phase. The result showed that dominantion of the structures were amorphous, with varying degrees of crystallinity ranging 35.23% and 35.44%, respectively, and the degrees of graphitization 36% and 37% for the vertical and horizontal directions, respectively. The treatment of the sintering process with a temperature of 1000C has the highest degree of crystallinity, 35.44%. This indicates that the sintering process has an effect on the activated carbon
APA, Harvard, Vancouver, ISO, and other styles
10

Kaiser, Katharina, Lorel M. Scriven, Fabian Schulz, Przemyslaw Gawel, Leo Gross, and Harry L. Anderson. "An sp-hybridized molecular carbon allotrope, cyclo[18]carbon." Science 365, no. 6459 (August 15, 2019): 1299–301. http://dx.doi.org/10.1126/science.aay1914.

Full text
Abstract:
Carbon allotropes built from rings of two-coordinate atoms, known as cyclo[n]carbons, have fascinated chemists for many years, but until now they could not be isolated or structurally characterized because of their high reactivity. We generated cyclo[18]carbon (C18) using atom manipulation on bilayer NaCl on Cu(111) at 5 kelvin by eliminating carbon monoxide from a cyclocarbon oxide molecule, C24O6. Characterization of cyclo[18]carbon by high-resolution atomic force microscopy revealed a polyynic structure with defined positions of alternating triple and single bonds. The high reactivity of cyclocarbon and cyclocarbon oxides allows covalent coupling between molecules to be induced by atom manipulation, opening an avenue for the synthesis of other carbon allotropes and carbon-rich materials from the coalescence of cyclocarbon molecules.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Allotropes du carbone"

1

Garacci, Marion. "Evaluation de la réponse cellulaire et moléculaire d'une diatomée benthique d'eau douce à l'exposition à des nanoparticules carbonées." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30250/document.

Full text
Abstract:
Différentes approches ont été utilisées pour évaluer les effets de deux formes de nanoparticules de carbone (NPC), nanotubes et graphène, afin de comprendre les mécanismes de la réponse générée par la diatomée benthique d'eau douce Nitzschia palea. Les effets à l'échelle de la communauté ont démontré un impact temporaire sur la croissance du biofilm et une accumulation des NPC dans la matrice extracellulaire. L'application d'une étude transcriptomique a mis en évidence l'importance de l'interaction physique, à l'origine d'altération du frustule, dans la mise en place de cette réponse extracellulaire se traduisant par une surproduction des substances exo-polymériques (EPS). Cette approche a également révélé l'impact des NPC sur l'activité photosynthétique des diatomées et une modification du métabolisme énergétique, suggérant une allocation énergétique en faveur de la production d'EPS. L'étude du protéome extracellulaire a permis d'avoir un premier aperçu de la composition de la matrice extracellulaire, principalement constituée de protéines à caractère hydrophobe. Lors de l'exposition aux NPC, les diatomées semblent produire un système adhésif complexe permettant de renforcer la matrice extracellulaire et d'augmenter la stabilité du biofilm tout en piégeant les NPC. L'exposition des diatomées face au deux formes de NPC induit une réponse présentant une forte similitude notamment pour les plus fortes concentrations testées
Different approaches were used to assess the effect of two forms of carbon-based nanoparticles (CNP) nanotubes and graphene, in order to determine the mechanism of the response generated by the benthic freshwater diatom Nitzschia palea. The effect at the cellular community scale demonstrated a temporary impact on biofilm growth and an accumulation of NPC in the extracellular matrix. The use of transcriptomic study evidenced the role of the physic interaction, causing alteration of the frustule, in the extracellular response leading to an overexcretion of exopolymeric substances (EPS). This approach also revealed the impact of NPC on the photosynthetic activity of diatoms and a modification of the energetic metabolism suggesting an energetic allocation for the EPS production. The study of the extracellular proteome allowed to have a first insight of the extracellular matrix composition, in majority composed of hydrophobic-like proteins. In NPC exposure, diatoms seemed to produce an adhesive system allowing to strengthen the extracellular matrix and increase the biofilm stability while trapping NPC. The exposition of diatoms to the two NPC forms induce a response greatly similar for the highest tested concentration
APA, Harvard, Vancouver, ISO, and other styles
2

Lagier, Laura. "Ecotoxicité comparative de l'oxyde de graphène et d'autres nanoparticules de carbone chez des organismes aquatiques modèles : d'une évaluation en conditions monospécifiques vers l'étude d'une chaîne trophique expérimentale." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30270/document.

Full text
Abstract:
L'écotoxicité de différentes nanoparticules de carbone (NPC) a été évaluée chez des organismes aquatiques, en particulier chez Xenopus laevis. Il a été montré que la surface des NPC est le paramètre le plus pertinent pour décrire l'inhibition de croissance chez le xénope, indépendamment de leur forme allotropique et de leur état de dispersion. L'induction des micronoyaux a aussi été étudiée chez le xénope, et l'oxyde de graphène (GO) s'est révélé génotoxique à faible dose, résultat corroboré par l'étude de l'expression des gènes. Les mécanismes de toxicité impliqués seraient notamment liés aux fonctions oxygénées de la particule. De plus, le GO a aussi entrainé de la génotoxicité chez Pleurodeles waltl. et de la tératogénicité, des retards de développement et de l'inhibition de croissance chez Chironomus riparius. La mise en interaction de ces organismes au sein d'un mésocosme a également conduit à l'observation de génotoxicité chez le pleurodèle en présence de GO
The ecotoxicity of different carbon-based nanoparticles (CNPs) was assessed in freshwater organisms, especially in Xenopus laevis. The surface of the CNPs was shown to be the more relevant parameter to describe the growth inhibition in Xenopus, regardless of their allotropic form and their state of dispersion. Micronucleus induction was also studied in Xenopus and graphene oxide (GO) was found genotoxic at low dose. This result was in compliance with the study of genes expression. The involved toxicity mechanisms would be related to the oxidized functions of the CNP. Moreover, GO was also found responsible for genotoxicity in Pleurodeles waltl. and for teratogenicity, development delay and growth inhibition in Chironomus riparius. These organisms have finally been put together in a mesocosm, which has also led to genotoxicity in Pleurodeles in the presence of GO
APA, Harvard, Vancouver, ISO, and other styles
3

Bojdys, Michael Janus. "On new allotropes and nanostructures of carbon nitrides." Phd thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2010/4123/.

Full text
Abstract:
In the first section of the thesis graphitic carbon nitride was for the first time synthesised using the high-temperature condensation of dicyandiamide (DCDA) – a simple molecular precursor – in a eutectic salt melt of lithium chloride and potassium chloride. The extent of condensation, namely next to complete conversion of all reactive end groups, was verified by elemental microanalysis and vibrational spectroscopy. TEM- and SEM-measurements gave detailed insight into the well-defined morphology of these organic crystals, which are not based on 0D or 1D constituents like known molecular or short-chain polymeric crystals but on the packing motif of extended 2D frameworks. The proposed crystal structure of this g-C3N4 species was derived in analogy to graphite by means of extensive powder XRD studies, indexing and refinement. It is based on sheets of hexagonally arranged s-heptazine (C6N7) units that are held together by covalent bonds between C and N atoms. These sheets stack in a graphitic, staggered fashion adopting an AB-motif, as corroborated by powder X-ray diffractometry and high-resolution transmission electron microscopy. This study was contrasted with one of many popular – yet unsuccessful – approaches in the last 30 years of scientific literature to perform the condensation of an extended carbon nitride species through synthesis in the bulk. The second section expands the repertoire of available salt melts introducing the lithium bromide and potassium bromide eutectic as an excellent medium to obtain a new phase of graphitic carbon nitride. The combination of SEM, TEM, PXRD and electron diffraction reveals that the new graphitic carbon nitride phase stacks in an ABA’ motif forming unprecedentedly large crystals. This section seizes the notion of the preceding chapter, that condensation in a eutectic salt melt is the key to obtain a high degree of conversion mainly through a solvatory effect. At the close of this chapter ionothermal synthesis is seen established as a powerful tool to overcome the inherent kinetic problems of solid state reactions such as incomplete polymerisation and condensation in the bulk especially when the temperature requirement of the reaction in question falls into the proverbial “no man’s land” of classical solvents, i.e. above 250 to 300 °C. The following section puts the claim to the test, that the crystalline carbon nitrides obtained from a salt melt are indeed graphitic. A typical property of graphite – namely the accessibility of its interplanar space for guest molecules – is transferred to the graphitic carbon nitride system. Metallic potassium and graphitic carbon nitride are converted to give the potassium intercalation compound, K(C6N8)3 designated according to its stoichiometry and proposed crystal structure. Reaction of the intercalate with aqueous solvents triggers the exfoliation of the graphitic carbon nitride material and – for the first time – enables the access of singular (or multiple) carbon nitride sheets analogous to graphene as seen in the formation of sheets, bundles and scrolls of carbon nitride in TEM imaging. The thus exfoliated sheets form a stable, strongly fluorescent solution in aqueous media, which shows no sign in UV/Vis spectroscopy that the aromaticity of individual sheets was subject to degradation. The final section expands on the mechanism underlying the formation of graphitic carbon nitride by literally expanding the distance between the covalently linked heptazine units which constitute these materials. A close examination of all proposed reaction mechanisms to-date in the light of exhaustive DSC/MS experiments highlights the possibility that the heptazine unit can be formed from smaller molecules, even if some of the designated leaving groups (such as ammonia) are substituted by an element, R, which later on remains linked to the nascent heptazine. Furthermore, it is suggested that the key functional groups in the process are the triazine- (Tz) and the carbonitrile- (CN) group. On the basis of these assumptions, molecular precursors are tailored which encompass all necessary functional groups to form a central heptazine unit of threefold, planar symmetry and then still retain outward functionalities for self-propagated condensation in all three directions. Two model systems based on a para-aryl (ArCNTz) and para-biphenyl (BiPhCNTz) precursors are devised via a facile synthetic procedure and then condensed in an ionothermal process to yield the heptazine based frameworks, HBF-1 and HBF-2. Due to the structural motifs of their molecular precursors, individual sheets of HBF-1 and HBF-2 span cavities of 14.2 Å and 23.0 Å respectively which makes both materials attractive as potential organic zeolites. Crystallographic analysis confirms the formation of ABA’ layered, graphitic systems, and the extent of condensation is confirmed as next-to-perfect by elemental analysis and vibrational spectroscopy.
Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung neuer Allotropen und Nanostrukturen von Karbonitriden und berührt einige ihrer möglichen Anwendungen. Alle gezeigten, ausgedehnten, kovalent verbundenen Karbonitridgerüste wurden in einem ionothermalen Syntheseprozess – einer Hochtemperaturbehandlung in einem eutektischen Salzgemisch als ungewöhnlichem Lösungsmittel – aus einfachen Präkursormolkülen erzeugt. Der Kondensationsmechanismus folgt einer temperaturinduzierten Deaminierung und Bildung einer ausgedehnten, aromatischen Einheit; des dreifach substituierten Heptazines. Die Dissertation folgt vier übergreifenden Themen, beginnend mit der Einleitung in Karbonitridsysteme und der Suche nach einem Material, welches einzig aus Kohlenstoff und Stickstoff aufgebaut ist – einer Suche, die 1834 mit den Beobachtungen Justus von Liebigs „über einige Stickstoffverbindungen“ begann. Der erste Abschnitt zeigt die erfolgreiche Synthese von graphitischem Karbonitrid (g-C3N4); einer Spezies, welche auf Schichten hexagonal angeordneter s-Heptazineinheiten beruht, die durch kovalente Bindungen zwischen C- und N-Atomen zusammengehalten werden, und welche in einer graphitischen, verschobenen Art und Weise gestapelt sind. Der zweite Abschnitt berührt die Vielfalt von Salzschmelzensystemen, die für die Ionothermalsynthese geeignet sind und zeigt auf, dass die bloße Veränderung der Salzschmelze eine andere Kristallphase des graphitischen Karbonitrides ergibt – das g-C3N4-mod2. Im dritten Abschnitt wird vom Graphit bekannte Interkallationschemie auf das g-C3N4 angewendet, um eine Kalliuminterkallationsverbindung des graphitischen Karbonitirdes zu erhalten (K(C6N8)3). Diese Verbindung kann in Analogie zum graphitischen System leicht exfoliiert werden, um Bündel von Karbonitridnanoschichten zu erhalten, und weist darüberhinaus interessante optische Eigenschaften auf. Der vierte und letzte Abschnitt handelt von der Einführung von Aryl- und Biphenylbrücken in das Karbonitridmaterial durch rationale Synthese der Präkursormoleküle. Diese ergeben die heptazinbasierten Frameworks, HBF-1 und HBF-2 – zwei kovalente, organische Gerüste.
APA, Harvard, Vancouver, ISO, and other styles
4

Brommer, Dieter B. "On the mechanics of 2-dimensional carbon allotropes." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100147.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages [81]-[85]).
This thesis reviews the progress leading to the modem picture of 2-dimensional carbon materials, while providing new contributions into the mechanics and failure of the graph-yne family of materials. A first original contribution involves a discussion of material failure across the graphyne family and discussion of a proposed spring abstraction for these materials under mechanical loading. A second contribution is the contrast of these behaviors with graphene and the implications for proposed applications. We apply the mathematical framework of category theory to articulate the precise relation between structure and mechanics of a microscopic system in a macroscopic model domain, by maintaining the chosen molecular properties across a multitude of length scales, from the nanoscale to the continuum scale. The process demonstrates how it becomes possible to 'protoype a model', as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations of an abstract system. This method can be thought of as a prototyped model in which a behavior is brought to a different realization as a case study, we use largescale multi-material printing to examine the scaling of the Young's modulus of a particular family 2-D carbon allotropes at the macroscale and validate the printed model using experimental testing. The resulting hand-held materials can be examined more readily and yield insights beyond those available in purely digital representations which is shown through a twisting analysis.
by Dieter B. Brommer.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
5

Ortolani, Luca <1979&gt. "Low-dimensional carbon allotropes: an electron microscopy investigation." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1612/.

Full text
Abstract:
The research reported in this manuscript concerns the structural characterization of graphene membranes and single-walled carbon nanotubes (SWCNTs). The experimental investigation was performed using a wide range of transmission electron microscopy (TEM) techniques, from conventional imaging and diffraction, to advanced interferometric methods, like electron holography and Geometric Phase Analysis (GPA), using a low-voltage optical set-up, to reduce radiation damage in the samples. Electron holography was used to successfully measure the mean electrostatic potential of an isolated SWCNT and that of a mono-atomically thin graphene crystal. The high accuracy achieved in the phase determination, made it possible to measure, for the first time, the valence-charge redistribution induced by the lattice curvature in an individual SWCNT. A novel methodology for the 3D reconstruction of the waviness of a 2D crystal membrane has been developed. Unlike other available TEM reconstruction techniques, like tomography, this new one requires processing of just a single HREM micrograph. The modulations of the inter-planar distances in the HREM image are measured using Geometric Phase Analysis, and used to recover the waviness of the crystal. The method was applied to the case of a folded FGC, and a height variation of 0.8 nm of the surface was successfully determined with nanometric lateral resolution. The adhesion of SWCNTs to the surface of graphene was studied, mixing shortened SWCNTs of different chiralities and FGC membranes. The spontaneous atomic match of the two lattices was directly imaged using HREM, and we found that graphene membranes act as tangential nano-sieves, preferentially grafting achiral tubes to their surface.
APA, Harvard, Vancouver, ISO, and other styles
6

Lang, Hans Peter. "Scanning tunneling microscopy of layered high temperature superconductors and carbon allotropes." [S.l.] : [s.n.], 1994. http://edoc.unibas.ch/diss/DissB_3306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dral, Pavlo [Verfasser], and Timothy [Akademischer Betreuer] Clark. "Theoretical Study of Electronic Properties of Carbon Allotropes / Pavlo Dral. Gutachter: Timothy Clark." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2013. http://d-nb.info/1054164525/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Knippenberg, Michael Todd. "The interaction between hydrogen and various carbon allotropes calculated using bond-order potentials." Connect to this title online, 2006. http://etd.lib.clemson.edu/documents/1171294045/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Baldissin, G. "A first-principles investigation on substitutions in the carbon allotropes glitter and graphene." Thesis, University of Salford, 2013. http://usir.salford.ac.uk/31787/.

Full text
Abstract:
In the literature, a number of syntheses of carbon materials under extreme condition exhibit the presence of a carbon phase, called n-diamond, whose crystal structure remains unclear. Several crystallographic arrangements have been proposed, which are critically assessed in this work with regards to dynamical stability. It is shown that tetragonal carbon (glitter) is the only structure that satisfies this criterion. Glitter is a metallic 3-, 4-connected allotrope containing 1,4-cyclohexadieneoid units, giving a high energy meta- stable phase. Applying a fully first principles approach, which couples den- sity functional theory (DFT) calculations and Ising-like parameterisation, the possibility of stabilising the structure with nitrogen, boron and silicon substitutions has been investigated, finding that there are arrangements with negative formation energy. These novel arrangements have been tested for vibrational stability, whereby it has been proven that they are dynamically stable. Moreover a bandgap opens, leading to semiconductor bulk materials based on Si, C, B and N. Graphene, a carbon allotrope having the so-called chicken-net structure, is a zero-bandgap semiconductor, which make it promising for nano-electronic applications. However tuning and modifying the bandgap would expand the range of possible applications, in particular for post-silicon transistors. The effect of B substitutions in the graphene lattice has been studied, in terms of stability and electronic structure. The doping at low B concentration has been studied with a direct DFT approach while the effect at higher concentration has been studied with the above-mentioned coupled approach. Novel arrangements, that have semiconductor behaviour, have been proven to be dynamically stable at 0 K. The effect of a second B-C layer has also been investigated, finding that is effective on bandgap tuning.
APA, Harvard, Vancouver, ISO, and other styles
10

Pierce, Benjamin Thomas. "Search for Superconductivity in Defect Enhanced Allotropic Carbon Systems." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1384850067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Allotropes du carbone"

1

Kharisov, Boris Ildusovich, and Oxana Vasilievna Kharissova. Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03505-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Graphene: Carbon in two dimensions. New York: Cambridge University Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smolegovskiĭ, A. M. Istorii︠a︡ izuchenii︠a︡ poliformizma: Khimicheskiĭ aspekt : istorii︠a︡ izuchenii︠a︡ allotropii ugleroda. Moskva: In-t istorii estestvoznanii︠a︡ i tekhniki RAN, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kharissova, Oxana Vasilievna, and Boris Ildusovich Kharisov. Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications. Springer, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Scerri, Eric, and Elena Ghibaudi, eds. What Is A Chemical Element? Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190933784.001.0001.

Full text
Abstract:
The term “element” is typically used in two distinct senses. First it is taken to mean isolated simple substances such as the green gas chlorine or the yellow solid sulphur. In some languages, including English, it is also used to denote an underlying abstract concept that subsumes simple substances but possesses no properties as such. The allotropes and isotopes of carbon, for example, all represent elements in the sense of simple substances. However, the unique position for the element carbon in the periodic table refers to the abstract sense of “element.” The dual definition of elements proposed by the International Union for Pure and Applied Chemistry contrasts an abstract meaning and an operational one. Nevertheless, the philosophical aspects of this notion are not fully captured by the IUPAC definition, despite the fact that they were crucial for the construction of the periodic table. This pivotal chemical notion remains ambiguous and such ambiguity raises problems at the epistemic, logical, and educational levels. These aspects are discussed throughout the book, from different perspectives. This collective book provides an overview of the current state of the debate on the notion of chemical element. Its authors are historians of chemistry, philosophers of chemistry, and chemists with epistemological and educational concerns.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Allotropes du carbone"

1

Sun, Chang Q. "Carbon Allotropes." In Electron and Phonon Spectrometrics, 143–62. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3176-7_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Ya-Ping. "Nanoscale Carbon Allotropes." In Carbon Dots, 7–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41184-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kharisov, Boris Ildusovich, and Oxana Vasilievna Kharissova. "Conventional Carbon Allotropes." In Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications, 9–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03505-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kocsis, Ashley, and Steven W. Cranford. "Carbyne: A One-Dimensional Carbon Allotrope." In Carbon Nanomaterials Sourcebook, 3–25. Boca Raton : Taylor & Francis Group, 2016. | “A CRC title.” |: CRC Press, 2018. http://dx.doi.org/10.1201/9781315371337-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prenzel, Dominik, and Rik R. Tykwinski. "New Synthetic Carbon Allotropes." In Encyclopedia of Polymeric Nanomaterials, 1382–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Prenzel, Dominik, and Rik R. Tykwinski. "New Synthetic Carbon Allotropes." In Encyclopedia of Polymeric Nanomaterials, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_338-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Diudea, Mircea V., Beata Szefler, Csaba L. Nagy, and Attila Bende. "Exotic Allotropes of Carbon." In Exotic Properties of Carbon Nanomatter, 185–201. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9567-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gupta, Tapan. "Carbon (C) the Nacre and Its Allotropes." In Carbon, 1–45. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66405-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hoffmann, Roald. "Some Hypothetical Allotropes of Carbon." In Progress in Pacific Polymer Science, 379–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84115-6_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kharisov, Boris Ildusovich, and Oxana Vasilievna Kharissova. "General Data on Carbon Allotropes." In Carbon Allotropes: Metal-Complex Chemistry, Properties and Applications, 1–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03505-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Allotropes du carbone"

1

Kumar, Gagnesh, and Sunil Agrawal. "CMOS limitations and futuristic carbon allotropes." In 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 2017. http://dx.doi.org/10.1109/iemcon.2017.8117151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mufthas, M. R. M., and C. S. Rupasinghe. "3D Modelling of Carbon Allotropes Used in Nanotechnology." In 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation. IEEE, 2010. http://dx.doi.org/10.1109/ams.2010.97.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zhanyu, S. Y. Wang, R. J. Zhang, Y. X. Zheng, L. Y. Chen, C. Z. Wang, K. M. Ho, and W. S. Su. "Electronic and optical properties of novel carbon allotropes." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.jtu5a.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krauland, Christine M., S. Zhang, F. Beg, Mingsheng Wei, Wolfgang Theobald, and Joao J. Santos. "Fast electron transport in different allotropes of shock-heated carbon." In 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2016. http://dx.doi.org/10.1109/plasma.2016.7534170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Szentpáli, Béla, and Péter Arató. "Electronic noise in silicon nitride ceramics doped by carbon allotropes." In SPIE Fourth International Symposium on Fluctuations and Noise, edited by Massimo Macucci, Lode K. Vandamme, Carmine Ciofi, and Michael B. Weissman. SPIE, 2007. http://dx.doi.org/10.1117/12.724551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sima, Karel, Jiri Stulik, Josef Slauf, Tomas Blecha, and Ales Hamacek. "Investigation of π Stacking Functionalization of Carbon Allotropes for RH Sensing." In 2021 44th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2021. http://dx.doi.org/10.1109/isse51996.2021.9467585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Borkowski, P., E. Walczuk, D. Wojcik-Grzybek, K. Frydman, and D. Zasada. "Electrical Properties of Ag-C Contact Materials Containing Different Allotropes of Carbon." In 2010 IEEE Holm Conference on Electrical Contacts (Holm 2010). IEEE, 2010. http://dx.doi.org/10.1109/holm.2010.5619544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dennis, Tim J., J. P. Hare, H. W. Kroto, R. Taylor, D. R. Walton, and P. J. Hendra. "Fourier transform Raman spectra of the newly produced allotropes of carbon C60 and C70." In Luebeck - DL tentative, edited by Herbert M. Heise, Ernst H. Korte, and Heinz W. Siesler. SPIE, 1992. http://dx.doi.org/10.1117/12.56431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Samuel, B. A., C. M. Lentz, and M. A. Haque. "Experimental Study of Structure-Electrical Transport Correlation in Single Disordered Carbon Nanowires." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11739.

Full text
Abstract:
We present experimental results characterizing the changes in electrical transport of single disordered carbon nanowires (diameter 150–250 nm) to the changes in microstructure within the nanowires induced by synthesis temperature. The material system studied is a nanoporous, semiconducting disordered carbon nanowire obtained from the pyrolysis of a polymeric precursor (polyfurfuryl alcohol). Unlike the other allotropes of carbon such as diamond, graphite (graphenes) and fullerenes (CNT, buckyballs), disordered carbons lack crystalline order and hence can exhibit a range of electronic properties, dependent on the degree of disorder and the local microstructure. Such disordered carbon nanowires are therefore materials whose electronic properties can be engineered to specifications if we understand the structure-property correlations. Using dark DC conductivity tests, measurements were performed from 300K to 450K. The charge transport behavior in the nanowires is found to follow an activation-energy based conduction at high temperatures. The conductivity for nanowires synthesized from 600°C to 2000°C is calculated and is linked to changes in the microstructure using data obtained from SEM, TEM and Raman spectroscopy. The electrical properties of the nanowire are shown to be linked intrinsically to the microstructure and the degree of disorder, which in turn can be controlled to a great extent just by controlling the pyrolysis temperature. This ability to tune the electrical property, specifically conductivity, and map it to the structural changes within the disordered material makes it a candidate material for use in active/passive electronic components, and as versatile transducers for sensors.
APA, Harvard, Vancouver, ISO, and other styles
10

Chahine, Nadeen O., Nicole M. Collette, Heather Thompson, and Gabriela G. Loots. "Application of Carbon Nanotubes in Cartilage Tissue Engineering." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192494.

Full text
Abstract:
Carbon nanotubes (CNTs) are cylindrical allotropes of carbon that are nanometers in diameter and posses unique physical properties, positioning them as ideal materials for studying physiology at a single cell level. CNTs have the potential to become a very important component of medical therapeutics, likely acting as (a) drug delivery system [1], (b) existing as an interfacial layer in surgical implants [2,3], or (c) acting as scaffolding in tissue engineering [4,8]. While some studies have explored the use of CNTs as a novel material in regenerative medicine, they have not yet been fully evaluated in cellular systems. One major limitation of CNTs that must be overcome is their inherent cytotoxicity. The goal of this study is to assess the long-term biocompatibility of CNTs for chondrocyte growth. We hypothesize that CNT-based material in tissue engineering can provide an improved molecular sized substrate for stimulation of cellular growth, and structural reinforcement of the scaffold mechanical properties. Here we present data on the effects of CNTs on chondrocyte viability and biochemical deposition examined in composite materials of hydrogels + CNTs mixtures. Also, the effects of CNTs surface functionalization with polyethlyne glycol (PEG) or carboxyl groups (COOH) were examined.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Allotropes du carbone"

1

Partee, Jonathan. Optically detected magnetic resonance studies on π-conjugate polymers and novel carbon allotropes. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/348885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Story, Natasha Claire. Polymer Composites Reinforced by Carbon-Allotrope Fillers for Selective Laser Sintering (SLS) - A Review. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1603967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography